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ABSTRACT

Log bridges are an economical alternative to steel and con-
crete structures for temporary crossings; however, reduced
availability of large logs for stringers and the advancing age of
existing log bridges increases the importance of structural anal-
ysis. Load sharing between the stringers is complicated and can
result from load spread due to the gravel deck, cable lashing,
and mechanical interlocking and friction between the stringers.
This paper describes the development of a finite element model
(FEM) for gravel decked log stringer bridges that includes ele-
ments capable of transferring vertical loads between the string-
ers. The FEM was used to interpret load deflection data from
two in-situ bridges. The results of this paper suggest the seg-
ments of lashing that pass under one stringer and over an adja-
cent stringer contribute to load sharing between the stringers;
however, care must be taken to ensure that the pattern of lash-
ing supports the stringers directly loaded by the live loads.

Keywords: log bridge, finite element model, structural me-
chanics, stringers, load sharing

Introduction

Keller and Sherar (2003) note that log bridges are commonly
used in remote areas due to the availability of local materials.
Bradley and Pronker (1994) and Aust et al. (2003) have found
gravel decked log stringer bridges and timber bridges are an
economical alternative to steel bridges for temporary creek
crossings; however, the availability of large diameter logs for
stringers is decreasing as the forest industry shifts to second-
growth timber. Using smaller diameter logs as stringers in-
creases the reliance on sharing the live loads between the string-
ers in order to meet a particular load rating, and this is difficult
to assess through existing structural analysis procedures. Addi-
tionally, aging log stringer bridges can fail due to rot, damage
due to overloading, or improper design and construction. Of-
ten the redundant stringers in log bridges are able to take up the
additional load if a particular stringer fails; however, accidents
such as reported by WorkSafeBC (2006) can result in fatalities
when machines fall off the bridge due to stringer failure.

Design guides such as the Log Bridge Handbook (Nagy et al.
1980) either assume full load sharing between the stringers
where live loads are evenly distributed between the stringers, or
the live loads are distributed to the stringers as a function of the
load spread angle of the gravel surface and the gravel depth. For
the bridges considered in this paper, load sharing between the
log stringers can be a function of the gravel decking, the cable
lashing used to bind the stringers together, and mechanical in-
terlocking between the stringer surfaces. Lyons and Lansdowne
(2006) demonstrated that it is unlikely that load distribution
due to the live loads is uniform at the interface between the
gravel decking and the stringers, and this could result in certain
stringers receiving significantly more of the live load. Nagy et al.
(1980) noted that cable is used to lash the stringers together to
share the load between the stringers directly loaded by vehicle
traffic and the unloaded stringers; however, the magnitude of
this load sharing has not been documented. It is difficult to
measure the actual loads being applied to each stringer in a
gravel decked log stringer bridge. Ammeson et al. (1988) mod-
eled cable and log structures using matrix methods; these
methods are attractive since the model can be run as a macro in
Microsoft Excel which is accessible to most forest engineers.
This paper uses a finite element model (FEM) to link the live
loads applied to a log stringer bridge to measured deflections of
the stringers.

As existing log stringer bridges decay over time, it is neces-
sary to take into account the reduction in the area of the log
cross sections due to rot when performing bridge inspections
(Moody et al. 1979). In addition, the lashing can slacken as a
bridge ages and this may affect the load sharing between the log
stringers. A FEM for gravel decked log stringer bridges will al-
low engineers to factor out the rot from the log stringers where
it actually occurs in the logs.

The objectives of this paper are:

1. to describe the development of a FEM for gravel decked
log stringer bridges that includes elements used to repre-
sent load sharing between the stringers and that can be
run as a macro in Microsoft Excel to facilitate access for
practitioners and

2. to determine if the vertical component of the tension in
the cable lashing is contributing to load sharing between
the stringers.
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FEM Development

Elements

In this paper an element connects two adjacent nodes. The
log stringers in this paper are modeled using three-dimensional
beam elements. Each stringer is divided into 40 equal length
ele- ments, and the stringer elements are assumed to be suffi-
ciently short so taper can be ignored within the element. It is as-
sumed that the cable lashing transfers only vertical loads in re-
sponse to differential deflection between adjacent stringers. To
model this, the lashing is modeled as a one-dimensional ele-
ment capable of resisting only differential vertical translation
between the element ends. This element is termed a load shar-
ing element (LSE), and has one degree of freedom at each end,
for two degrees of freedom per element. The LSE connect
adjacent nodes on adjacent stringers.

The equation defining the LSE element is:
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where:
c = the LSE stiffness constant,

FZ1 and FZ2 = the vertical forces acting on the end nodes
of the element, and

Δz1 andΔz2 = the vertical translations of the end nodes
of the element.

Loads

Lyons and Lansdowne (2006) constructed a FEM of the
gravel surface of a log bridge. They found that the stress field
applied to the log stringers due to the wheel loads was relatively
insensitive to the size of the tire footprint for standard log truck
tires. Therefore, the vertical stress distribution at the interface
between the gravel and the stringers can be found for a unit
load and this can be multiplied by the load of interest to find the
corresponding stress distribution. Lyons and Lansdowne
(2006) used a nonlinear least squares fitting routine to fit Equa-
tion [2] to their FEM results. Equation [2] relates the vertical
stress (σ) at the gravel and stringer interface to the depth of the
gravel (dg) and the lateral distance from the center of the wheel
load (r) for a unit load acting on the tire contact patch.

σ = −
a d eg

b c d rg
d( )2

[2]

Here a, b, c, and d are constants (Table 1). The stress along
the base of the gravel due to an applied wheel load (σL) can be
calculated at a point by multiplying σ by the wheel load (W).

σ L g
b c d r

a d e Wg
d

= −( )2

[3]

As dg increases the stress distribution given by Equation [3]
flattens, and from Figure 1 it can be seen the vertical stress at
the base of the gravel approaches zero when r = 0.5 m for the dg

found in the measured bridge data considered in this paper.
Thus, given the stringer diameters presented, the stress field

from one wheel will be applied to a maximum of two to three
stringers. Note, in this paper a dual wheel assembly will be mod-
eled as two wheels with separate contact patches on the gravel
deck. For a single drive axel with four wheels, this results in four
overlapping stress distributions generated by Equation [3]. The
combined σL applied at a given point at the base of the gravel
deck is the sum of the stress fields from the wheels applied to
the gravel deck.

The stress at the base of the gravel surfacing due to the gravel
self-weight (σD) is calculated from the specific weight and
depth of the gravel surfacing assuming a constant surfacing
thickness over the span of the bridge.

σ γD gd= [4]

Here γ is the specific weight of the gravel. The total vertical
stress at the base of the gravel surfacing (σT) is the combination
of the stress from the live loads, and the stress from the gravel
self-weight.

σT = σL + σD [5]

The total stress σT is used to generate loads applied to the
stringer nodes resulting from the live loads and the self-weight
of the gravel. The base of the gravel is discretized into main
rectangles centered on the stringer nodes. To convert the stress
distribution at the base of the gravel to discrete forces, the stress
is calculated for a point and this is multiplied by the area of dis-
crete rectangle. The accuracy of this method of converting a
continuous stress field to discrete forces applied at the stringer
nodes is dependent on the coarseness of the mesh. Since the
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Table 1. ~ Coefficients for the unit load data including depth
and position (Lyons and Lansdowne 2006).

Coefficient

a b c d
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Figure 1. ~ Stress distribution at the base of the gravel for
wheel 3.



main rectangles are centered on the stringer nodes, increasing
the number of nodes per stringer will reduce the coarseness of
the mesh; however, since the stringers are a fixed distance apart,
the reduction in coarseness is only in the direction of the
stringer. The computational cost is small at the load formation
stage of the program; therefore, the main rectangles were fur-
ther divided into 1,600 sub rectangles. For a given main rectan-
gle the average σL from the sub rectangles is calculated for each
wheel load and the sum of these are added toσD to produceσT ,
then σT is multiplied by the area of the main rectangle to pro-
duce the vertical force applied to the stringer node assigned to
the main rectangle.

The stringer elements have constant circular cross sections;
therefore, the self-weight is a uniformly distributed load over
each element. Equivalent forces and moments at the stringer
nodes, due to the stringer self weight, are calculated using
methods suggested by Weaver and Gere (1980). The total load
applied to a stringer node is the combination of the live loads,
the dead load due to the gravel self-weight, and the dead load
due to the stringer self-weight.

Boundary Conditions

The boundary conditions are defined for the nodes located
at the stringer ends (Table 2). The rotation around the X-axis is
restrained to ensure the stability of the model. These conditions
model the stringer as a simply supported beam as suggested by
Bennett et al. (2004) to approximate the conditions experi-
enced by stringers within a gravel decked log stringer bridge.

Modulus of Elasticity and LSE Stiffness

As noted by Bodig and Jayne (1993) the modulus of elastic-
ity (MOE) can be calculated using the flexural formula. In this
method MOE is treated as the unknown variable in the flexural
formula, with the deflection increment and load increment be-
ing the independent variables. In full-size testing of a small
sample of log stringers, Lyons and Bennett (2005) found the
confidence interval for MOE was 9.7 to 13.5 GPa (df = 8, α =
0.05) for Douglas-fir stringers. These stringers were all from the
same location and it is expected that other populations could
have values above or below this. Given the relatively large varia-
tion that can be expected in MOE and the sensitivity of stringer
deflections to this, MOE will be treated as an unknown in this
paper.

In this paper it is assumed that the geometry of the stringers
is measured without error; therefore, the unknown variables
that affect superstructure stiffness are lashing stiffness (c) and
stringer MOE. The effects of stringer MOE and c are coupled
through the deflections of the stringers; therefore, it is necessary
to calibrate both of these values for a particular bridge loading

case. In this paper MOE is assumed to be the same for all of the
stringers in a bridge for a particular load case, since the bridges
were constructed of a single species, and the logs in a particular
bridge were from the same stand. To calibrate MOE and c, the
FEM was run iteratively varying MOE and c until the sum of the
squared differences between the calculated incremental deflec-
tions and the measured incremental deflections was mini-
mized. Thus, MOE for a particular bridge and c are estimated
for each load case.

FEM Solution Method

The FEM is written in Visual Basic and run as a macro in
Microsoft Excel. The FEM is based on matrix analysis of framed
structures as described by Weaver and Gere (1980). This method
relates the total loads acting on the bridge to the displacements of
the log stringers through the structure stiffness matrix. The
stringer and LSE stiffness matrices are combined to produce the
global stiffness matrix for the gravel decked log stringer bridge.
Once combined, the global stiffness matrix is reordered, system-
atically moving the unknown displacements to the top of the
matrix, and the prescribed displacements to the bottom of the
matrix. The ordered structure load matrix, stiffness matrix, and
displacement matrix form a system of simultaneous linear equa-
tions. This system of linear equations relating the nodal loads to
the corresponding degrees of freedom though the global stiffness
matrix is solved using a modified factorization method as dis-
cussed by Weaver and Gere (1980).

In-Situ Bridge Data

In May 2005, the Forest Engineering Institute of Canada and
International Forest Products Limited instrumented and moni-
tored stringer deflections for two gravel decked log stringer
bridges. The first bridge was 2 years old, located at Bear Lake,
and had nine Douglas-fir (Pseudotsuga mensziesii) stringers
(Fig. 2). It had two sets of cable lashing located approximately
at the third points of the 10 m span, stringer butt inside bark di-
ameters ranging from 570 to 800 mm, and a gravel depth of 280
mm (Fig. 3). The second bridge was 1 year old, located at Elk
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Table 2. ~ Boundary conditions.

Node located x = 0 Node located x = Span

Rotations restrained X --

Translations restrained X, Y, Z Y, Z
Figure 2. ~ Bear Lake deflection test setup.



Bay, and had 12 Douglas-fir stringers. It had one set of cable
lashing located approximately at the mid-point of the 8.2 m
span, stringer butt inside bark diameters ranging from 470 to
700 mm, and a gravel depth of 380 mm (Fig. 4). The cable lash-
ing for both bridges was 15.9 mm diameter 6 by 19 galvanized
independent wire rope core steel cable. The exact Young’s
modulus of this cable is not know; however, Bridon American
Corporation (2006) suggests a range of 87 to 93 GPa.

A three-axle gravel truck was used to load the bridges. The
gravel truck had 10 wheels with eight drive wheels located on
two drive axles. The wheel loads were measured with portable
weight scales and are presented in Table 3. Note vehicle position
and bridge dimensions limit which wheels fit on the bridge for a
given loading configuration. Figures 3 and 4 provide the wheel
numbers for the wheels located on the bridges that correspond
to Table 3.

This study measured deflection of in-situ bridges due to vehi-
cle loads; therefore, the at-rest location of the bridge stringers in-
cludes deflection due to loading from the weight of the stringers
and the gravel decking. The deflection of the bridge stringers due
to vehicle loading was measured as follows.

• For the Bear Lake bridge, rulers with 1.0-mm increments
were hung on each stringer at the location of the first lashing,
mid-span, and the location of the second lashing (Fig. 2).

• For the Elk Bay bridge, the rulers were hung on each
stringer at the first third of the span, the mid-span lashing
point, and the second third of the span.

A high precision level equipped with a micrometer was used
to note the ruler scale values that were level with the instrument
(Δ1) prior to loading the bridge with the test truck. The gravel
truck was positioned on the bridge and the position was held
constant for a given test. With the truck in position on the
bridge, the level was used to determine the ruler scale values
that were level with the instrument (Δ2). The difference be-
tween Δ1 and Δ2 represents the stringer vertical deflection due
only to the gravel truck loading (ΔT), whereΔT is the incremen-
tal deflection of the stringer due to the gravel truck, measured at
the point of ruler attachment.

For each of the bridges considered in this paper, the truck
was positioned so the centerline of the truck was along the cen-
terline of the bridge, offset from the centerline of the bridge to
the upstream side of the bridge, and offset to the downstream
side of the bridge. The magnitude of the offset was constant for
a particular bridge and was determined by the minimum dis-
tance (either upstream or downstream) from the bridge center-
line to the berm alongside the guard log. The offset of the truck
centerline was calculated by subtracting half the drive axle
width from the minimum distance between the bridge center-
line and the berm. The offset for the Bear Lake and Elk Bay
bridges were 1.165 m and 0.87 m, respectively. The position of
the wheel loads with respect to the lashing and stringers for the
center load case are given in Figures 3 and 4.

Load Sharing Through Cable Lashing

This section considers the actual lashing pattern used in the
bridges measured in this study. To consider whether the vertical
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Figure 3. ~ Plan of Bear Lake bridge center load case.

Figure 4. ~ Plan of Elk Bay bridge center load case.

Table 3. ~ Wheel loads.

Axle Wheel Wheel load

(N)

Steer 1 18973.43

Steer 2 18884.25

Drive 1 3 36163.23

Drive 1 4 36163.23

Drive 1 5 35271.41

Drive 1 6 35271.41

Drive 2 7 38794.09

Drive 2 8 38794.09

Drive 2 9 38860.98

Drive 2 10 38860.98



component of the cable lashing contributes to load sharing be-
tween the stringers, it is necessary to examine the pattern of
lashing used. In Figure 5, it can be seen that the Bear Lake
bridge lashing goes around the outside and under stringer 1,
under stringers 2 to 4, over the top of stringers 5 and 6, and back
under stringers 7 to 9. In general, the truck wheels do not travel
directly over stringers 1 and 9. For stringers 2, 3, and 8, the ten-
sion in the lashing is acting mostly in the horizontal direction;
therefore, to realize a vertical transfer of load through lashing
tension, there would have to be significant differential deflec-
tion between these stringers and the stringers with the lashing
riding on top. For stringer 4, the section of lashing riding up
over stringer 5 provides a better opportunity for load sharing
between stringers 4 and 5 through a vertical component of the
tension. A similar opportunity exists between stringers 7 and 6.
Since the lashing is riding on top of stringers 5 and 6, it is not
possible for a vertical load applied to these stringers to be shared
with the adjacent stringers through a vertical component in the
tension.

Considering Figures 6 to 8 it can be seen the maximum
measured deflection in the center load case is less than the max-
imum for the offset load cases. For the center load case, the
wheels are located over stringers 4, 6, and 7 and as noted above
the lashing is better positioned to support stringers 4 and 7.
While for the downstream case the wheels are located mostly
over stringers 5, 6, and 8, and for the upstream case the wheels
are mostly located over stringers 2, 3, and 5. For the offset load
cases the wheels are located over stringers that are not well
supported by the lashing.

In Figure 9 it can be seen that the Elk Bay bridge lashing goes
over top of stringers 1 and 2, underneath stringers 3 to 5, over
top of stringers 6 and 7, back under stringers 8 to 10, and over
top of stringers 11 and 12. In general the truck wheels do not
travel directly over stringers 1, 2, 11, or 12. For stringers 4 and 9
the tension in the lashing is acting mostly in the horizontal di-
rection. Therefore, to realize a vertical transfer of load through
lashing tension, there would have to be significant differential
deflection between these stringers and the stringers with the
lashing riding on top. For stringers 3, 5, 8, and 10, the sections of
lashing riding up over adjacent stringers provides a better op-
portunity for load sharing with the adjacent stringers through a
vertical component of the tension. Since the lashing is riding on
top of stringers 6 and 7, it is not possible for a vertical load ap-

plied to these stringers to be shared with the adjacent stringers
through a vertical component in the tension.

Considering Figures 10 to 12, it can be seen that the maxi-
mum measured deflection in the center load case is less than
that for the offset load cases. For the center load case, the
wheels are located over stringers 5 and 8 and as previously
noted the lashing is better positioned to support these string-
ers. For the downstream case, the wheels are located mostly
over stringers 6 and 9, and for the upstream case the wheels are
mostly located over stringers 3, 4, and 7. For the offset load
cases, the wheels are located over stringers that are not well
supported by the lashing.
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Figure 5. ~ Lashing diagram for the Bear Lake bridge.
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Figure 6. ~ Bear Lake upstream: measured deflections and
calculated deflections using c = 6.22E06 N/m and MOE = 9.6
GPa.



Analysis of LSE Stiffness

The load applied to a stringer due to the differential deflec-
tion of a neighboring stringer is a function of the LSE stiffness
(c). The phenomenon of load sharing between stringers could
be a direct component of the cable lashing tension, a function
of friction between the surface of the stringers, mechanical in-
terlocking of the stringers due to their irregular shapes, and
load spread through the gravel surface. Assuming the algorithm
used to model load spread through the gravel is accounting for
this mode of load sharing, then c is capturing the combined ef-
fect of the other modes of load sharing.
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Figure 8. ~ Bear Lake downstream: measured deflections
and calculated deflections using c = 6.50E06 N/m and MOE
= 9.6 GPa.
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Figure 7. ~ Bear Lake center: measured deflections and cal-
culated deflections using c = 6.79E06 N/m and MOE = 9.7
GPa.
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Figure 9. ~ Lashing diagram for the Elk Bay bridge.



The in-situ bridge data provides six different cases: three
load variations for two different bridges. The two bridges
considered in this study have different overall dimensions,
lashing styles, gravel depths, and number of stringers. Thus,
these six cases will give an indication of the variation that can

be expected in c. MOE and c were calibrated for the six cases
using the method previously described (Table 4). With only
one observation per load case for a particular bridge, statisti-
cal comparison is not possible; however, the data shows clear
trends.
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Figure 10. ~ Elk Bay upstream: measured displacements
and calculated displacements using c = 8.48E06 N/m and
MOE = 7.9 GPa.
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Figure 11. ~ Elk Bay center: measured displacements and
calculated displacements using c = 11.59E06 N/m and MOE
= 8.3 GPa.

Table 4. ~ Calibrated MOE and LSE stiffness (c) by load case.

Bridge

Downstream Center Upstream

c (N/m) MOE (Pa) c (N/m) MOE (Pa) c (N/m) MOE (Pa)

Elk Bay 10.18E06 8.3E09 11.59E06 8.3E09 8.48E06 7.9E09

Bear Lake 6.50E06 9.6E09 6.79E06 9.7E09 6.22E06 9.6E09



Recall a particular estimate of MOE uses the deflection data
from a particular load case on a particular bridge. The range in
estimated MOE for a particular bridge is small, 5 percent and 1
percent for Elk Bay and Bear Lake, respectively, when consider-
ing the maximum difference as a percent of the smallest value.
The narrow range in estimated MOE for a particular bridge is
reasonable given that all of the logs in a particular bridge were
the same species and obtained from the same location. Note, as
the lateral position of the truck is varied, different groups of
stringers are supporting the truck. Since load sharing between
the stringers is accounted for by the LSE elements, the narrow

range in estimated MOE for a particular bridge indicates the
stringers had similar stiffness.

The range in estimated c for a particular bridge is larger than
the range in estimated MOE, 37 percent and 9 percent for Elk
Bay and Bear Lake, respectively, when considering the maxi-
mum difference as a percent of the smallest value. As noted, for
a particular bridge the ability of the lashing to share loads to ad-
jacent stringers varies depending on the stringers being consid-
ered. When the truck was positioned in the center of the bridge,
the wheels were located over stringers that were better sup-
ported by the lashing; however, for the upstream and down-
stream offsets the stringers taking most of the load were not
well supported by the lashing. Since c is a measure of the degree
that a particular load case is being shared between the stringers,
a wide range in c for a particular bridge is expected given the
lashing configurations used. In the previous section, it was
noted the lashing is better positioned to share the load between
stringers when the truck is centered on the bridge, and in Table
4 it can be seen that c is highest for the center load cases. This
supports the observation that the cable lashing contributes to
load sharing between the stringers; however, it is strongly de-
pendent on the position of the lashing.

The calculated deflections for all of the load cases are pre-
sented in Figures 6 to 8 and 10 to 12. In general when using the
calibrated values for MOE and c, the calculated deflection
closely follows the measured deflections except for stringer 2 in
the Bear Lake upstream load case. It does not appear that there
was a measurement error for stringer 2 because it shows a simi-
lar large deflection for all three measurement locations in the
upstream load case. During the upstream load case, the up-
stream drive wheels are centered over stringer 2. Therefore, it is
reasonable that weakness in this stringer would be visible for
the upstream case and not for the other cases. Size is not a con-
tributing factor to the large deflections of stringer 2; however,
other possible explanations are a crack in the stringer has gone
unnoticed, the lashing could be particularly slack around this
stringer, or the MOE for that particular stringer could be much
less than for the other stringers.

Conclusions

This paper describes the development of a FEM for gravel
decked log stringer bridges that includes LSE between the log
stringers that can be run as a macro in Microsoft Excel. The LSE
stiffness and MOE for each load case was selected so the sum of
squared errors between the calculated and measured deflec-
tions was minimized. It was found that the LSE stiffness was
more variable than MOE for a particular bridge. This result is
reasonable given the similarity in species, source location, and
size of the log stringers in a bridge as compared to the variable
ability of the cable lashing to contribute to load sharing be-
tween particular stringers, due to the pattern of weaving the
cables around the stringers.

Considering lashing position, it appears the lashing is unable
to support certain stringers, while others have a better opportu-
nity for support. When the truck used to load the bridge was
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Figure 12. ~ Elk Bay down stream: measured displacements
and calculated displacements using c = 10.18E06 N/m and
MOE = 8.3 GPa.



offset so the poorly supported stringers are directly loaded with
the live loads, the maximum measured deflection in the bridge
is greater than for the center load case where the stringers are
better supported by the vertical component of the lashing ten-
sion. In addition, the calibrated values of LSE stiffness were
found to be higher for the center load case. This suggests that
load sharing was greater for the center load cases, and this is
consistent with the observations that the vertical component of
the cable lashing is able to contribute to load sharing for certain
stringers.

The pattern of lashing found in the bridges considered in
this paper indicates improvements are required for the gravel
decked log stringer bridge FEM. The load sharing elements ac-
counting for load sharing through the lashing tension should
only connect a stringer with the lashing passing underneath it
to a stringer where the lashing is riding on top. For these ele-
ments it will be necessary to form the stiffness as a function of
the distance between the stringer with the lashing passing un-
derneath it to the stringer where the lashing is riding on top.
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