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ABSTRACT

This study proposes a method for combining regression
equations using a relevance network model, a weight generat-
ing function, and a generalized mixed operator. The combina-
tion of these methods puts a relative weight on the predictions
of each of the individual equations and then calculates a
weighted average estimate. The method was validated using
computer simulation structured within the Statistical Analysis
System (SAS). The simulation tests demonstrated that the
method is capable of making a prediction that is not signifi-
cantly different from the true prediction provided the input
values for the combined model fall within the valid range of at
least one variable. The mean difference between the predictions
using the proposed method and the prediction from the true
models was less than 9.5 percent of the true model predictions
for the complete set of randomized simulations. Prediction ac-
curacy can be improved by increasing the number of variables
in an equation and by broadening the width of the variable
valid interval, but not necessarily by increasing the number of
equations in an equation set. Individually, the number of vari-
ables is more influential than variable valid interval width on
prediction accuracy.

Keywords: linear regression, prediction, simulation, timber
harvesting, forest operations

Introduction

Linear regression equations represent one tool for statistical
analysis of time study data of forest harvesting operations. They
provide an indication of variables that have a statistically signif-
icant effect on timber harvesting production and can be used to
predict harvesting operation cycle times and production rates.
There is often a high degree of uncertainty, however, when ap-
plying harvesting equations developed from a case study to
other site conditions. Furthermore, harvesting equations are of-
ten developed over finite intervals for the values of the inde-

pendent variables, which limit their applications for the out-
of-interval conditions.

The ability to use developed regression equations from mul-
tiple sites should result in more confidence in the resulting esti-
mates. This process, however, will only be effective if the
method of developing predictions from multiple regression
equations allows for ranking of multiple regression equations
so that appropriate weights can be allocated to each equation.

Multi-attributes decision-making (MADM) problems deal
with the rating and ranking of competing courses of action
(Ribeiro 1996, Pereira and Ribeiro 2003). Attributes can be
physical, economic, or have any other characteristic of the alter-
natives that the decision maker considers as relevant criteria for
alternative selection. MADM problems are usually modeled by
choosing a set of relevant attributes that characterize a finite
number of alternatives or courses of action and by eliciting
their relative weights (Pereira and Ribeiro 2003). This provides
the theoretical basis for the problem of ranking multiple linear
regression equations.

The objectives of this research were:

1. to formulate a method that uses the MADM theory to
evaluate the relative weights of multiple regression equa-
tions so that a weight-averaged prediction can be gener-
ated, and

2. to validate the method through computer simulations so
that the proposed method will be statistically reliable.

Methodology

Suppose two regression Equations [1] and [2] have been de-
veloped from two case studies for skidding operations (Table 1):

Skidding cycle time =
0.4 (skidding dist.) + 0.5 (# of trees per cycle) [1]

Skidding cycle time =
0.2 (slope) + 0.6 (skidding dist.) [2]

All of the regression coefficients are standardized.

The calculation for a weight-averaged prediction involves
six steps (the detailed calculations for each step are summarized
in Table 2):

1. Use a relevance network model and the input value Xij for
the independent variable to generate the variable satisfac-
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tion value Fij for all of the variables with 0 ≤ Fij ≤ 1. i and j
represent the ith variable and the jth equation, respectively.

The variable satisfaction value Fij is determined from the fol-
lowing relevance network model (Merida and Rollon 2000,
Hartsough et al. 2001) (Fig. 1). If the input value X is in the
range of the observed values used to develop the regression

equation [a, b], a value of 1 will be assigned. If
the input value X is more than twice the range
of limits ([2b, + ∞]) or less than 0 ([–∞, 0]), a
value of 0 will be assigned. If the input value X is
between 0 and the interval lower limit ([0, a]) or
between the interval upper limit and twice the
upper limit ([b, 2b]), a value between 0 and 1
will be generated through the linear ramps (Fig.
1) and assigned. In this relevance network
model, 0 and 2b are the allowed interval bound-

aries and are defined as the minimum and maximum allowed
value, respectively.

2. Use the variable satisfaction value Fij and the absolute
value of standardized regression coefficient αij to gener-
ate the unnomalized variable weight Wij by a weight gen-
erating function (3) with the β parameter equal to 1
(Pereira and Ribeiro 2003).

W F
F

ij ij ij
ij

( ) =
+

+
α

β
β

1

1 [3]

where:

αij = the relative importance of the ith variable
among all of the variables in the jth equation,
0 < αij ≤ 1;

β = the weight dependence on the Fijs, 0 ≤ β ≤ 1.

When applying the weight generating function (3) to the re-
gression equations, the values of αij can be reflected by the abso-
lute value of the regression equation standardized coefficients
as they provide an indication of the relative importance of the
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Table 1. ~ Summary of skidding harvesting equations param-
eters used as illustrative example.

Equation Slope
Skidding
distance

Number of
trees per

cycle

Standardized
coefficient

1 α = 0.0 α = 0.4a α = 0.5

2 α = 0.2 α = 0.6 α = 0.0

Variable data range 1 N/A [300, 1000] [10, 20]

2 [5,15] [600, 1500] N/A

User input value 1 N/A 1400 4

2 27 1400 N/A

a α = the standardized regression coefficient.

Figure 1. ~ The structure of the relevance network model when the maximum
allowed value is 2b.

Table 2. ~ Calculation of weight-averaged prediction for skidding and felling equations used in the illustrative example.
Step 1: Calculate the variable satisfaction values Fij

Slope Skidding distance Number of trees per cycle

Equation 1 F11
a = 0 F21 = (–1400/1000) + 2 = 0.6 F31 = 4/10 = 0.4

Equation 2 F12 = (–27/15) + 2 = 0.2 F22 = 1.0 F32 = 0

Step 2: Calculate the unnormalized independent variable weights Wij
Slope Skidding distance Number of trees per cycle

Equation 1 W11 = 0(1 + 0)/2 = 0 W21 = 0.4(1 + 0.6)/2 = 0.32 W31 = 0.5(1 + 0.4)/2 = 0.35

Equation 2 W12 = 0.2(1 + 0.2)/2 = 0.12 W22 = 0.6(1+1)/2 = 0.6 W32 = 0(1 + 0)/2 = 0

Step 3: Calculate the normalized the independent variable weights Wij*
Slope Skidding distance Number of trees per cycle

Equation 1 W11
* = 0/(0 + 0.32 + 0.35) = 0 W21

* = 0.32/(0 + 0.32 + 0.35) = 0.48 W31
* = 0.35/(0 + 0.32 + 0.35) = 0.52

Equation 2 W12
* = 0.12/(0.12 + 0.6 + 0) = 0.17 W22

* = 0.6/(0.12 + 0.6 + 0) = 0.83 W32
* = 0/(0.12 + 0.6 + 0) = 0

Step 4: Calculate the unnormalized equation weights Tj

Equation 1 T1 = 0 • 0 + 0.6 • 0.48 + 0.4 • 0.52 = 0.496

Equation 2 T2 = 0.2 • 0.17 + 1.0 • 0.83 + 0 • 0 = 0.864

Step 5: Calculate the normalized equation weights Tj*

Equation 1 T1
* = 0.496/(0.496 + 0.864) = 0.3647

Equation 2 T2
* = 0.864/(0.496 + 0.864) = 0.6353

Step 6: Calculate the final weight-averaged prediction V

Combined V = 5.62b • 0.3647 + 8.45b • 0.6353 = 7.42

a i and j represent the ith variable and the jth equation, respectively.
b Equation predicted values calculated using user input values.



independent variables in the prediction. Because 0 < αij ≤ 1, the
absolute values of the standardized coefficients are required to
be normalized. In the real application, this was proven to be
mathematically unnecessary.

The value of the parameter β will be set at 1, meaning the
weight of a regression equation will completely rely on the vari-
able satisfaction values. Factors such as operator skill level,
equipment type, operating season, and location might be po-
tential factors influencing the weight generating function.
These need to be considered and used in grouping the equa-
tions that can be combined. For example, the set of equations
associated with operations in dry, summer conditions should
not normally be combined with equations developed during
the winter operating season.

3. Normalize the variable weights (Wij), so that:

Wiji

n * =
=∑ 1

1

where:

Wij
* = the normalized variable weight, and

n = the number of variables in the jth equation.

4. Use the variable satisfaction value (Fij) and the normal-
ized variable weight (Wij

*) to generate the unnormalized
equation weight (Tj) by a generalized mixed operator.
The formula is:

T W Fj ij iji

n=
=∑ *

1

The classical weighted averaging operator is defined as:

WA F NWj iji

n
( ) ( )*=

=∑ 1
Fij

where:

WA(F)j = the weight-averaged weight score for
the jth equation and

NWij
* = the normalized, user-assigned variable

weight score (Pereira and Ribeiro 2003).

Generalized mixed operators extend the classical numerical
weights to weighting functions Wij

*(Fij) (Pereira 2000). It is de-
fined as:

W F W F Fj ij ij iji

n
( ) ( )*=

=∑ 1
.

5. Normalize the equation weights Tj, so that:

Tjj

m * =
=∑ 1

1

where:
Tj

* = the normalized equation weight and

m = the total number of equations.

6. Calculate the final result (V) using a generalized mixed
operator. The formula is:

V T Yj jj

n=
∧

=∑ *

1

where:
Yj

∧
= the prediction from jth equation using input

value Xij.

Method Validation

Validation Method

The proposed method for using multiple regression equa-
tions to make predictions was validated using computer simu-
lations through the SAS 9.0 program (SAS 2003). Harvesting
production regression equations were selected and used as true
models. Forest harvesting operations can be subdivided into
two major categories: felling-processing and transportation op-
erations. Transportation operations (also called skidding and
forwarding operations) are primarily influenced by travel dis-
tance, while the felling-processing operation is less impacted by
travel distance but more affected by the size of the trees. Ac-
cordingly, skidding and felling harvesting equations from pre-
vious studies by Halbrook and Han (2005) and Adebayo (2006)
were selected and used as the true models. A felling-processing
equation (Schroder 1996) was selected to validate the proposed
method under the circumstance of transformed variables
(Table 3).

The original data used to develop the true felling and skid-
ding equations were examined to determine the probability
distributions of the independent variables. The resulting vari-
able probability distributions and simple statistics were pro-
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Table 3. ~ Harvesting equations used for the simulation.

Linear regressions used for simulation Standardized coefficient Variable data range r2 MSE

Skidding cycle time in min = 3.396 + 0.66 1.46

0.006 (loaded travel distance) + 0.639 330 to 1700

0.054 (re-grapple distance) + 0.512 0 to 150

0.092 (slope %) 0.188 11 to 32

Felling cycle time in centi-min = 36.656 + 0.71 17.61

0.908 (diameter at breast height) + 0.091 3 to 21

0.916 (travel empty distance) 0.836 0 to 400

Square root (felling-processing cycle time in min) = –0.14852 + 0.89 0.178

0.13053 (Ln (Tree volume per stop)) + 0.270 1.66 to 209.30

0.62580 (Square root (Number of trees per stop)) 0.758 1 to 15



grammed into the SAS random variable generating functions to
recreate a simulated population that would produce the true
models. A set of study site conditions was also randomly gener-
ated and designed to mimic the input values of the independent
variables. These input values were constrained by the variable
data range (Table 3) so that the true models could always make
reliable predictions.

Data subsets from the simulated population were randomly
selected and were used to develop regression equations from
the simulated subsets. This mimics a situation where the avail-
able equations are based on a subset of the true population and
where variables have a more limited range than the true model.
The subset data range for an independent variable was defined
as the variable valid interval [a, b]. Since equations developed
over different ranges of data generally have different levels of
accuracy in predicting true population values, various variable
valid intervals, including narrow, medium, and wide ranges,
were considered. Variable valid intervals with wide, medium,
and narrow ranges were defined to cover 90 percent, 60 percent,
and 30 percent of the true variable range, respectively. For ex-
ample, if the true range of a variable is [330, 1700], a narrow
range subset data of this variable will have an interval width of
30 percent · (1700 – 330) = 411. SAS randomly selected the
lower end of a variable valid interval and used the width of the
interval to determine the upper end. The result obtained was a
random variable valid interval. Maximum allowed values of 2b
and 3b (the minimum allowed value is 0 for both conditions) in
the relevance network model were simultaneously built into the
simulation code to determine which could produce a more ac-
curate prediction.

The simulated equations from the data subsets were com-
bined using the proposed method to make a weight-averaged
prediction. The minimum number of equations (or NE) that
were combined in the proposed method was two (NE = 2),
since if only one equation is used to predict the dependent vari-
able, the normalized weight of this equation will always be 1
and the function of weighted averaging disappears. When dif-
ferent variable valid interval widths, number of independent
variables, and number of equations were considered simulta-
neously, the conditions that needed to be tested became so large
that validation of this method by checking every condition was
not a realistic option. For example, there are 63 possible equa-
tions for the simulated skidding regression equation if the
number of variables and the three variable valid interval widths
are considered simultaneously. The possible combinations for 2
– 63 equations would be H, where:

H
k kk

= ⎛
⎝⎜

⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

= −
=∑ 63

2 64
63

63 2 63 263

2

63
, !/[ !( )!]

where:

! = the factorial function.

To resolve this issue, a separated random equation selection
procedure in SAS was used to generate random combinations
of equations (equation sets).

For each equation set generated, SAS used the proposed
method to make predictions when the maximum allowed val-
ues were 2b and 3b. Meanwhile, SAS used the true model to
make a prediction using the same input values. Therefore, three
predictions resulted simultaneously. The process of random se-
lection of the subsets data and calculation of the predicted val-
ues was repeated for this randomly generated set of equations
100 times. The predictions resulting from simulated equations
were then compared to the true model estimates using a paired
two-sample t-test. For the skidding and felling true models, the
process was repeated 32 times for each “number of equations”
choice (e.g., the number of equations in an equation set = 8, or
NE = 8). Among the 32 equation sets, 30 were generated by ran-
dom equation selection; the other two were considered as the
poorest conditions where only the least significant variable was
included in the simulated equation or all of the variables had
narrow valid intervals. For the felling-processing equation, the
process was repeated 11 times for each “number-of-equations”
choice, including 10 randomly generated equation sets and one
poorest condition where only the least significant variable was
included. This sequence of tests was first repeated when using
NE = 8, 6, 4, 3, and 2 skidding equations. If the simulation had
shown that the number of equations had a significant impact
on the prediction accuracy, NE = 8, 6, 4, 3, and 2 would also
have been used for the felling and the felling-processing equa-
tions. The number of equations did not have a significant impact
on prediction accuracy so NE = 3 and NE = 2 was used for the
felling and felling-processing equations, respectively. The entire
process of randomized simulations is outlined in Figure 2.

In order to the test the minimum variable range width for
the method to make a valid prediction, simulations were con-
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Figure 2. ~ Validation process for the N random equations
selected by SAS.



ducted for the equation sets that only included the least signifi-
cant variable. The variable range was initially set at narrow or 30
percent of the true variable range. Each time of simulation, the
variable range width was reduced for 1 percent until the time
when the method produced a prediction that was significantly
different (p < 0.05) from the true model prediction. This vari-
able valid interval width was regarded as the minimum range
width to make a valid prediction.

Simulation Results

Prediction Accuracy

For the selected skidding, felling, and felling-processing equ-
ations, all of the p-values from the randomized simulations
were greater than 0.05 (Table 4), meaning that the predicted
values using the proposed method were not significantly differ-
ent from the predictions from the true model (α = 0.05).

For the skidding equation, the mean difference (sample size
= 100) between the proposed method prediction and the true
model prediction ranged from –0.257 to 0.2497 minutes based
on a true model prediction range of 6.388 to 24.64 minutes. The
mean difference was less than 4 percent of the true model pre-
diction. For the felling equation, the mean difference (sample
size = 100) ranged from –3.784 to 2.1162 centi-minutes based
on a true model prediction range of 39.38 to 422.24 centi-min-
utes. The mean difference was less than 5.4 percent of the true
model prediction. For the felling-processing equation, the
mean difference (sample size = 100) ranged from –0.052 to
0.00032 minutes based on a true model prediction range of
0.546 to 2.983 minutes. The mean difference was less than 9.5
percent of the true model prediction.

Effects of Number of Equations, Number of
Variables, and Variable Valid Interval Width

Multiple regression analyses were performed based on the
simulation results to detect the impact of the number of equa-
tions, number of variables, and variable valid intervals on pre-

diction accuracy. Prediction accuracy (the absolute value of the
mean difference between the proposed method prediction and
the true model prediction) in these tests was a function of these
three factors. The p-values associated with the regression coeffi-
cients indicate the significance of these three factors in explain-
ing prediction accuracy. In the regression analysis, the absolute
value of the mean difference acted as the dependent variable
and these three factors were first analyzed as the independent
variables individually. If the factors were shown to be individu-
ally significant, they were then analyzed jointly to detect their
relative importance.

In the regression analysis, the linguistic range definitions
were assigned range scores to make them numerical:

1. a score of 0.9 was assigned if the variable valid interval
was wide,

2. a score of 0.6 was assigned if the variable valid interval
was medium,

3. a score of 0.3 was assigned if the variable valid interval
was narrow; and

4. a score of 0 was assigned if the equation did not include
this variable.

The score for the range of a specific variable in an equation
set was the average value of all of the range scores assigned to
this variable. The overall average of all of the individual scores
was used as the range score of the equation set.

The simulation using the skidding equation showed that in-
creasing the number of equations did not necessarily improve
prediction accuracy. Regression Equation [4] was developed
using the results from the skidding equation simulation to eval-
uate the significance of the number of equations. The p-value of
the estimated coefficient β1 was 0.1027, indicating that number
of equations was not significant in explaining the prediction ac-
curacy (α = 0.05).

Mean difference NE=
∧

+
∧

β β0 1 ( ) [4]
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Table 4. ~ Complete randomized simulation results ( = 0.05).

Number of equations

Mean differencea Standard deviation of mean difference p-value

Min. Max. Min. Max. Min. Max.

Skidding equation

2 –0.257 0.1337 0.0978 2.1077 0.2249 0.7945

3 –0.239 0.1265 0.1147 1.9888 0.2117 0.9496

4 –0.131 0.1595 0.1162 2.0556 0.2775 0.9045

6 –0.187 0.0877 0.2217 2.1676 0.2640 0.8507

8 –0.110 0.2497 0.1565 2.0357 0.1928 0.9023

Felling equation

2 –2.749 1.4679 0.9944 35.262 0.1789 0.8452

3 –3.784 2.1162 0.7354 36.182 0.1295 0.7207

Felling-processing equation

2 –0.042 0.00032 0.0057 0.3602 0.1209 0.5790

3 –0.052 –0.00047 0.0039 0.3700 0.1452 0.5355

a The true skidding equation has predictions ranging from 6.388 to 24.64 (min.); the true felling equation has predictions ranging from 39.38 to 422.24 (centi-min-
utes); and the true felling-processing equation has predictions ranging from 0.546 to 2.983 (min.).



where:
NE = 2, 3, 4, 6, and 8.

Simulations on the three selected equations showed that
when fewer variables were included in an equation, particularly
when the most significant variable was absent, the absolute
value of the mean difference was higher. Regression model [5]
was developed in each “number-of-equations” group to detect
the impact of number of the variables. The p-values for most of
the estimated coefficients were less than 0.05 (α = 0.05), indi-
cating that the effect of the number of variables on the predic-
tion accuracy is significant.

Mean difference NXm mm
=

∧
+

∧
=∑β β0 1

3
( ) [5]

where:
NXm = number of Xm.

The simulation results showed that equations developed
from a wide range of data can generate more accurate predic-
tions than equations coming from narrow variable valid inter-
vals. Regression model [6] was developed in each “number-of-
equations”group to examine the effects of the variable valid in-
terval. Most p-values for the estimated coefficients were less
than 0.05 (α = 0.05), implying that variable range has a signifi-
cant influence on the prediction accuracy.

Mean difference RXm mm
=

∧
+

∧
=∑β β0 1

3
( ) [6]

where:
RXm = range of Xm.

Simulation using the skidding and felling equations showed
that the effect of the valid interval range on prediction accuracy
was not as strong as the effect of the number of variables. Regres-
sion Equation [7] was developed in each “number-of-equations”
set to compare the relative importance between number of vari-
ables and variable valid intervals. The results showed that the

variable ranges mostly became insignificant (p > 0.05, α = 0.05)
while the number of variables was significant (p < 0.05).

Mean difference =

β β β β0 1

3

4 41

3
∧

+
∧

+
∧

+
∧

⋅
= +=∑ ∑m mm n nn

NX RXs NX RXs( ) ( ) ( )

[7]

where:
RXs = range of Xs or the equation set variable

range score.

The Poorest Cases

Simulation using the skidding equation showed that when
only the least significant variable X3 (slope %) was included in
the simulated equation, the variable valid interval for X3 was re-
quired to be wider than 20 percent of the true variable range. If
it was not, the proposed method did not provide an accurate
prediction (Table 5).

Another poor condition could occur when all of the input
values were out of the valid interval ranges for all of the inde-
pendent variables. The simulation results showed that the p-
value of the t-test could be less than 0.05 under this circum-
stance, indicating the proposed method could make an inaccu-
rate prediction. Simulation, however, using the same equation
sets and the variable valid intervals showed that if the input val-
ues were in the valid interval of at least one variable, the proposed
method was valid for making a reliable prediction (Table 6).

Comparison of Various Maximum Allowed Values

Because the randomized simulation process did not univer-
sally show whether 2b or 3b was more advantageous for an ac-
curate prediction, multiple maximum allowed values (MAVs)
were simultaneously built into the SAS code to detect their
probabilities in making the best and poorest predictions. The
options included 3b, 2b, (2b–a), (3b–2a), and (a+b) for the
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Table 5. ~ Simulation results for the condition when only the least significant variable was included in the simulated equation ( =
0.05).

Variable valid
interval width

Mean difference Standard deviation of mean difference p-value

2ba 3ba 2b 3b 2b 3b

25% 0.271 0.272 2.0369 2.0371 0.1862b 0.1849

20% –0.360 –0.358 2.0518 2.0535 0.0820 0.0844

15% –0.552 –0.552 2.3394 2.3386 0.0202 0.0203

10% –0.528 –0.522 2.3851 2.3932 0.0292 0.0317

5% –0.835 –0.838 2.9224 2.9780 0.0052 0.0059

a Maximum allowed values used in the simulation.
b Bold indicates differences that are not significant.

Table 6. ~ Simulation results for the circumstance when all but one input value was out of the variable valid interval ( = 0.05).

Equation used
Number of
equations

Mean difference Standard deviation of mean difference p-value

Min. Max. Min. Max. Min. Max.

Skidding 2 –0.165 0.3175 0.1732 2.8033 0.0574 0.8444

Felling 2 –0.770 7.4704 1.6013 43.363 0.0947 0.8889



MAVs (0, 0, 2a–b, 3a–2b, and 0 for the minimum allowed values
correspondingly). In the testing of these options, the random
input values were constrained to be in the valid interval of only
one variable because the effects of the linear ramp is only re-
flected by the out-of-range input values. Meanwhile, the subset
data range was no wider than 60 percent of the original variable
range. If the data range was wide (e.g., 90% of the original vari-
able range), the SAS randomized data generation process might
fail to generate sufficient data out of the data range to make a vi-
able test. The true skidding model with six typical equation sets
and the true felling model with three typical equation sets were
used in this restricted randomized simulation.

The restricted randomized simulation results showed that
all of the proposed MAVs could achieve the best prediction, but
that four of them could also produce the worst prediction (Ta-
ble 7). A favorable MAV is judged to be the result expected to
have the highest probability to produce the best prediction and
the lowest probability to produce the worst prediction. Table 7
shows that the MAVs of (2b–a) and (b+a) had the highest prob-
ability to produce the best prediction but also were associated
with the opportunities to make a worst prediction. The MAV of
2b never generated the worst prediction, but also had the lowest
probability to produce the best prediction. Therefore, if the
lowest probability to produce the worst prediction is desired,
the MAV of 2b should be used; if the highest probability to pro-
duce the best prediction is preferred, the MAVs of (2b–a) or
(b+a) should be applied.

Discussion

The simulation tests showed that increasing the number of
equations does not necessarily improve the prediction accuracy
of the method, due to the fact that random equation generation
may introduce a worse equation to an existed equation set with
better equations. But, if the additional equations introduced
more significant variables or broadened the range of variables
included in the equation sets, they might help improve predic-
tion accuracy. The simulation results concerning the effect of
number of equations on prediction accuracy should be re-
garded as the outcome from the simulation, but not necessarily
a strict guideline in real applications. In real applications, one of
the criteria used to select equations will be that regression equa-
tions with fewer numbers of significant variables and with ex-
tremely biased variable ranges not be used. Practically, the
r-square value is a good representation of the equation quality.

The simulation showed that the proposed method required
that the variable valid interval width be wider than 20 percent of
the true variable range to make an accurate prediction. When
the variable valid interval becomes too narrow, the data from
this interval will be biased enough to make the variable insignif-
icant in prediction. In harvesting operation equations, variables
that may have a narrow range include slope and diameter at
breast height (DBH). For systems often observed and modeled,
a slope limit of 35 percent and a cutting limit of 28 inches in
DBH often represent the physical operation limits of the ma-
chine. Twenty percent of these limits will be 7 percent and 5.6
inches, respectively, and would mean that the range of slope
and DBH observed in collecting the information would be less
than these values. In reality, it would be difficult to find a signif-
icant relationship between this small change in the variable
value and the dependent variable being modeled.

The proposed method to make predictions from multiple
linear regression equations needs more research for future im-
provements. First, in addition to a point estimate, the proposed
method should be associated with an error estimate for the
point estimate as each equation used and the associated regres-
sion coefficients have their own standard error. Second, when
the variable satisfaction values are all equal to 1, then it appears
that the estimator is a simple average of the individual predic-
tions. This is intuitively appealing, but it is less efficient than a
weighted average based on the variances of the individual
predictions.

Conclusion

This study proposes a method for using a relevance network
model, weight generating function, and generalized mixed op-
erator to make predictions from multiple linear regression
equations. Validation of this method used computer simulation
to show that as long as the input values were within the valid in-
tervals of at least one variable in one of the equations, the pro-
posed method was effective in making predictions that were
not significantly different from the true prediction. When only
the least significant variable was included in the simulated
equations, the variable valid interval had to be wider than 20
percent of the true variable range to ensure a valid prediction.
The mean difference between the prediction using the pro-
posed method and the prediction from the true models was less
than 9.5 percent of the true model predictions for the complete
randomized simulations.
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Table 7. ~ Summary of the performance of various maximum allowed values.

Maximum
allowed values

The probability to produce the best prediction The probability to produce the worst prediction

Skidding equation Felling equation Skidding equation Felling equation

2b 1a/26b 1/10 0 0

3b 5/26 2/10 10/26 2/10

2b–a 11/26 2/10 4/26 5/10

3b–2a 2/26 2/10 5/26 1/10

b+a 7/26 3/10 7/26 2/10

a The total number of times that the specific maximum allowed value had the best predictions.
b The total number of experiments.



The number of equations in an equation set does not neces-
sarily improve prediction accuracy, but the number of variables
in an equation and the variable valid interval are both influen-
tial for making an accurate prediction. Taken individually, the
number of variables had a stronger impact on prediction accu-
racy than the variable valid interval. Although all five proposed
maximum allowed values could result in the best prediction,
the maximum allowed value of 2b was verified to be the safest
choice since it never produced the worst prediction.

Use of the proposed method to make valid predictions from
multiple equations still requires care in the equation selection.
The selection process should avoid using equations developed
from heavily biased variable ranges and with few significant
variables. Further research is needed in evaluating the predic-
tion error of this method and improving the efficiency of this
method by incorporating the variance of the individual
predictions.
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