Dating hydrothermal alteration and IOCG
mineralization along a terrane-bounding fault zone:
the Copper Lake deposit, Nova Scotia
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ABSTRACT

The Copper Lake area of mainland Nova Scotia is one of several vein-controlled mineralized (Cu-Au-Co) systems associ-
ated with widespread carbonate and iron-oxide alteration proximal to the east-trending Cobequid-Chedabucto Fault System.
Although this mineralization has been known for decades, its metallogenic affinity remains poorly defined, and in recent years
anIOCG (iron oxide-copper-gold) model has been suggested. In order to determine the age of mineralization and provide an
important time constraint for developing a metallogenic model, direct dating of the mineralization and associated alteration
was undertaken. At Copper Lake, mineralization occurs in a set of sulphide-carbonate fissure veins hosted by fine-grained
metasedimentary rocks of the Middle Devonian Guysborough Group. Dating of the sulphide-alteration (pyrite) and phyl-
lic-alteration (muscovite) stages of the ore system utilized the Re-Os and *°Ar/**Ar methods, respectively. The two different
chronometers yield ages of about 320 Ma and provide an absolute age for the mineralization. As part of this study additional
geochronological data were obtained for detrital zircon (U-Pb age 0f 1634 + 11.2 Ma) from the host sedimentary rocks, as well
as timing of thermal events at ca. 370-380 Ma, 350 Ma and <300 Ma based on whole rock “°Ar/3*°Ar and chemical Th-Pb
dating of host rocks and monazite. The Th-Pb dating of monazite indicates that rare-earth element mobility accompanied
mineralization. Collectively, the data indicate that the area experienced multiple thermal events, but hydrothermal activity
related to mineralization is constrained to about 320 Ma and is tentatively interpreted to relate to structural focusing of fluids
that may have been driven by a mid-crustal level mafic heat source. The mineralizing event coincides with regional Alleghanian
deformation in this part of the Appalachian orogen and thus reflects larger-scale tectonothermal processes.

RESUME

Le secteur du lac Copper, dans la partie continentale de la Nouvelle-Ecosse, constitue I"un de plusieurs systemes minérali-
sés (Cu-Au-Co) régis par des filons associés a une altération étendue en oxyde de fer et en carbonates proximale du systeme
de failles orienté vers I’est de Cobequid-Chedabucto. Méme si I'on connait cette minéralisation depuis des décennies, son
affinité métallogénique demeure mal définie et des chercheurs ont avancé ces derniéres années un modele OFCO (oxyde de
fer-cuivre-or). On a réalisé une datation directe de la minéralisation et de ’altération connexe pour déterminer I’age de la
minéralisation et établir une délimitation chronologique importante pour I’établissement d’'un modele métallogénique. Dans
le secteur du lac Copper, la minéralisation est présente dans un ensemble de filons de fissures remplies de sulfures-carbon-
ates a 'intérieur de roches métasédimentaires a grains fins du groupe du Dévonien moyen de Guysborough. Les méthodes
Re-Os et *°Ar/*Ar, respectivement, ont permis la datation des stades de la sulfuration (pyrite) et de I’altération phylliteuse
(muscovite). Les deux différentes méthodes chronométriques ont fourni des ages d’environ 320 Ma et conferent un Age absolu
a la minéralisation. On a obtenu, dans le cadre de cette étude, des données géochronologiques supplémentaires de zircon
détritique (datation U-Pb de 1634 + 11,2 Ma) des roches sédimentaires hotes ainsi que le moment des événements thermiques,
situés a environ 370-380 Ma, 350 Ma et < 300 Ma d’apres une datation de la roche totale *°Ar/3Ar et une datation chimique
Th-Pb des roches hétes et de la monazite. La datation Th-Pb de la monazite révele qu’une mobilité des métaux des terres
rares a accompagné la minéralisation. Les données signalent collectivement que le secteur a connu plusieurs événements
thermiques, mais que P'activité hydrothermale apparentée a la minéralisation est limitée a environ 320 Ma; on l'interprete
source de chaleur mafique mi-crustale. L'épisode de minéralisation coincide avec la déformation alléghanienne régionale
dans cette partie de 'orogene des Appalaches et correspond en conséquence a des processus tectonothermaux a plus grande
échelle.

[Traduit par la redaction]
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INTRODUCTION

The metallogenic map of Nova Scotia (Chatterjee 1983)
shows a high concentration of iron-oxide mineralization
and associated base- and precious-metal enrichment proxi-
mal to the prominent, east-trending Cobequid-Chedabucto
Fault System (CCFS, Fig. 1a) which separates the Avalon and
Meguma terranes in this part of the Appalachian orogen.
This metallogenic domain includes the past-producing iron
mines of Londonderry (Wright 1975), as well as many smaller
past producers (e.g., Copper Lake Cu-Au) and significant
occurrences (e.g., Mt. Thom Cu-Co-Au north of Truro; Fig.
1a; Kontak 2006). Much of this mineralization is related to
widespread carbonate- and iron -oxide alteration (i.e., specular
hematite with magnetite absent) regardless of the age or nature
of the host rock. The elemental association (Cu, Fe, Au, Co,
Ni), nature of the alteration (Fe-oxide and carbonate), and
obvious spatial association with a major terrane-bounding
fault system with a protracted history (Keppie 1982) suggest
a possible metallogenic affinity with IOCG (iron oxide-cop-
per-gold) mineralization (see Williams et al. 2005 for review).
Consequently, the area has attracted considerable exploration
interest in recent years (Downes and Setterfield 2004; OReilly
2005; Kontak 2006; Belperio 2007). Although a compilation
of mineralization along the fault zone has been done (Ervine
1994) and some general studies completed at specific sites
(Wright 1975; Kontak 2006; O’Reilly 2005), which indicate an
epigenetic, structural control to the mineralization with associ-
ated alteration, no radiometric ages for the mineralization are
available. Stratigraphic constraints suggest a post-Namurian
age for similar alteration in the Cobequid Highlands (i.e.,
younger than about 325-315 Ma; Pe-Piper et al. 2004; O'Reilly
2005; Kontak 2006). Given the importance of constraining
the timing of this mineralization and its relationship to the
geological evolution of the host rocks and surrounding area,
a geochronological study was undertaken at one of the better
mineralized sites, the past-producing Copper Lake deposit.
This site has been studied in more detail than others (Kontak
2006) and, therefore, formed the basis for a comprehensive,
multi-method (Re-Os, **Ar/*°Ar, U-Pb, Th-Pb chemical dating)
geochronologic study. In this paper, the results of this work are
presented and discussed in the context of the possible origin
of this IOCG-style mineralization. The results of “°Ar/**Ar
dating obtained for other mineralized sites, such as Mt. Thom
and surrounding area (Kontak ez al. 2008), are currently being
completed and will be presented elsewhere.

GEOLOGICAL SETTING

The Copper Lake area occurs north of the east-trending
CCFS which separates the Meguma and Avalon terranes
(Fig. 1). The area lies east of a thick sequence of Ordovician-
Devonian volcanic and sedimentary rocks that drape part of
the Precambrian Antigonish Highlands (Murphy et al. 1991)
around Lochaber Lake, and Devonian-Carboniferous Horton

and Windsor group rocks occur to the north and south (Téniére
2002; Reynolds et al. 2004) (Fig. 1). The area of interest is un-
derlain by mid-Devonian rocks of the Guysborough Group
(Cormier ef al. 1995; White and Barr 1998, 1999; Dunning et
al. 2002) and is structurally bounded on all sides, which has
led to the setting being interpreted to represent a positive
flower structure related to dextral movement along the ter-
rane-bounding CCFS to the south (Webster et al. 1998). Several
major faults occur, which coincide with changes in rock type
and structural trends (Kontak 2006), some of which are labeled
in Figure 1. These faults include the north-trending Lochaber
Lake and South River Lake faults and the northeast-trending
Roman Valley and Glenroy faults. The Roman Valley Fault
forms the structural break with Horton Group sedimentary
rocks which underlie the Lochaber-Mulgrave area to the
north, and has been discussed in detail by Teniére (2002) and
Reynolds er al. (2004). These structural discontinuities have
been noted for some time and can be seen on earlier maps of
the area (MacCormack 1966, 1967). A cleavage-forming defor-
mation event and associated low-grade metamorphism (lower
greenschist facies) of the Horton Group rocks just north of the
Roman Valley Fault are constrained to about 340 Ma based on
YAr/*Ar plateau ages (Reynolds et al. 2004).

East of Copper Lake, where the historical copper mining
occurred (Fig. 1), the area is underlain by rocks of the Middle
Devonian Guysborough Group, as constrained by a U-Pb
zircon age of 389 Ma reported by Cormier et al. (1995) for a
rhyolite dome in this sequence, and a cross-cutting gabbroic
pluton (Dunning et al. 2002). The stratigraphy is dominated
by green- to grey-green siltstone and shale and grey to black
laminated siltstone, silty shale, and shale. Both of these rock
assemblages are present in drill core from the mineralized zone
at Copper Lake (Black 1996; Kontak 2006). Based on core log-
ging and assessment reports (Lacombe 1962; Black 1996), it
appears that a package of mainly fine-grained, greenish sedi-
mentary rocks is located on the north side of the area, whereas
grey to black sedimentary rock units dominate in the south;
locally the boundary between the two rock types is a zone of
brittle deformation. The dark shale lithologies typically have
thin (< 3-5 mm) layers of sulphides, with pyrite dominant over
pyrrhotite, that occur with quartz and carbonate extensional
veins. Reference is made in drill records (e.g., Lacombe 1962)
to the occurrence of andesite and rhyolite lithologies, which
occur elsewhere in the Guysborough Group (Cormier et al.
1995), but these rocks were not observed in examination of the
drill core from Copper Lake. In addition, there is reference to
small plugs of intrusive rocks of mafic and felsic composition in
the area based on the occurrence of erratics, but no detailed de-
scriptions of the field relationships of such rocks were provided.
Cameron (1951) referred to such a pluglocated west of Copper
Lake as being of syenitic composition, but no igneous rocks
are encountered in drill core or recent mapping in the area
(e.g., White and Barr 1998). However, copper mineralization
at College Grant, located west of Lochaber Lake, is associated
with quartz-specularite veins in a Devonian dioritic intrusion
(Murphy et al. 1991; Fig. 1).
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Fig. 1. (a) Location of the study area in the eastern part of mainland Nova Scotia showing the main geological features
discussed in the paper. (b) Geological map of the Copper Lake area, northern mainland Nova Scotia. Map is modified after
Keppie (2000) and Reynolds et al. (2004). Faults shown are as follows: Cobgeuid-Chedabucto Fault System (CCFS), South
River Lake Fault (SRLF), Lochaber Lake Fault (LLF), Roman Valley Fault (RVF), and Glenroy Fault (GF). Location of the
Copper Lake (CL) and College Grant (CG) mineralized sites are indicated. Note that the Meguma (MT) and Avalon (AT)
terranes are also indicated in figures aand b.
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The sequence of sedimentary rocks has been tightly folded
into east- to northeast-trending folds, but the scale of these
structures is not well constrained. A variably developed cleav-
age with an easterly to northeasterly trend and steep dip occurs

regionally and in drill core small scale folding is commonly seen
(Fig. 2a). The structural features observed in the study area are
similar to those described in the younger Horton Group rocks
to the north (Téniére 2002; Reynolds et al. 2004).

Fig. 2. Samples from Copper Lake Cu-Au deposit. Note that the sample in (a) is from drill core and the others are from
remnant piles of ore and waste material at the former mine site. (a) Core sample showing dark grey to black, laminated
siltstone (note bedding (S,) is traced by dashed white line) with folded, bedding concordant quartz-Fe carbonate-pyrite
vein cut by later quartz-carbonate extensional veins. (b) Slab of vein material showing Fe-carbonate with specular hema-
tite (right part of sample) against altered (i.e., bleached) sedimentary wall rock on the left. (c) Cut slab of ore-grade, vein
sample showing quartz-carbonate-chalcopyrite (Qtz-Carb-Cpy) and carbonate-chalcopyrite (Carb-Cpy) stages of mineral-
ized material. Note the coarse, in part euhedral, grains of Fe carbonate mixed in with brecciated material. (d) Sample of
massive vein pyrite with Fe-oxide (gossan) alteration. This sample was used for Re-Os isotopic analysis.
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MINERALIZATION AND
ALTERATION AT COPPER LAKE

The mineralization at Copper Lake was confined to his-
torical underground workings (Cameron 1951) and has been
summarized by McMullin (1970). These reports indicate that
the mineralized zones occur in east-trending, moderately to
steeply dipping (<65°) siderite-sulphide veins (Fig. 2b, ¢, d).
Early workings of the veins produced ore with grades up to
10-12% Cu with 0.24 oz. Au/t, 0.3 oz. Ag/t, and 0.1% Ni.
Intersections of >2% Cu over about 3 m have been recorded.
Analyses of sulphide concentrates from dump material have
confirmed the elevated Au values (Kontak 2006). The veins are
generally considered to fill subparallel fissures that relate to a
series of faults in the area.

Based on examination of drill core and samples collected
from dump piles, a detailed description of the mineraliza-
tion was prepared by Kontak (2006), a summary of which
follows: (1) there appears to be a continuum of veins which,
importantly, cut cleaved wall rock, thereby suggesting a late
origin with respect to penetrative deformation (Fig. 2a); (2)
specular hematite is common in the siderite veins (Fig. 2b);
(3) carbonate veins cutting sedimentary wall rock commonly
have bleached alteration halos (Fig. 2b); (4) coarse pyrite and
chalcopyrite are locally abundant in siderite veins (Fig. 2c); (5)
breccia textures in massive vein samples (Fig. 2¢) indicate that
repeated opening, sealing, and deformation occurred during
vein formation; and (6) the widespread occurrence of quartz-
hematite veins and areas of well developed extensional veins
of quartz-carbonate-sulphide, particularly in the dark grey to
black sedimentary rocks.

A detailed study of alteration based on petrographic study
and imaging using the electron microprobe was presented
in Kontak (2006) and is summarized below. The original
mineral assemblage of the sedimentary rocks consists of vari-
able mixtures of quartz, chlorite, white mica, and albite with,
importantly, carbonate as a rare phase (Fig. 3a). In contrast,
there is locally pervasive alteration of the host rocks (e.g., Fig.
3b) with development of quartz-carbonate-albite zones, either
in similar proportions or variable mixtures, and a distinctive
medium-grained, granoblastic texture (Fig. 3¢, d, f). The altera-
tion is peripheral to veins, but generally altered sections are
vein free. In addition to the dominant minerals mentioned,
variable amounts of muscovite, chlorite, apatite, rutile, clay
(possibly kaolinite), and pyrite occur with trace amounts of
chalcopyrite, monazite, zircon, xenotime, thorite, and un-
identified rare-earth element phases (Fig. 3e, f; also see Kontak
2006). Apatite forms both within the altered wall rock and as
part of the vein assemblage, thus linking the vein and alteration
stages. Of particular note is the fact that the accessory phases,
zircon, monazite, and xenotime, have sub- to euhedral habits
and may occur as phases proximal to or within hydrothermal
pyrite which indicates they are possibly of hydrothermal origin
(Fig. 3e).

SAMPLING AND ANALYTICAL PROCEDURES

Samples for constraining the timing of mineralization at
Copper Lake were collected from dump material adjacent to
the former workings (6° UTM 5028375N, 579915E) and dia-
mond drill holes collared near the mineralized zone just east of
Copper Lake (locations provided in Black 1996). Appropriate
materials were sampled in order to undertake Re-Os and *°Ar/
39Ar dating, but subsequent petrographic work indicated the
possibility for both TIMS U-Pb zircon dating and also in situ
Th-Pb chemical dating of monazite.

Six samples were collected for *°Ar/*°Ar dating, four of these
being fine-grained sedimentary rocks from drill holes (CPL-95-
2 and 95-3; see descriptions in Black 1996) and two samples
from the mine dumps. The two drill holes were collared pe-
ripheral to the main zone, but abundant veining and alteration
occur throughout some sections, whereas the dump samples
contained phyllic alteration of wall rock adjacent to carbon-
ate-sulphide veins. In the latter case, a sample enriched in fine-
grained white mica was treated as a whole rock, whereas in the
second sample a muscovite separate was prepared by handpick-
ing from crushed material under a binocular microscope. The
samples were analyzed at the Geochron Laboratories, Queen’s
University (Kingston, Ontario) using the following procedures.
Samples and flux-monitors (standards) were wrapped in Al-foil
and the resulting disks were stacked vertically into a 11.5 cm
long and 2.0 cm diameter irradiation capsule. The capsule was

Fig. 3. (Following page) Photographs of core (b) and
polished sections (back scattered electron (BSE) images)
for fresh and altered rock samples from the Copper

Lake area. In the BSE images the bright areas have
higher average atomic number, e.g., quartz is darker
than carbonate and pyrite is brighter than both of these.
Abbreviations are quartz (Qtz), carbonate (Carb), albite
(Alb), muscovite (Ms) and zircon (Zr). (a) Typical matrix
of the fresh sedimentary rock showing isolated, anhe-
dral grains of quartz (dark) and intergranular mica, clay
minerals and feldspar (light grey). Note that there is only
minor carbonate (bright areas). Compare this sample

to altered samples in images shown in d, e, and f. (b)
Intensely bleached sedimentary rock in area peripheral
to abundant carbonate veins. The red material is fine-
grained hematite along bedding planes. (c) Secondary
hydrothermal albite porphyroblasts (outlined in white
dashed lines) overgrowing matrix phases in the sedimen-
tary rock. (d) Altered sedimentary rock with quartz (med
grey) - carbonate (bright phase) dominant and new pore
space filled by muscovite and clay minerals (dark areas).
(e) Altered sedimentary rock now composed of quartz-al-
bite (dark areas) with later euhdral carbonate (grey), rare
muscovite (Ms) and a zoned, 20 pm size zircon euhedra
(enlarged in the inset box). (f) Altered sedimentary rock
with coarse quartz-carbonate and sub- to anhedral apa-
tite (bright phases).
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irradiated with fast neutrons in position 5C of the McMaster
Nuclear Reactor (Hamilton, Ontario) for 27 hours (81 MWH
with a neutron flux of ca. 4.3 x 10'® neutrons/cm?). Groups
of flux monitors were located at ca. 1 cm intervals along the
irradiation container and J-values for individual samples were
determined by second-order polynomial interpolation be-
tween replicate analyses of splits for each monitor position in
the capsule. No attempt was made to monitor horizontal flux
gradients, as these are considered to be minor in the core of
the reactor. For the samples analyzed in this study the J values
ranged from 6.943 x 107 to 6.789 x 1073. For total fusion of
monitors using a laser, the samples are mounted in a copper
sample-holder, beneath the view-port of a small, bakeable,
stainless-steel chamber connected to an ultra-high vacuum
purification system. An 8W Lexel 3500 continuous argon-
ion laser was used for fusing flux monitors. For step-heating
of samples in this study, the beam of a New Wave Research
MIR10-30, CO, laser was defocused to a 2300 pm spot size.
Heating periods were ca. 3 minutes at increasing power set-
tings. The evolved gas, after purification using an SAES C50
getter (ca. S minutes), was admitted to an on-line, MAP 216
mass spectrometer, with a Baur-Signer source and an electron
multiplier (set to a gain of 100 over the Faraday). Blanks, mea-
sured routinely, were subtracted from the subsequent sample
gas-fractions. The extraction blanks were typically <10 x 10713,
<0.5x10™3,<0.5x 1073, and <0.5 x 1073 ¢cm-3 STP for masses
40, 39, 37, and 36, respectively.

Measured argon-isotope peak heights were extrapolated
to zero-time, normalized to the **Ar/**Ar atmospheric ratio
(295.5) using measured values of atmospheric argon, and
corrected for neutron-induced *’Ar from potassium, *’Ar and
36Ar from calcium (using isotope production ratios of Escuder
Viruete et al. 2006), and **Ar from chlorine (Roddick 1983).
Dates and errors were calculated using formulae given by
Dalrymple et al. (1981), and the constants recommended by
Steiger and Jager (1977). Isotope correlation analysis used the
formulae and error propagation of Hall (1981) and the regres-
sion of York (1969). Errors shown in the tables and on the age
spectra and isotope correlation diagrams represent the analyti-
cal precision at 25, assuming that the error in the age of the
flux monitor is zero. This approach is suitable for comparing
within-spectrum variation and determining which steps form
a plateau (McDougall and Harrison 1999). A conservative es-
timate of this error in the J-value is 0.5% and can be added for
inter-sample comparison. The dates and J-values are referenced
to Hb3Gr hornblende at 1072 Ma (Roddick 1983).

A sample of pyrite-rich, carbonate-sulphide rock (Fig. 2d)
collected from the dump area surrounding the historical work-
ings was collected for Re-Os dating. The rock was fragmented
to provide fresh sulphide material, as most of the material
recovered from the dump area has a gossanous outer layer.
The newly exposed material is free of alteration, as confirmed
from examination of ore petrology sections prepared from
this sample. The sample was processed and analyzed at the
Department of Earth and Atmospheric Sciences, University
of Alberta (Edmonton, Alberta). The sulphide-bearing sample

was first coarsely crushed and subsequently hand-picked to
subdivide the sample into five high-purity pyrite separates. The
Re and Os contents were determined by isotope dilution and
negative thermal ionization mass spectrometry (ID-NTIMS)
following procedures described by Morelli ez al. (2004, 2005).
Isochron ages were calculated by use of Isoplot/Ex V3.0
(Ludwig 2003) using fully propagated uncertainties in Re/Os
and Os/Os together with the use of the error correlation func-
tion rho (see Morelli ez al. 2005 for full details).

A section of drill core containing intensely bleached (i.e.,
pale grey white) siltstone with abundant disseminated pyrite
was observed (thin section, imaging analysis) to contain an
anomalous amount of sub- to euhedral zircon. This sample
was processed for U-Pb analysis of zircon at the Department
of Earth and Atmospheric Sciences, University of Alberta
(Edmonton, Alberta). The separation of zircon grains and their
isotopic analysis follow procedures outlined in Heaman et al.
(2002) and ages were calculated using the decay constants rec-
ommended by Jaffey et al. (1971;23U =1.55125 x 10" yr* and
25 = 9.8485 x 10719 yr!). The ages reported have 2c errors.

Several samples containing subhedral to euhedral monazite
grains were selected for chemical characterization and chemical
age dating (Montel et al. 1996; Williams et al. 1999). Analyses
were done at the Regional Electron Microprobe Laboratory
at Dalhousie University, Halifax, Nova Scotia, using a JEOL
8200 electron microprobe equipped with 5 wavelength spec-
trometers and a 131-eV Noran Energy Dispersive Detector.
The procedures used are the same as outlined in Pe-Piper and
MacKay (2006) and follow the detailed protocol outlined by
Jercinovic and Williams (2005). For major elemental analysis,
the microprobe was operated with an acceleration voltage of 15
kV and probe current of 20 nA. A counting time of 20 seconds
on the peaks was used with a background count time of 10
seconds. For trace element analysis, the conditions were 15 kV
accelerating voltage and 200 nA probe current. Peak counting
time was 360 seconds and background count time 180 seconds.
Monazite grains were first located on polished slides using a
backscattered electron (BSE) image and confirmed with the
Energy Dispersive Detector prior to analyzing for chemical
dating and chemistry. Age calculation used the University of
Massachusetts program (Jercinovic and Williams 2005). As a
check on precision and as an instrument control, monazite
from Jefferson County, Colorado, which has previously dated
using EMPA at between 394 to 365 Ma, was used as an inter-
laboratory standard (Pe-Piper and MacKay 2006). During the
course of analysis, this monazite gave apparent ages of 376 to
373 Maand associated errors are estimated at < 5% or +15-20
Ma for the samples in this study.

ANALYTICAL RESULTS

40Ar/*Ar Age Dating

Results for “°Ar/**Ar dating are summarized in age spectra
plots in Figure 4 and data are summarized in Table 1. Samples
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Fig. 4. “°Ar/*Ar age spectra plots for whole rocks (a, b, ¢, d, €) and muscovite separate (f) for samples from the Copper

Lake area. The half heights of open rectangles indicate the 2c relative (between-step) uncertainties. Mean ages are given
with their 26 uncertainties with abbreviations as follows: I.A. = integrated age, P.A. = plateau age, C.A. = correlation age.
Note that some low-temperature steps are not plotted Note that same low-temperature steps are not plotted (see Table 1

for complete data).

CPL-04-22, 04-25, and 04-27 come from the same drill hole
(CPL-95-3) with CPL-04-22 and 04-25 both being black
argillite containing a distinct fabric and also containing thin
quartz-carbonate-pyrite veinlets. In contrast, sample CPL-04-
27 is a dark grey siltstone with some disseminated carbonate
spots and represents an alteration zone around a mineralized
vein system. Of the three age spectra, two (CPL-04-22, 27)
are almost identical and are discussed first. Both spectra show
increasing ages that commence near 200 Ma and progress with
increasing temperature steps to a pronounced hump around

360 to 380 Ma. This hump profile may indicate the effects of
local argon recoil (McDougall and Harrison 1999). Following
these humps in the spectra, a small quasi-plateau incorporat-
ing about 25-30% of the gas fraction occurs for both samples
at around 350 Ma. The highest temperature steps, yielding
10-20% of gas released, give progressively younger ages down
to about 320-310 Ma. The third sample, CPL-04-25, from drill
hole CPL-95-3 yielded an age spectrum that shows a mono-
tonic increase from an initial age of <200 Ma to a plateau at
349.3 £2.5 Ma which incorporates 51.4 % of the gas. The uni-
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formly low Ca/K ratios (<0.1) for the whole age spectra in all
of the above samples, despite their irregular profiles, indicates
that gas was released dominantly from a single K-rich phase,
which is interpreted to be mica.

The fourth whole-rock sample (CPL-04-40), from diamond
drill hole CPL-95-2, is a fine-grained, laminated, grey-green
siltstone with thin (<5 mm), bedding concordant, quartz-
carbonate-specular hematite veins. The sample yielded an
age spectrum that shows a monotonic increase in age from
an initial step at <200 Ma to around 380-370 Ma for the last
50% of gas released. Importantly, this sample has a uniformly
low Ca/K ratio (<0.1) for the whole spectrum and indicates gas
release from a single, K-rich phase, probably mica.

The final two samples dated represent material from near
the old workings preserved in dump piles. Sample CPL-99-
10C is an altered siltstone with disseminated muscovite that
occurs adjacent to a sulphide-bearing carbonate vein with
pyrite >chalcopyrite. The sample yielded a flat age spectrum,
although the initial 8% of the gas liberated indicates younger
ages than the plateau. A plateau age 0f 322.1+ 1.6 Mais defined
by 81.8% of the gas released, which is similar to the integrated
age of 319.4 £ 1.6 Ma. The uniformly low Ca/K ratios (<0.1)
for the gas fractions defining the plateau age indicates the gas
was released from a single, K-rich phase, inferred to be the
muscovite seen in the sample.

Sample CPL-2004-2C is a muscovite separate extracted
from a pervasively altered siltstone adjacent to a massive car-
bonate-sulphide (pyrite > chalcopyrite) vein. In thin section,
muscovite is seen to form radiating clots of coarse muscovite
intergrown with fresh, hydrothermal carbonate. This sample is
considered to represent the wall-rock component of the main
vein system at the deposit site. The muscovite separate yielded
a flat age spectrum with a plateau age of 309.5 + 1.6 Ma for
80% of the gas liberated, identical to the integrated (309.5 +
1.6 Ma) and correlation ( 307.9 + 3.4 Ma) ages. The uniformly
low Ca/K ratio (<0.1) for this sample is consistent with the gas
being liberated from a single, K-rich phase.

Re-Os Dating

Pyrite from a massive carbonate-sulphide (pyrite > chalco-
pyrite) vein sample was separated into five individual fragments
and each was analyzed for its Re and Os isotopic composition
(Table 2). The pyrite has a high Re/Os ratio and the Os is highly

Table 2. Re-Os isotope data for pyrite from Copper Lake Cu-Au deposit, Nova Scotia.

radiogenic, the so-called “low level highly radiogenic” (LLHR;
Stein et al. 2000) sulphide. The data display a well-defined lin-
ear relationship in an isochron diagram (Fig. 5) and regression
of the data defines an age of 323 + 8 Ma with MSWD value of
0.4 and initial 8’Os/!*¥8Os value of 1.0 + 0.4 (200 uncertain-
ties).

U-Pb Zircon Dating

Asample of pervasively bleached and altered siltstone from
drill core (Fig. 6a) was observed during petrographic and imag-
ing studies to contain an anomalous amount of subhedral to
euhedral, normally zoned zircon grains (Fig. 6b). The zircon
was considered to possibly represent hydrothermal growth
based on its abundance and habit and it was therefore sepa-
rated for dating, the results of which are summarized in Table
3. Crushing of the sample yielded a multi-grain fraction (n=40)
of small, colorless zircon grains which have a U content of 242
ppm, Th content of 68 ppm, and Th/U ratio of 3.5 that s typi-

404 Age =323+ 8 Ma
Initial “Os/*0s=1.0+£0.4
MSWD =0.4
w 30+ CPL-04-1
9 CPL-04-1-4
- 204 CPL-04-1-1
O /..
10l .. % CPL-04-1-2
. CPL-04-1-5
0 ; ; :
0 2000 4000 6000
137Re/18808

Fig. 5. Isochron diagram for the Re-Os isotopic analyses of
pyrite separates for a sulphide sample from Copper Lake.
The age was calculated using Isoplot/Ex (Ludwig 2003), as
discussed in the text, but note that the uncertainty shown
(20) does not include uncertainty in the decay constant (A).

Sample Re ppb +2SE Os ppt +2SE  Osppt  +2SE %Re’ ™05 +2SE* 05105 +2SE* Rho
CPL2004-1 3.743 0.015 16.8 47 1.5 0.4 4995 1252 28.06 7.03 0.999
CPL2004-1-1 3.983 0.016 18.0 3.5 1.8 0.3 4515 846 25.18 4.73 0.996
CPL2004-1-2 3.666 0.015 20.3 2.1 2.9 0.3 2498 266 14.50 1.55 0.994
CPL2004-1-4 2.840 0.012 13.0 3.8 12 0.3 4581 1227 25.75 6.93 0.996
CPL2004-1-5 3.369 0.014 23.0 1.8 41 0.3 1615 133 9.685 0.914 0.870

* Uncertainties for these ratios are domianted by the large uncertaity in the abundance of blank ***Os.

For '¥0s/"®0s, mass spectrometric uncertaities are typically < 0.5%
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cal of igneous zircon. The individual Pb/U ages obtained (i.e.,
206ph/238J, 207Ph/235U) are highly discordant, as illustrated by a
standard concordia plot shown in Figure 6¢, but the calculated
207pb/29Pb age is 1634 + 11.2 Ma.

Monazite Chemistry and Th-Pb Dating

Two samples containing monazite were selected for in situ
dating using the Th-Pb chemical dating method (Montel et al.
1996; Williams et al. 1999). In this method, monazite samples
with sufficient Th and of appropriate age can be dated using
mineral analyses obtained from the electron microprobe and
model ages calculated. As part of the procedure, the monazite
grains were first characterized chemically to select material
for dating. Representative chemical analyses for monazite
grains along with their chrondrite-normalized rare-earth ele-
ment (REE) plots and representative back scattered electron
(BSE) images are provided in Table 4 and Fig. 7, respectively.
The monazite grains are all Ce-rich versus the Ca- and Th-rich
members (i.e., cheralite and brabantite; Forster 1998) of the
phosphate group and have uniform chemistry. However, the
BSE images indicate complex growth histories with variably
sieved cores observed in some cases and euhehdral overgrowths
common. The chondritic profiles and REE abundances are uni-
form for all the grains analyzed in the four different samples
and the chemical data are typical of monazite from both igne-
ous and metamorphic settings (e.g., Bea 1996; Forster 1998;
Spear and Pyle 2002).

X-ray maps indicate that the monazite grains are vari-
ably zoned with irregular-shaped core areas and euhedral
overgrowths, as indicated from the initial observations from
BSE imaging (Fig. 8). A total of twelve ages were obtained for
seven grains from two samples (Table 5); two of the samples
analyzed have insufficient Th and Pb concentrations to provide
age determinations The data indicate ages from 387 Ma to a
low of 225 Ma with three apparent groupings: (1) 397-370
Ma (4 ages), (2) 360-330 Ma (4 ages), and (3) two at 272 and
225 Ma.

DISCUSSION

40Ar/*Ar Dating

The results of “*Ar/*?Ar dating indicate that several geologi-
cal events are represented by the samples. The unaltered or

Table 3. U-Pb TIMS Results for zircon sample CPL-04-19 from Copper Lake, Nova Scotia.

barren whole rock samples record young ages of <200 Ma for
initial Ar release, with the higher temperature components
recording ages between 350 Ma and 380-370 Ma. The oldest
plateau age of 380-370 Ma, recorded in CPL-04-40, is slightly
younger than a U-Pb zircon age of 389 Ma for felsic volcanic
rocks in the Guysborough Group and similar to *°Ar/*?Ar ages
forwhole-rock Horton Group samples from north of the Roman
Valley Fault just east of the study area, which Reynolds et al.
(2004) attributed to a detrital muscovite component. Based on
the available information, this age would be consistent with ei-
ther of the following scenarios. Firstly, inheritance via a detrital
component derived from, for example, mica in granitoid rocks
of the Meguma terrane to the south or metamorphic rocks to
the north (e.g., Cape Porcupine Complex; White ef al. 2001),
which contains muscovite of the appropriate age (Reynolds et
al. 2004). In regards to the detrital component, Murphy and
Hamilton (2000) reported U-Pb ages of appropriate age (i.e.,
380-370 Ma) in their dataset for detrital zircons from the
Devono-Carboniferous Horton Group in the St. Marys basin
located south of the study area. A second explanation is that

0.16-L CPL-04-19
900
012+ 700
2
5 0084 50
o
b 300
0.04 4
00
l f ! |
0.0 04 08 1.2 16

207Pb/235u

Fig. 6. Standard concordia plot for analyzed zircon frac-
tion from sample CPL-04-19. Inset shows back scatter
electron image of polished zircon grain from the sample
showing typical subhedral shape that typifies the grains
present.

Model Ages (Ma)
Description’ Weight U Th Pb  Th/U TCPb  *py 200ply) 27phy/ 27pp/ 206ply/ 07phy 07ppy, %Disc
(mg) (ppm) (Ppm) (Ppm) (Pg) 204Pb 238U 235U ZOBPb 238U Z3SU ZOGPb
12z, col tiny subhedral (40) 2 242 68 257 028 4 648 0.09153+18  1.2687+86 0.10054+61 | S64.6+1.1 831.8+3.8 |1634.0+11.2 683

Notes: z - zircon, col - colourless, number in parentheses corresponds to the total number of grains analysed. All errors in this table reported at 1 sigma.
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Fig. 7. Chondrite-normalized rare earth element plots for monazite grains hosted by metasedimentary rocks at Copper
Lake. The inset images in each of the diagrams are back scattered electron images of analyzed monazite grains in each of

the samples and the grains are about 40-60 pm wide.

the **Ar/*?Ar age spectrum represents a relict depositional age
for the host rocks. Given the absence of detrital muscovite in
the dated sample and abundance of fine-grained mica based
on petrographic study, the latter interpretation is cautiously
considered to be the most likely.

Several samples record plateau ages of about 350 Ma, the
most convincing being in sample CPL-04-25 where the last 51%
of the gas liberated defines an age of 349 Ma. The 350 Ma ages
occur in rock samples with well-developed cleavage, therefore,
this age is interpreted to indicate the time of muscovite growth
during regional deformation in the area. This age is some 10 Ma
older than the timing of cleavage formation in Horton Group
sedimentary rocks to the north determined by Reynolds et al.
(2004). The age discrepancy may indicate that the older, more
deeply buried rocks of the Guysborough Group were heated

above the blocking temperature of muscovite (i.e., >350 °C;
McDougall and Harrison, 1999) before they were thrust over
the Horton Group rocks during dextral compression along the
CCFS (Webster e al.1998). This sequence of events would ac-
count for the difference in ages for the deformation and heating
of the two sequences. On a more regional scale, this deforma-
tion is similar in age to syntectonic plutonism and continued
movement along the CCFS in the Cobequid Highlands west
of the study area (Pe-Piper et al. 2004; Fig. 1a).

The lack of younger plateau ages at 320 Ma for the whole-
rock samples from drill core material which is altered and
veined (Kontak 2006) is significant. The dated material
records alteration in the form of secondary mineral growth
(e.g., quartz, albite, carbonate), but evidently the temperature
of the fluids attending this alteration was either not hot enough
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Table 4. Electron microprobe analyses of monazite grains (wt. %) in metasedimentary rocks, Copper Lake, Nova Scotia.

CaO P,0; ThO, S0, UO, La0O; CeO; Pr,0, Nd,0; Sm,0; Gd,0, Dy,0, Y,0, Total

CPL-04-16-1 0.74 3044 212 0.07 0.11 11.03  36.80 4.36 13.96 1.38 0.68 0.08 0.35 102.14
CPL-04-16-2 0.46 3045 0.74 0.07 0.06 21.55 3517 2.98 8.19 0.58 0.31 0.09 0.35 101.00
CPL-04-16-3 0.55 30.18  0.19 0.02 0.00 1113  36.52 4.59 14.85 1.58 0.72 0.07 0.53 100.93
CPL-04-16-4 0.52 3046 234 0.15 0.12 1095  35.60 4.25 14.00 1.32 0.68 0.11 0.47 100.97

CPL-04-37-1 0.85 29.59 0.39 0.11 0.03 1298 34.92 4.13 14.39 212 142 0.13 0.28 101.35
CPL-04-37-2 1.12 29.26  0.00 0.09 0.02 13.03 34.53 4.18 14.57 2.28 1.45 0.16 0.39 101.08
CPL-04-37-3 086 2995 054 0.08 0.05 1227  33.65 4.29 14.25 2.31 1.55 0.25 0.44 100.49
CPL-04-37-4 0.85 2949 025 0.05 0.00 13.57 34.76 4.19 13.68 1.76 0.98 0.06 0.19 99.83

CPL-04-19-1 0.13 30.05 0.00 0.02 0.00 1513 34.82 4.16 13.35 1.80 1.04 0.28 0.40 101.17
CPL-04-19-2 0.04 3042 0.04 0.00 0.04 14.64 3532 4.15 13.12 1.93 1.18 0.17 0.44 101.50
CPL-04-19-3 0.12 29.80  0.00 0.00 0.03 1510 3581 4.20 13.15 1.78 1.00 0.17 0.41 101.56
CPL-04-19-4 0.04  29.97 0.00 0.00 0.04 1442 35.07 4.11 13.66 2.10 1.27 0.17 0.46 101.32
CPL-04-19-5 0.34  29.61 0.03 0.01 0.03 13.39 3347 4.12 14.38 242 1.51 0.23 0.57 100.12
CPL-04-19-6 0.19 29.64 0.44 0.04 0.00 1412 34.73 3.97 13.77 2.01 1.22 0.15 0.44 100.72

CPL-04-5-1 0.20 30.17  1.51 0.22 0.07 12.56  32.82 4.32 16.04 2.44 1.32 0.09 0.21 101.99
CPL-04-5-2 0.75 29.88 134 0.12 0.00 12.59  34.00 4.24 14.17 211 1.21 0.15 0.66 101.24
CPL-04-5-3 0.74  30.03 3.05 0.19 0.16 1221 3222 4.00 13.51 1.98 1.25 0.28 0.63 100.24
CPL-04-5-4 0.67 2972 292 0.16 0.13 12.37  33.04 3.95 13.53 1.95 1.07 0.19 0.60 100.30

Fig. 8. Representative X-ray
map (Th, Y, Pb) and a back
scattered electron image for a
grain in sample CPL-04-5 from
Copper Lake that was used

for chemical dating. Note the
variation in the false color im-
ages that indicates variations in
elemental concentrations.
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Table 5. Trace element chemistry (ppm) and calculated ages for monazite grains.

Grain Y Th U Pb  Pb(corrected) Age(Ma)

CPL-04-16 1 697 18474 357 330 329 375
1 2670 7019 20 91 86 272

2 3438 3225 77 65 59 380

3 344 24569 406 400 399 345

3 106 18861 150 194 194 225

4 0 15946 265 278 278 370

4 0 22837 275 353 353 333

5 1252 24653 500 432 430 366

S 437 25048 406 396 395 335

CPL-04-5 1 1607 18745 258 342 339 387
1 2450 23038 484 403 399 362

1610 38164 668 648 645 358

or of sufficient duration to cause diffusive loss of argon in the
samples. Given the restricted nature of the veins, their gener-
ally narrow width (< 1 m) and high-level setting (Kontak 2006),
it is apparent that the temperature away from the main ore
zone was below the 250-300 °C required to cause resetting
in fine-grained, micaceous sedimentary rocks (McDougall
and Harrison 1999). However, the two samples that record
new growth of hydrothermal muscovite do reflect a thermal
event at 320-310 Ma, which is considered to be coincident
with vein-related mineralization given the restriction of the al-
teration to the immediate wall rock to mineralized veins. The
ages for these two samples, both yielding excellent plateaus,
do not overlap and due to this we note the following points.
Firstly, the two samples were positioned closed to each other
during irradiation and the similar values for the flux monitors
(i.e.,J-values, Table 1) essentially rule out analytical problems.
Secondly, the muscovite grains were sufficiently coarse (i.e.,
100s microns) that recoil would not be considered a potential
problem (McDougall and Harrison 1999). Thirdly, given that
the two samples come from the same mineralized zone, dif-
ferential cooling or heating of samples is considered unlikely.
Finally, the whole-rock sample is dominated by secondary hy-
drothermal muscovite, thus any contribution of radiogenic Ar
from fine-grained metamorphic muscovite is considered not to
have been significant. In addition, the excellent plateau for this
sample contrasts with the irregular nature of the age spectra
for whole rock samples which might be expected to be seen
if outgassing of grains of different generations had occurred.
Therefore, based on the two plateau ages it is concluded that
the best estimate for the timing of hydrothermal activity based
on*Ar/*Ar dating is 320-310 Ma.

Re-Os Dating and Initial '¥70Os/!880s Ratio

The result of Re-Os dating of vein pyrite provides a time
for pyrite formation and, hence, hydrothermal activity at 323
Ma. This age overlaps within error that recorded for growth of

hydrothermal muscovite in the wall rocks adjacent ore veins
based on *“°Ar/*?Ar dating. The coincidence of these ages pro-
vides further support that the Re-Os method is a reliable and
robust means of directly dating sulphide mineralization, as
documented elsewhere (Arne et al. 2001; Morelli et al. 2004,
2005). Also relevant is that other workers have demonstrated
the concordance of Re-Os sulphide ages with ages obtained us-
ing other chronometers (i.e, Rb/Sr, “°Ar/**Ar) by either dating
the mineralization directly (e.g., Schneider et al. 2007) or indi-
rectly (Selby and Creaser 2001, Masterman ez al. 2004). Thus,
the apparent difference of the Re-Os pyrite and *°Ar/*?Ar age
for sample CPL-2004-2C cannot be attributed to differences of
calibration of the two chronometers. The agreement of the Re-
Os and “°Ar/**Ar chronometers, along with the robust nature
of the Re-Os system in pyrite (Creaser 2008), provides for the
first time a direct age for the mineralization along the CCFS of
about 320 Ma and allows interpretation of this mineralization
in the context of its metallogenic significance.

The initial '7Os/!80s ratio, derived from regression of the
Re-Os isotopic data (Fig. 5), of 1.0 £ 0.4 can be used to infer
the nature of the reservoir for Os in the mineralizing system.
This value compares, for example, to initial 8’Os/*38Os ratios
derived from regression of Re-Os isotopic data for sulphides
from a variety of other sediment-hosted mineralized settings:
(1) 0.2 + 0.2 for Zn-Pb ore at the Red Dog SEDEX deposit,
Alaska (Morelli et al. 2004); (2) 0.37 + 0.27 for the auriferous
quartz vein mineralization at Murantau, Uzbekistan (Morelli
et al. 2007); (3) 1.04 £ 0.16 for orogenic Au mineralization,
Victoria, Australia (Arne er al. 2001); and 0.83 +0.15 and 0.38
+0.16 for Meguma gold veins (Morelli ez al. 2005). These initial
187(Qs/1880s ratios indicate that a mixture of source reservoirs,
from mantle to crustal, are involved in these mineralized set-
tings. For the Copper Lake setting, the high initial '”Os/*##Os
ratio suggests a dominantly crustal reservoir for the Os, which
is similar to that for some of the Au settings noted above and,
importantly, precludes a significant mantle contribution to the
Os component of this system. This conclusion is consistent with
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stable isotopic analyses (120, 34S) for the Copper Lake vein sys-
tem (Kontak 2006) which indicate that the mineralizing fluids
are of crustal origin.

U-Pb Zircon Dating

The single U-Pb zircon age reported indicates that the
dated sample is dominantly of detrital origin, as there may be
asmall component of overgrowth, and thus does not preclude
the presence of a hydrothermal component to the zircon in the
sample. Although the data obtained are highly discordant, the
207pb/296Ph age of 1634 + 11.2 Ma is noteworthy as it provides
some indication of the provenance for the sedimentary rocks
of the Guysborough Group sedimentary rocks, which is cur-
rently lacking. Existing databases for detrital zircon exist for a
large part of the Meguma (Meguma Group, White Rock and
Torbrook formations) and Avalon terranes, as well as the over-
lapping Horton Group (summaries in Murphy and Hamilton
2000; Murphy et al. 2004). Based on these data, a likely source
for detrital zircon would be the Avalon terrane, albeit locally
derived in the Antigonish Highlands where an appropriate
detrital zircon age population has been reported.

Monazite Chemistry and Chemical Dating

The origin of monazite in IOCG deposits is important, as
enrichment in rare-earth elements is, in some cases, a chemi-
cal signature of this mineralization style (Williams et al. 2005).
Thus, purpose of monazite analysis was twofold, first to in-
vestigate its origin, that is detrital versus hydrothermal, and
secondly to see if it could constrain the age of hydrothermal
activity and rare element mobility. Twelve monazite Th-Pb ages
fromr two samples indicate a large spread, from 397 Ma to
225 Ma, which indicates either different periods of monazite
growth or variable resetting of the monazite grains.

The older ages are consistent with timing of deformation in
the Meguma Group to the south (e.g., Kontak et al. 1998) and
suggest, therefore, a detrital origin since monazite is a com-
mon accessory phase in metasedimentary rocks. The middle
age population is similar within error to whole-rock “°Ar/**Ar
ages that record metamorphism in the region based on our data
and earlier work (Reynolds e al. 2004), with some overlap with
the age of hydrothermal activity related to mineralization. The
youngest ages (<300 Ma) record yet another period of mona-
zite growth. In summary, although not providing precise ages,
the chemical dating of monazite in two samples indicates a
multi-stage history for the mineral with growth both pre-dating
and post-dating the time of mineralization at Copper Lake.

The rare-earth element chemistry determined for the
monazite appears uniform (Fig. 7), although imaging indicates
apparent zoning and chemical dating indicates a multi-stage
growth history for several of the grains. Thus, in this study the
chemistry cannot be used to either discriminate source regions
for the detrital components (i.e., igneous vs. metamorphic) or
distinguish older core regions from subsequent overgrowths.

Implications for the Timing of Mineralization
at Copper Lake

One of the basic or fundamental aspects of any mineral
deposit model begins with the timing of mineralization with
respect to the host rock, for example syngenetic versus epigen-
etic modes of origin. In the case of IOCG mineralization, the
relative timing of mineralization is inferred based on geological
relationships supported by more detailed petrographic obser-
vations. However, determining the absolute age of mineral-
ization, critical to formulating a model, is contingent on the
presence of phases amenable to dating. In the present study,
four chronometers have been applied to a well-characterized
suite of samples from the Copper Lake district and two of
these, Re-Os on ore-stage pyrite and “°Ar/*?Ar on hydrothermal
muscovite (i.e., whole rock and mineral separate), provided a
reliable age for the hydrothermal activity responsible for min-
eralization. Thus, for the first time an absolute age has been
determined for this important metallogenic domain in Nova
Scotia and the age of about 320 Ma can now be assessed in the
context of the regional geological evolution of this area.

The timing of mineralization at Copper Lake overlaps the
stratigraphic age, i.e., Namurian (327-315 Ma) using time scale
of Okulitch (1999) for mineralized and altered host rocks at
some of the IOCG-type mineralized localities in Nova Scotia,
most notably Londonderry (Wright 1975; Ervine 1994) and
Mt. Thom (O’Reilly 2005; Kontak 2006). It is significant,
therefore, to note that similar ages, based on *“°Ar/*Ar dat-
ing, as that obtained for mineralization at Copper Lake have
also been reported elsewhere in southern Nova Scotia, which
indicates that this thermal event is a widespread phenomenon.
Firstly, Pe-Piper et al. (2004) reported ages of 330-320 Ma for
hydrothermally altered lamprophyric rocks cutting older gran-
ites (i.e., 350 Ma) in the Cobequid Highlands (Fig. 1a). The
authors suggested that this event may relate to fluids driven
by a mid-crustal heat source. In addition, it was also noted
that this age is coincident with Alleghanian deformation and
uplift of the Cobequid Highlands and corresponds to the mid-
Carboniferous break in Nova Scotia, a time of disconformities
and unconformities in the stratigraphic record (Calder 1998).
Secondly, Kontak et al. (2008; also our unpublished data)
reported “°Ar/*°Ar ages for several small mafic intrusions
adjacent to the CCFS, some of which intrude Mabou Group
(i.e., Namurian) sedimentary rocks (O’Reilly 2005). The ages
span the range of 340-300 Ma, hence, in part overlapping
the age of mineralization at Copper Lake. Thirdly, several
“0Ar/3Ar ages have been reported throughout the Meguma
terrane that document Alleghanian tectono-thermal activity
and fluid movement (e.g., Reynolds et al. 1987; Kontak et
al. 1995; Culshaw and Reynolds 1997; Murphy and Collins
2008). Thus, the data above indicate that coincident with the
age of mineralization at Copper Lake there was widespread
mafic magmatism, regional deformation, and movement of
hydrothermal fluids. A model involving mobilization of fluids
related to emplacement of mid-crustal mafic magma, as sug-
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gested by Pe-Piper et al. (2004) for the Londonderry area, is
supported by the present study. Based on geochemical and
isotopic data, both radiogenic and stable (Kontak 2006 and
unpublished data), a crustal source for the mineralizing fluids
at both Copper Lake and Mt. Thom is indicated.

CONCLUSIONS

This study represents the first attempt to directly date
the timing of formation of Cu-Au-Ni-Co mineralization as-
sociated with widespread Fe-oxide and carbonate spatially
associated with the terrane-bounding Cobequid-Chedabucto
Fault System of southern Nova Scotia. The mineralization has
in recent years been considered as an iron oxide-copper-gold
(I0CG) metallogenic district. In order to constrain the timing
of the hydrothermal activity and, therefore, allow interferences
regarding the origin of this metallogenic domain, a detailed
geochronological study was undertaken at the past-producing
Copper Lake Cu-Au deposit, one of the more significant centres
of this mineralization. The geochronological data (*°Ar/*Ar,
Re-Os sulphides, U-Pb zircon, Th-Pb monazite chemical dat-
ing) indicate the following: (1) regional metamorphism and
subsequent cooling of the Middle Devonian host rocks oc-
curred prior to 350 Ma based on *°Ar/**Ar whole rock ages,
which is also supported by Th-Pb chemical dating of monazite;
(2) formation of the siderite-hosted Cu-Au mineralized veins
at about 320 Ma based on *°Ar/**Ar dating of phyllic-altered
wall rock adjacent to ore veins and Re-Os dating of vein pyrite;
and (3) Th-Pb chemical ages of monazite, which indicates ad-
ditional growth occurred during the Cu-Au mineralizing event,
hence, mobilization of rare earth elements. Dating of a fraction
of euhedral zircon grains indicated a detrital rather than hydro-
thermal origin. The 1634 Ma age indicates that some detritus
in the Guysborough Group is of Proterozoic age.

The 320 Ma age for mineralization is inferred to reflect
structural focusing of fluids into a high-level structural set-
ting related to the east-trending Cobequid-Chedabucto Fault
System. Generation of and circulation of the fluids may relate
to emplacement of mid-crustal level mafic heat source that is
widespread further west in the Cobequid Highlands. However,
the initial '”Os/'80s ratio determined from the analyzed sul-
phide indicates a crustal reservoir for Os, which is compatible
with other geochemical data for the vein minerals. In addi-
tion, the timing of mineralization coincides with regional
Alleghanian deformation in this part of the Appalachian oro-
gen and thus reflects larger scale tectonothermal processes.
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