
Introduction 
Length being considered as a linear measure of scale, 

volume becomes cubic. Time consumption in delimbing de-

pends primarily on tree length, but the volume of the tree on 

the cube of tree length. Consequently, time consumption per 

volume unit is approximately proportional to tree length in a 

power of -2. In other words, volumetric productivity in de-

limbing is approximately proportional to the trunk volume in 

the power of 2/3. In general, harvesting expense per volume 

unit tends to depend on tree volume in a power that is greater 

than -1 but less than zero (Kuitto et al., 1994; Brunberg, 

1997; Eliasson & Lageson, 1999; Suadicani & Fjeld, 2001; 

Reza Ghaffarian et al., 2007; Rottensteiner et al., 2008; Mi-

zaras et al., 2008). 

From many viewpoints, it is rather important that har-

vesting operations offered to contractors become priced ac-

cording to the features of the stand affecting productivity. 

Underpricing operations may induce financial difficulties to 

the contractor unlucky enough to harvest sites of low produc-

tivity. Overpricing operations induces problems to the forest 

farmer or the concession owner. Harvesting expenses being 

the greatest expenses in forestry, the cost structure in har-

vesting affects — or at least should affect — any decision 

made in silviculture.  

A practical difficulty is that the properties of trees are 

not usually known before harvesting begins. Such infor-

mation is gathered in the course of harvesting. Consequently, 

it is common to apply a price list, where the harvesting price 

is given as a function of tree volume. More specifically, the 

average trunk volume of the trees harvested within a compart-

ment becomes determined during harvesting. The volumetric 

harvesting price has been predetermined as a function of the 

average trunk size, according to an agreement between the 

contractor and his customer. 

Harvesting productivity typically depends on tree size. 

More specifically, the volumetric productivity in harvesting a 

trunk depends on the volume of the trunk. However, pricing 

of a harvesting operation typically is based on the average 

trunk volume of trees within a compartment. Consequently, 

the harvesting price does not only become determined by the 

productivity function. It also depends on the distribution of 

trunk volumes within the logging compartment. 

Harvesting productivity issues fall within the discipline 

of forest engineering. Pricing of operation also involves forest 

economics or industrial economics. The economics of harvest-

ing operations, however, is rather specifically related to 

productivity issues. The tradition of forest engineering re-

search appears to be rather experimental. Empirical productiv-
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ity functions often are too complicated to be useful in further 

analysis (Kuitto et al., 1994; Brunberg, 1997). Forest engi-

neers probably are not accustomed to simplifying formulae 

enough to make them useful in analysis. This may be the 

reason that mathematical approaches into productivity appear 

to be largely missing in the literature (Brunberg, 1997; Lage-

son, 1997; Affenzeller & Stampfer, 2007; MacDonald, 2007; 

Pan et al., 2007; Ovaskainen et al., 2008).  

The objective of this paper is to study harvesting pric-

ing mathematically. In particular, the effect of the distribu-

tion of trunk volumes within a logging compartment on the 

harvesting price will be investigated.  

Justified by experimental investigations reviewed 

above, we discuss the productivity in harvesting as a power-

law function of the trunk volume. A single power law does 

not necessarily describe productivity over a complete range 

of trunk volumes. Any empirical productivity law however 

can certainly be composed of a sequence of power-law func-

tions.  

The harvesting price is discussed as a power-law func-

tion of the average trunk volume within the compartment, the 

exponent only experiencing a sign reversion. Generality of 

results is aspired, and thus the exponent naturally is not 

fixed. We intend to study the harvesting price in relation to 

the outcome of the productivity function. The outcome will 

depend on the distribution of trunk volumes within any log-

ging compartment. A few different kinds of distributions will 

be discussed, and the effect of the parameters characterizing 

any distribution explored. 

 

Statistical Effects on Compartment 

Harvesting Price 

 

Let us approximate the volumetric productivity in 

harvesting as a power law function of trunk volume v as 
x

v

v
Q

dt

dV












0

 (1). 

 

In eq. (1), the constant Q naturally corresponds to 

volumetric productivity in the case of trunk volume v being 

equal to an arbitrary reference volume v0. In order to retain 

most general applicability of the results, we do not fix the 

value of the exponent x. The volumetric harvesting price 

presumably leans to the productivity function. The differential 

harvesting expense with respect to harvested volume then is 
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where h is the time unit expense of the harvesting system, and 

t is time. The differential harvesting expense per harvested 

volume unit is a function of the trunk volume, or 
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On the other hand, the total harvesting price within a site 

divided to compartments k, l, …, m can be written 
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where jV  is the volume of trunks within compartment j, and 

jH  is the harvesting price per volume unit within the 

compartment. The total volume of the trunks within any 

compartment of course can be written in terms of the number 

of trunks multiplied by the mean volume 
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The harvesting price jH  presumably is a function of 

the mean trunk volume, or  jj vHH  . It is assumed here 

to be a power-law function of the arithmetic mean trunk 

volume 
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We find that the harvesting price function in Eq. (5) 

closely resembles the differential harvesting expense function 

of Eq. (2). However, the difference is that Eq. (5) is using the 

arithmetic mean of trunk volume within the compartment, 

whereas Eq. (2) discusses the trunk volume of an individual 

tree.  

 

On the basis of the differential expense function of Eq. 

(2), an estimate for the harvesting expense within a 

compartment can be produced as  
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where n refers to the number of trunks within the 

compartment. Thus the harvesting price according to Eq. (5), 

in relation to expense according to Eq. (6) is  
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The inverse of Eq. (7) is  
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The second derivative of Eq. (8) with respect to the 

exponent x is 
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Results for a Few Density Functions 

 

which is non-negative. Eqs. (7) and (8) yield unity with 

exponent x values zero and unity. The productivity law of Eq. 

(1) may reasonably reach values between these extremes. 

Within this range, Eq. (8) must thus be less than unity, and its 

inverse Eq. (7) greater than unity. 

Eq. (8) can be written 
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This form allows us to insert a few density functions 
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how the ratio 
  jVH

E 
 or its inverse 

 

E

VH j
 becomes 

affected.  

Let us first discuss an exponential distribution, where  
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Further defining yΞ2-x, we can identify a gamma 

function 
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The exponent x running from zero to one, we have to 

study the values of the gamma function within the range 

1…2. Both of these end points correspond to gamma function 

value of unity. In the middle of the range the value of the 

gamma function is 0.886. Exponent x value of 2/3 

corresponds to gamma function with argument 4/3, which 

yields 0.893. 

 

In reality, the density function of the volume of trees to 

be harvested hardly may extend to zero. In such a case the 

exponential density function may be given 

as )exp()( 
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mean trunk volume for this distribution is wav  . We 

will now discuss the trunk volume normalized with the 

scaling parameter: 
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Eq. 8 may then be rewritten as 
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We find from Eq. (13) that the limit A->0,   xVx 1  

tends to a gamma function according to Eq. (12). Apart from 

this limit, we are able to say 

yyy AVyV  1
 (14). 

 

In the right-hand part of Eq. (13), x must differ from 2. 

Another choice in the integration in parts (Eq. (13)) would 

raise limitation 1x , which would be more detrimental in 

the present case. Eq. (13) can be rewritten as 
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where we find an upper incomplete gamma function. Such a 

function can be evaluated in terms of the corresponding 

gamma function and the lower incomplete gamma function 

(Arfken & Weber, 2001). However, the most straightforward 

way is to evaluate Eq. (13) numerically for the appropriate 

values of A and x. The result is shown in Fig. 1. We find from 

Fig. 1 that harvesting expense in relation to harvesting price, 

which is given by Eq. (12) in the case of an exponential 

distribution extending to zero, approaches unity as a function 

of the lower limit of the volume distribution A. 

 

The exponential distribution obviously can be used to 

describe trees to be harvested in low thinning, where 

predominantly small trees are removed. Such a distribution 

cannot necessarily describe the trees to be removed in final 

felling. Another kind of distribution must be discussed. 

 

A Weibull distribution with density function 
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 appears to be able to 

describe quite a few phenomena in Nature (Weibull, 1951; 

Yang et al., 1978). Using this distribution, Eq. (8) becomes  
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Harvesting expense in relation to harvesting price, ac-

cording to Eq. (16), is shown in Fig. 2. We find that the ratio 

approaches unity as a function of the distribution parameter 

k. 

With low values of k, the Weibull distribution shows a 

large probability density close to zero. In that sense, it resem-

bles the exponential distribution. However, this changes 

when k approaches 2, in which case zero observations have 

vanishing probability, and the normalized standard deviation 

corresponds to 0.52. In general, the normalized standard de-

viation of the Weibull distribution is  
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One might argue that the distribution of trunk volumes to 

be harvested does not necessarily extend to zero, neither in the 

case of Weibull-distributed trunk volumes. This would lead to 

a left-truncated Weibull distribution (Zutter et al., 1986; 

Maltamo et al., 2004; Palahí et al., 2006), with density  

Figure 2 is redrawn as a function of the normalized 

standard deviation in Fig. 3, where k runs from 2 to 10, and 



  
 correspondingly from 0.52 to 0.12. We find, then, in Fig. 

3, the deviation between the harvesting price and the 

productivity function hardly exceeds 4%.  
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Figure 1. Harvesting expense in 

relation to harvesting price, with 

exponentially distributed trunk 

volume, according to Eq. (13). 

Figure 2. Harvesting expense in 

relation to harvesting price, with 

Weibull-distributed trunk volume, 

according to Eq. (16).  



 
 

Discussion 
We found that when harvesting price is being deter-

mined on the basis of mean values of trunk properties within 

a compartment, the price not only depends on site properties, 

but also on the division of the site into compartments. In 

other words, such a harvesting price is not invariant to the 

division into compartments.  

The wider the distribution of trunk properties within a 

compartment, the greater the harvesting price is. Thus, the 

greater (larger) the compartments are, the greater (higher) the 

price is, which may deviate more than 10% from the out-

come of the productivity function. Consequently, unifying 

two compartments with different properties increases the 

harvesting price. 

Four particular trunk volume density functions have 

been investigated. For those including an exponential factor, 

the deviation between the harvesting price and the productiv-

ity function becomes characterized by a gamma function. In 

the case of a left-truncated trunk volume distribution, an up-

per incomplete gamma function appears. 
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values a v . Using this distribution, Eq. (8) becomes  
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The exponential distribution is actually a special case of 

the Weibull distribution, and the complete Weibull distribu-

tion is a special case of the left-truncated Weibull distribution. 

Thus Eqs., (12), (13), (15) and (16) are special cases of Eq. 

(18), which suffices for determining the relationship of the 

harvesting price to the outcome of the productivity function.  

It would be interesting to consider what would happen to 

harvesting price if trunk volume distributions other than the 

ones discussed above were used. Gaussian distribution would 

be unsuitable since the domain would include negative values 

of trunk volume. The same applies to the Gumbel distribution. 

The Rayleigh distribution is a special case of the Weibull dis-

tribution. The Fréchet distribution might be applicable, as well 

as the Type-2 Gumbel distribution and the Gamma distribu-

tion. The density function of any of these useful distributions 

contains an exponential factor, and leads to a gamma function 

characterizing the relationship between the harvesting price 

and the productivity function.    

There is actually a large number of continuous probabil-

ity density functions containing an exponential factor, thus 

producing a gamma function when inserted into Eq. (10). 

Among these, there is a family of Chi-distributions, the Erlang 

distribution, the folded normal distribution, the half-normal 

distribution, the inverse Gaussian, the Lévy distribution, and 

the Maxwell-Bolzmann distribution.  

In this paper, the volumetric productivity in harvesting 

has been approximated in terms of a simple power law func-

tion of trunk volume, as given in Eq. (1). In reality, productiv-

ity may be a more complicated function of tree size. Produc-

tivity increment as a function of increase in trunk size may 

cease with large trees (Suadicani & Fjeld, 2001; Rottensteiner 

et al., 2008). In other words, the exponent x appearing in Eq. 

(1) is not universally independent of trunk size. From the 

viewpoint of the applicability of the results of this paper, the 

exponent x must be selected so that it characterizes the tree 

volume dependency of productivity in the vicinity of the mean 

trunk volume within any compartment. 
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Figure 3. Harvesting expense in 

relation to harvesting price, with 

Weibull-distributed trunk volume, 

as a function of the normalized 

standard deviation. 
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Conclusions 
Harvesting pricing appears to depend not only on the 

properties of trees, but also on the division of any logging site 

into compartments, provided pricing is based on average 

properties of trees. In the case of an exponentially distributed 

trunk volume, an upper incomplete gamma function appears 

to describe the relationship between the harvesting price and 

the productivity function. In the case of a Weibull-distributed 

trunk volume, the relationship is given in terms of the ratio of 

two gamma functions. In the case of a left-truncated Weibull-

distribution, a ratio of two upper incomplete gamma functions 

appears. Exponential distribution may induce a deviation in 

excess of 10%, whereas the Weibull distribution with nonzero 

mode value induces at most 4%. Unification of compartments 

increases the harvesting price. 
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