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ABSTRACT

Road grading is the most common maintenance activity
performed on forest roads. Reducing grading cost could re-
lease resources for other maintenance needs, ideally resulting
in a better maintained road system. A combinatorial optimi-
zation method, tabu search, is combined with two local search
procedures to generate efficient grading routes. Determining
the optimal grading route is modeled as an extension of the
Mixed Rural Postman Problem (MRPP), adapted to include a
daily operating time limit and different traversal/service
times. The objective was to minimize total operating time, a
proxy for grading cost. The heuristic was tested on both artifi-
cial and actual forest road networks, and computational re-
sults are presented. The heuristic demonstrates the ability to
generate efficient and feasible grader routes.

Keywords: road maintenance, grading, optimization, tabu
search

Introduction

Road Maintenance and Grading

Road grading is the most common maintenance activity
performed on forest roads. A grader operates by traversing the
road with a lowered blade, mixing and redistributing the ag-
gregate surfacing material to provide a smooth, pothole-, rut-,
and washboard-free surface. As with other forms of road
maintenance, grading has both economical and environmen-
tal benefits. A well-graded road reduces haul costs by allowing
vehicles to travel at design speeds, and reduces vehicle owner-
ship and operating costs by reducing the amount of wear and
tear incurred while traveling. Insurance costs could poten-
tially be reduced due to enhanced driver safety. Proper grad-
ing also serves to maintain the road’s designed drainage sys-
tem, which reduces environmental degradation associated
with erosion and sedimentation.

The transportation manager is often responsible for ensur-
ing that the road network meets some minimum acceptable
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levels for driver safety, vehicle traffic capacity, and drainage.
Budgetary constraints limit the amount of maintenance a
planner can implement in a given period. Identifying cost-
saving measures, therefore, could release these resources for
other maintenance projects, ideally resulting in a better main-
tained road network. As grading cost for a road system is
driven largely by total operating time (Dave Young, pers.
comm.), emphasis should be placed on minimizing grader
operating time for that system. Additionally, careful selection
of road segments that are actually in need of maintenance can
reduce overall costs by reducing the number of road segments
treated. In a study performed in eastern Canada, for example,
it was found that identifying segments in poor condition and
scheduling grading accordingly could reduce grading costs by
30 percent over a policy of grading at fixed time intervals
(Provencher 1995). Limiting unnecessary grading can also
limit potential environmental degradation from grading,
which is associated with increased sediment yields due to dis-
ruption of the road surface (Luce and Black 1999).

In this paper, a novel method for assisting grader deploy-
ment decisions is proposed, the goal of which is to determine
minimal cost tours that visit all road segments requiring grad-
ing. The study will demonstrate that use of computerized de-
cision aids to determine routes for graders to take when main-
taining a road network could result in increased efficiency.
Also, a “monitor and manage” approach to road grading
scheduling is more appropriate than adhering to unstruc-
tured or uniform predetermined grading schedules.

Grading Decisions

First, the manager must decide which road segments re-
quire grading. Typically the decision to grade is based upon
weather and traffic patterns, as well as observations and com-
plaints from drivers. Rarely are these decisions based upon
quantifiable information regarding road roughness or water
content. Recent technological developments, however, pro-
vide for improved data collection and analysis, which could
inform and improve the grading decision process. A good ex-
ample of progress in this field is the Opti-Grade® package, de-
veloped by the Forest Engineering Research Institute of Can-
ada (FERIC 2007). Opti-Grade includes a device to be in-
stalled on a vehicle that can measure and record road rough-
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ness values as the vehicle traverses a road network. The
roughness data is paired with global positioning system (GPS)
time and location data to provide an objective, quantitative
measure of the road network’s roughness levels, which is then
analyzed by the package’s software to determine which seg-
ments require grading. Opti-Grade determines grading re-
quirements according to roughness thresholds identified by
managers, but similar technology could implement addi-
tional decision criteria, such as road category, season of use,
and volume of traffic.

Grader Routing

After the subset of road segments that require grading has
been established, the transportation manager must then de-
termine the route the grader will take over the road network.
This route, or tour, must visit all road segments that the man-
ager has identified as requiring grading. In practice, knowl-
edge about local conditions, experience, and a roadmap are
the primary drivers of this decision process (Dave Young,
pers. comm.). As previously mentioned, the manager seeks to
minimize total project cost, or as a proxy, total grader operat-
ing time. Numerous possible routes exist that traverse all of
the segments requiring grading, and the manager must select
an efficient tour from among them. For networks of substan-
tial size, the pool of possible solutions is far too vast to be eval-
uated by hand, and the manager must decide upon the route
according to some heuristic process.

In mathematical terms, the generic problem facing the
transportation manager is known as the Rural Postman Prob-
lem (RPP), part of a broader class of Arc Routing Problems
(ARPs). The aim of the RPP, and ARPs in general, is to deter-
mine a minimal cost closed walk of a subset of some arcs of a
graph (Eiselt et al. 1995a, 1995b). A closed walk is a sequence
of arc traversal over a network, with the sequence beginning
and ending at the same point. The rural postman, for instance,
leaves the post office in the morning, visits some subset of
county roads to deliver mail, and returns to the post office at
the end of the day. The RPP formulation provides a basis for
many other industrial applications, including street sweeping,
school bus routing, snow plowing, and garbage collection
(Corberén et al. 2000, Eiselt et al. 1995b). In this context, road
segments represent arcs and road intersections represent ver-
tices on a graph. To accurately reflect most real forest road
networks, the underlying graphs are considered mixed, mean-
ing they contain both arcs (one-way) and edges (two-way).
The manager’s problem is, therefore, an instance of the Mixed
Rural Postman Problem (MRPP), defined as below (Eiselt et
al. 1995b):

Let G=(V,E, A) be a connected mixed graph, where V
is the vertex set, A is the arc set, E is the edge set, and a
nonnegative cost is associated with all arcs and edges.
Define A; < A and E; C E to be the subsets of arcs and
edges, respectively, that require grading. The aim of the
MRPP is to find a minimal cost closed walk that tra-
verses each required arc and edge at least once.
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The RPP and MRPP are proven to be NP-Hard; there is no
nondeterministic polynomial-timed algorithm able to solve
this class of problems. These problems types generally require
a heuristic method to generate near optimal solutions (Cor-
berén etal. 2000, Eiselt et al. 1995b). In a survey of ARPs, Eiselt
et al. (1995b) conclude that arc routing theory could benefit
from additional research, and they identify tabu search as a di-
rection for future research. The success of tabu search applied
to Vehicle Routing Problems (VRPs) is cited as an example.
Gendreau et al. (1994) developed TABUROUTE, a tabu
search heuristic for VRP with capacity and route length re-
strictions, which upon testing outperformed existing heuris-
tics. Tabu search was later applied to the Capacitated Arc
Routing Problem (CARP) with similar success (Hertz et al.
2000). Most relevant, a tabu search heuristic was implement-
ed in concert with a construction heuristic for the MRPP, and
the authors (Corberan et al. 2000) considered tabu search to
have performed “remarkably well.”

Tabu search is a commonly used and effective combina-
torial heuristic algorithm. Developed by Glover (1989, 1990),
tabu search uses memory structures to characterize and prior-
itize candidate solutions. It is essentially an improvement
method in which successive solutions, which are perturba-
tions of previous solutions, are examined and the best is se-
lected. Ideally, an improving solution will be found, but where
none of the perturbations would result in an improvement
the best solution is still selected. Thus, in a given iteration, the
objective function may worsen, but it is hoped that doing so
will allow the heuristic to escape local optima. In addition, a
tabu list is used that identifies forbidden moves; this prevents
cycling and ideally prevents the heuristic from keying in on
local optima. Essentially, tabu search can be viewed as a
metaheuristic that can guide any local search procedure to-
ward a global optimum. Utilization of heuristics, such as tabu
search, provide the opportunity to evaluate increasingly large
pools of data and alternative scenarios and to seek optimal so-
lutions to complex problems.

Tabu search has been successfully implemented in various
vehicle routing and arc routing problems (Amberg et al. 2000,
Corberan et al. 2000, Hertz et al. 2000, Gendreau et al. 1994).
Additionally, tabu search has been widely implemented in the
field of forest management (Richards and Gunn 2003). Ex-
amples include harvest scheduling (Boston and Bettinger
2002, Bettinger et al. 1999, Bettinger et al. 1997), wildlife plan-
ning (Bettinger et al. 2002), landscape planning with environ-
mental goals (Bettinger et al. 1998), road optimization (Aruga
2005), and logging crew assignment (Murphy 1998).

Like most applications, the transportation manager’s pro-
blem includes additional characteristics that require modifi-
cations from the original MRPP formulation. In this case, a
daily maximum operable time limit is included, which has the
potential to greatly increase the complexity of the problem. In
excessively steep terrain, the grader may be limited to unidi-
rectional travel or may be forced to reduce speeds due to
safety and sliding concerns (Caterpillar Inc. 2002). These lim-
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its were incorporated into our model by assuming the ex-
treme case of different grading speeds for uphill and downbhill
travel. This assumption introduces elements of the Windy
Postman Problem (WPP), in which the cost of traversal de-
pends on the direction of travel; the WPP is also proven to be
NP-Hard (Eiselt et al. 1995a). Where not appropriate, the for-
mulation can easily be amended to include uniform grading
speeds, which in fact reduces the complexity of the problem
by reducing the size of the solution space. Traversal over road
segments without grading (deadheading) is assumed at a con-
stant speed.

Thus, the solution methodology can draw from MRPP the-
ory but will necessarily require a tailored approach. A tabu
search metaheuristic algorithm was proposed, combined with
two improvement procedures that seek efficient grader routes
across the road network while incorporating the operational
constraints discussed. Upon obtaining an acceptable solution,
the manager can deploy the grader to begin operation.

In practice grading time depends on the number of passes
required to service the road segment, a function largely of
road width and standard. For this paper, all road segments
were assumed to require a single pass, but variable pass require-
ments for different road segments can easily be included —
grading time is a model parameter that can be updated appro-
priately. Where an even number of passes is required, the al-
gorithm would need to be updated to continue traversal from
the beginning of the recently graded road segment rather than
the end. Including number of passes, however, would not
fundamentally change problem complexity or our solution
approach, and thus its consideration was omitted from the ex-
ample application presented below. Rather, considerations
such as an operating time limit and directional-dependent
speeds were chosen to increase problem complexity and chal-
lenge the solution method.

Notation and Definitions

Edges henceforth generically refer to both arcs and edges
and are defined by a vertex pair (4, j). Here iis the “from” ver-
tex, and j is the “to” vertex defining the edge. If an edge is un-
directed, the edge defined by (j, 7) also exists. Edges that re-
quire grading are said to require service, are denoted as service
edges, and are represented as [i,j]. A tour is the order in which
service edges are visited. A given tour may be comprised of
multiple sub-tours, which are necessary when the overall tour
exceeds the daily time capacity. All tours (including sub-
tours) originate and end at the depot vertex, where the grader
is stored when not in use. A grader traversing an edge without
grading is said to be deadheading. A spuris an edge only con-
nected to the network via one vertex, i.e., the edge comes to a
deadend.

Tabu Search

Our tabu search heuristic iteratively generates alternative
solutions (tours) by re-ordering the traversal of service edges.
Total tour time is calculated as the sum of all grading times
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plus the time to traverse between service edges. Note this cal-
culation includes time to return to the depot at the end of
each sub-tour, if required due to operating time constraints.
When traveling between edges requiring service, the grader is
assumed to follow the shortest path between service edges.
Specifically, this shortest path originates at the “to” vertex of
the service edge graded prior and ends at the “from” vertex of
the next service edge where grading will begin. When travers-
ing between two service edges, the grader may deadhead over
a third service edge, and failing to grade that service edge
along the way may result in an inefficient solution. The
Shortest Path Service Edge Insertion (SPSEI) heuristic, de-
scribed below, addresses this concern. When a tour length ex-
tends beyond the maximum allowable time, it must be di-
vided into sub-tours that are feasible. We developed the Tour
Partition Heuristic to address this concern, and it is described
below. The tabu search seeks an efficient ordering of service
edges that results in an overall minimal closed-walk time.

Neighborhood Definition

Each instance of traversal re-ordering is considered a
“swap.” The neighborhood of the search procedure includes
both 1-edge and 2-edge swaps. One-edge swaps are only ap-
plicable for undirected service edges; the direction in which it
is graded is simply reversed. A 2-edge swap switches the loca-
tion of two service edges in the tour. Service edges that are un-
directed can be inserted into their new locations in either pos-
sible traversal direction; the procedure evaluates both possi-
bilities. All possible combinations of service edge swaps are
considered per iteration of the tabu search, to provide as
broad a scope as possible.

To illustrate the allowable swaps, consider the example
network below in Figure 1. The network contains 5 vertices
(depot, A, B, C, D) and seven undirected edges. The black dot
represents the depot. Two edges require service: [A, B] and [C,
D]. Table 1 displays the average deadhead and grading times
for these edges. Note that deadhead times are the same for ei-
ther direction, whereas grading times vary with direction.

Figure 1. ~ Example network.
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Table 1. ~ Example deadhead and grade times.

Deadhead Grade
Edge(s) Time Edge Time
(DEP, A) and (A, DEP) 1.7 [A, B] 4.5
(DEP, B) and (B, DEP) 13 (B, A] 3
(A, B) and (B, A) 1.5 [C, D] 8.4
(A,C)and (C,A) 2.3 [D,C] 5.6
(A,D) and (D, A) 24
(B, D) and (D, B) 1.8
(C,D) and (D, C) 2.8

Assume the current solution is to traverse the service edges
in the order [A, B] — [C, D]. Figure 2a displays the resulting
tour the grader would traverse over the network for this solu-
tion. Bold lines represent service edges; arrowheads indicate
direction of traversal.

Current Solution: [A, B] — [C, D]

Total Tour: (DEP,A) — [A,B] = (B,A) = (A,C) —
[C,D] — (D,B) — (B, DEP)

Total Time: 21.5

Table 2 lists all possible 1- and 2-edge swaps for this origi-
nal candidate solution.

Figure 2b through 2d present a subset of eligible swaps,
with the resulting tours and associated total times listed be-
low. Because predetermined shortest paths are traversed be-
tween grading service edges, the tour can substantially change
when swaps are performed.

1-edge swap: [B, A] — [C, D]

Total Tour: (DEP, B) = [B,A] = (A, C) — [C, D] —
(D, B) — (B, DEP)

Total Time: 18.1

2-edge swap: [C, D] — [A, B]

Total Tour: (DEP,A) — (A, C) = [C,D] — (D,A) —
[A, B] — (B, DEP)

Total Time: 20.6

2-edge swap: [D, C] — [A, B]

Total Tour: (DEP, B) — (B,D) — [D,C] — (C,A) —
[A, B] — (B, DEP)

Total Time: 16.8

Tabu Search Implementation Details

Initial solutions are generated as a random permutation of
service edge ordering. The tabu search procedure is then in-
voked to improve upon the random initial solution. The max-
imum number of iterations was set at 10,000, where per itera-
tion a neighborhood search is performed to select a new solu-
tion. The neighborhood search consists of an exhaustive in-
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Figure 2. ~ Example solution and possible swaps. Bold
lines represent service edges; arrowheads indicate direc-
tion of traversal.

a) Current solution: [A, B] — [C, D],

b) 1-edge swap: [B, A] — [C, D],

¢) 2-edge swap: [C, D] — [A, B], and

d) 2-edge swap: [D, C] — [A, B].

Table 2. ~ Possible candidate solutions from swaps.

1-edge swaps 2-edge swaps

[B,A] - [C,D] [C,D] - [A,B]
[A,B] = [D,C] [C,D] = [B, A]
[D,C] — [A, B]
[D,C] = [B,A]

vestigation into all possible 1-and 2-edge swaps, as detailed
above. The shortest path service edge insertion (SPSEI) heu-
ristic is invoked for each candidate move to investigate the
potential to reduce tour redundancy. A redundancy, as de-
fined here, would be to deadhead over a service edge while
traversing the shortest path between two other service edges.
If necessary, the Tour Partition heuristic is also invoked to di-
vide the candidate tour into feasible sub-tours. The inclusion
of the two sub-heuristics makes calculations of the change in
solution quality rather difficult, so the decision was made to
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recalculate total tour time for each candidate move after in-
voking the two sub-heuristics.

Diversification criteria included both recency and frequency
memory structures. The recency memory structure is a tabu list
of fixed length, which varied depending on problem size.
Values of 15 through 25 were used, which were determined by
initial experimentation and analysis of solution quality. The
frequency memory structure maintained the number of times
moves, or swaps, were selected — the idea being to penalize
moves that are selected more frequently to avoid returning to
previously visited local optima too quickly. The aspiration cri-
terion stipulated that moves considered tabu can only be se-
lected if their solution time is the best time achieved yet.

Per iteration the swap providing the greatest improvement
in solution is selected, provided it is not currently on the tabu
list. Pursuant to the aspiration criteria, a tabu move must yield
the best solution to be permissible. The selected move is then
entered into the tabu list (if not already there), replacing the
least recently added move. The selected swap’s frequency
count is also updated. In situations where no improving
moves exist, all solutions are penalized according to their fre-
quency and the move with the best penalty-adjusted time is
accepted. The penalty function multiplies the grading time by
a factor of 0.5, and this is added to the total solution time.

SPSEI Heuristic

This heuristic seeks to rearrange the order of service edge
traversal in order to improve overall tour efficiency. When
evaluating candidate solutions, the heuristic investigates the
shortest paths that would be inserted into the tour as a result
of the swap under consideration. Specifically the routine is
searching for instances where these shortest paths create re-
dundancies in service edge traversal. If such an instance is
found, the solution is re-ordered so that any service edge lo-
cated along a shortest path between two other service edges is
graded along the way.

Consider the solution as depicted in Figure 2d, and addi-
tionally assume the edge connecting vertices B and D also re-
quires service. When traversing between service edges [A, B]
and [D, C], the grader will take the shortest path between ver-
tices B and D, which is the edge (B, D). Clearly it makes no
sense to traverse this edge (B, D), grade [D, C] and then return
later to grade [B, D]. A more economical option would be to
grade the service edge [B, D] en route to [D, C], which would
result in the candidate solution [A, B] — [B, D] — [D, C].

Tour Partition Heuristic

If a tour’s total time exceeds the allowable limit, it must be
partitioned into some subset of feasible sub-tours. This heu-
ristic attempts to partition the tour into sub-tours in such a
way as to minimize total operating time. A simple rule is to
continue grading for as long as possible and stop with enough
time to return to the depot. Cases could exist where it would
be more efficient to return early. For example consider the
case where elapsed time is near the limit, and the remaining
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service edges are clustered in some area far away from the de-
pot. Rather than travel the far distance with only enough time
to service one or two edges, it might be more economical to
return to the depot early and finish all of the remaining ser-
vice edges in the next day’s sub-tour. This heuristic considers
multiple partition locations to seek the best location to parti-
tion the overall tour into sub-tours. The tour is initially parti-
tioned at the last possible location, and then a neighborhood
around that initial partition is evaluated by reducing the cur-
rent sub-tour by one service edge at a time.

Computational Results

All procedures were programmed in C and compiled in
Microsoft Visual C++ 6.0. A variety of road networks were
tested, including networks with cycle and directed networks
that are more commonly found in steep terrain. Initially, the
tabu search heuristic model was tested on four artificially gen-
erated networks, purposefully created small enough so the
optimum solutions could be found through complete enu-
meration. Then the model was applied to a real data set from a
research forest owned by Oregon State University (OSU). The
following parameters are used to generically define an in-
stance of a road network: the number of vertices (IV1) and the
number of edges (IEl). Density, d, is computed as |El / IVI*,
Typically forest road networks have a very sparse density, and
the generated data sets reflect that. Additionally, ISEI repre-
sents the number of edges requiring service in a particular
network.

Each generated network was tested with nine problem in-
stances, where a problem instance consists of a ISEl value and
a randomly generated combination of that many service
edges. A total of 36 instances were, therefore, solved on artifi-
cial networks, and for each instance the heuristic algorithm
generated 100 results. For the Oregon State Research Forest, a
total of six problem instances were tested, and for each in-
stance the heuristic algorithm generated 50 results.

For the generated networks, a range of ISEl values were
tested, and three random combinations of service edges were
generated for each value of ISEl. Appendix A contains a listing
of the service edges associated with each random instance. On
the small networks, the model was run 100 times for each
unique IV, |El, and ISEI combination. For the Oregon State
Research Forest, fewer problems were tested but included a
range of possible ISEl values; the model ran 50 times for each
ISEl value.

Initially the tests were run absent the maximum operating
time constraint in order to evaluate the baseline performance
of the model. After it was determined the model could pro-
vide satisfactory results, the time constraint was incorporated,
but only for one ISEl value per network, due in part to the in-
creased computational difficulty of determining the optimal
solution when incorporating such a constraint. The values
used for “Max Time” were chosen based upon the obtained
unconstrained solutions, and should not be construed to have
any real world meaning. Because the optimal solution was
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found through enumeration, for Networks 1 through 4 the
values in the “Num Best” column represent the number of
times the model determined the actual optimal solution. A
value of 75, for example, in this column means that the opti-
mum solution was reached by the tabu search heuristic in 75
out of 100 runs. This will not be the case for the Oregon State
research forest network, for which the optimal solution is un-
known. The “Avg Dev” column represents the average per-
cent deviation from the best solution found.

The results obtained and reported in this paper were per-
formed on a machine equipped with Optiplex GX280 3.3
GHz with 1 GB RAM. CPU time was not recorded, although
observationally solutions were generated in less than a second
for all but the real forest network. CPU times for that network
ranged from seconds to over 2 minutes, depending on the
value of ISEI.

Network 1: [VI=10, El=10,d =10%

Our model was tested on Network 1, which was dendritic
and contained one directed edge and five spurs. A tabu list size
of 15 was used for this network. Nine problem instances were
tested, three of which included operational time constraints.
The heuristic obtained the known optimal solution 100
percent of the time.

Table 3. ~ Results for Network 2.

Network 2: IVI=10, IEl =20,d =20%

Network 2 is an extension of Network 1. Ten edges were
added, two of which were directed. Network 2 was cyclical,
and thus contained no spurs. A tabu list size of 15 was used for
this network. Table 3 presents the results for Network 2. In-
stances 2.7, 2.8, and 2.9 are comprised of the same service
edges as instances 2.1, 2.2, and 2.3, respectively, but with the
inclusion of operational time constraints.

Network 3: VI =20, |El =20,d=5%

Network 3 is shown in Figure 3. Two edges are one-way:
(15,16) and (16, 10). Twelve spurs were contained in Network
3. A tabu list size of 15 was used for this network. Table 4 pres-
ents the results for Network 3. Instances 3.7, 3.8, and 3.9 are
comprised of the same service edges as instances 3.1, 3.2, and
3.3, respectively, but with the inclusion of operational time
constraints.

Network 4: VI =20, IEl =40,d = 10%

Network 4 is shown in Figure 4. Twenty edges were added
to Network 3 to create this network, including four one-way
edges: (4, 7), (7, 8), (8, 13), and (18, 16). This network, like
Network 2, contains no spurs. A tabu list size of 20 was used.
Table 5 presents the results for Network 4. Instances 4.7, 4.8,

Table 4. ~ Results for Network 3.

Instance ISEI Max time Num Best Avg Dev Instance ISEI Max time Num Best Avg Dev

(%) (%)
2.1 4 -- 100 0.00 3.1 6 -- 100 0.00
2.2 4 - 100 0.00 3.2 6 - 87 0.67
2.3 4 - 98 0.06 3.3 6 - 78 1.12
2.4 8 -- 100 0.00 3.4 8 -- 79 0.97
2.5 8 -- 99 0.09 3.5 8 -- 72 117
2.6 8 - 79 0.35 3.6 8 - 44 2.40
2.7 4 1.5 100 0.00 3.7 6 100 0.00
2.8 4 1.5 100 0.00 3.8 6 90 1.11
2.9 4 1.5 38 3.44 3.9 6 68 1.48

Figure 3. ~ Network 3.
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Figure 4. ~ Network 4.
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Table 5. ~ Results for Network 4.

Instance ISEI Max time Num Best Avg Dev

(%)
4.1 8 -- 96 0.17
4.2 8 -- 88 0.29
4.3 8 -- 55 3.84
4.4 9 -- 100 0.00
4.5 9 -- 81 0.71
4.6 9 -- 51 0.74
4.7 8 2 93 0.46
4.8 8 2 84 0.36
4.9 8 2 64 1.62

and 4.9 are comprised of the same service edges as instances
4.1,4.2, and 4.3, respectively, but with the inclusion of opera-
tional time constraints.

Oregon State Research Forest: |Vl =127, |El = 141,
d=0.9%

Road segment data for this network was obtained from
GIS data published by OSU. Specifically, a portion of the
roads in the northwest corner of the Dunn Forest was se-
lected. Of the 141 edges, 123 were undirected and 18 were di-
rected. The network contained a total of 38 spurs.

Data on segment roughness and maintenance need were
unavailable and were, therefore, artificially generated. Arbi-
trary roughness index levels (1 through 5, 5 = highest level of
roughness) and road categories (1 through 3, 3 = least traf-
ficked road) were randomly assigned to various road seg-
ments. Road segment classifications were done according to
assigned probabilities that mimic the distribution of roads on
the network in the OSU forest, whereas roughness levels were
assigned in such a way as to have approximately 10 percent of
the segments requiring service. As a proxy for managerial de-
cisions, a framework was established in which road segments
of a certain category require grading if the roughness level is
above a threshold. The following rubric was imposed to create
a quantitative framework for determining when to grade a
road segment.

Grading rules
Category 1: Grade if RI > 2
Category 2: Grade if RI > 3
Category 3: Grade if RI > 4

A tabu list size of 25 was used. Note that only 50 runs were
performed over this larger network. Table 6 presents the re-
sults for the research forest network.

Discussion

For the smaller networks, the heuristic performs quite well,
even when operational time constraints are included. In sum-
mary, aggregate over the artificial networks, the optimal solu-
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Table 6. ~ Results for Oregon State Research Forest Net-

work.
Instance ISEI Max time Num Best Avg Dev
(%)
RE1 14 - 19 1.45
RE2 15 -- 4 2.28
RE3 15 - 1 3.71
RE4 14 3 10 2.63
RES5 13 3 8 2.29
RE6 15 3 2 5.18

tion was reached in 2,107 of 2,400 runs (87.79%) for problem
instances with no operating constraints, and in 1,037 of 1,200
runs (86.42%) for instances with operational time con-
straints. Aggregate percent deviation was 0.52 percent and
0.71 percent, for the constraint-free scenario and operating
time limit scenario, respectively.

In instances where the optimal solution was achieved a rel-
atively small proportion of the time, the heuristic selected the
known second or third best solution a high proportion of the
time. Instance 3.6 of Network 3 (Table 4), for example, only
locates the optimal solution 44 times. But, the tabu search
procedure located the known second-best solution an addi-
tional 38 times, meaning that at least 82 percent of the ob-
tained solutions are of extremely high quality.

For the much larger forest road network, the low average
deviation suggests that the heuristic consistently obtains good
results, although there is no optimal solution as a basis for
comparison. One possible method to estimate the quality of
our solutions would be to compare against solutions from re-
laxations of integer linear programs, although Eiselt et al.
(1995b) state that in practice this method has not been very
successful for ARPs. Alternatively a global optimum may be
estimated using extreme value theory, although Boston and
Bettinger (1999) demonstrated that estimates of optima were
unreliable, and Bettinger et al. (2002) found the technique of
limited usefulness.

Since it is difficult to compare our solution against a
known or estimated optimal value, it might be informative to
learn if the heuristic would yield improvements over current
practices. To validate our model, a greedy heuristic was
developed, which might mimic how a grader operator would
traverse the network to grade the segments. Starting from the
depot, the grader first travels to the closest segment requiring
grading and services that segment. From there, the grader
travels to the next nearest segment requiring grading, and so
on until all segments requiring grading have been serviced.
The greedy heuristic was tested on RE.1. The tabu search heu-
ristic achieved a 12.5 percent reduction in total grading time
as compared to the greedy heuristic. Given that in practice an
operator may not know with certainty which is the nearest
segment requiring service, it is possible savings could be even
higher. Further, given that in practice many grading decisions
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are assigned not based on road condition but on time since
the last grading, the overall decision framework presented
here may yield substantial reductions in overall maintenance
cost.

As road density increases, so does the complexity of the
problem. But, it is important to note that in forest road net-
works density is usually very small, and thus this solution
framework may prove quite acceptable. Additionally, mainte-
nance needs rarely constitute a large proportion of the road
network, suggesting the instances generated above may be
quite representative of the real-world problems faced by in-
dustry. Certainly the results demonstrate the gains possible
from using computational methods to evaluate complex deci-
sions, especially in light of the current management practices,
which cannot or do not account for the combinatorial nature
of the networks.

Solution quality appears to be associated with two factors:
number of directed service edges and, to a lesser degree, num-
ber of service edges that are spurs. On average, as the number
of directed service edges or spur service edges increases, solu-
tion quality decreases. Additional work with this data set
could include testing a variety of service edge requirements to
determine what impact, if any, the number of directed and
spur service edges have upon solution quality for larger net-
works.

Future research should focus on both the solution meth-
odology and the problem definition. Improvements might be
achievable by increasing the complexity of the tabu search
heuristic, such as utilizing a dynamic tabu list size or imple-
menting strategic oscillation. The tour partition heuristic
could also be expanded and possibly implemented as a com-
binatorial heuristic, such as tabu search or simulated anneal-
ing. This method would be of great benefit in cases where the
initial tour’s length is so great as to require multiple partitions;
the world of possible partitions increases exponentially with
respect to a unit increase in the number of partitions required.
Incorporation of time-windows would create a more realistic
model, applicable perhaps to a high volume network experi-
encing simultaneous haul and maintenance traffic. Some in-
dustrial applications might involve a fleet of graders, operat-
ing from different depots or perhaps without an assigned de-
pot. Operational time constraints may not be quite so limit-
ing, allowing for a small exceedance in order to gain overall
tour efficiency.

Future work could also be devoted to creating a broader
decision framework for determining which segments to
grade. Rather than utilize a binary decision rule, priorities
could be established for segments requiring service. Thus the
heuristic would ensure that some segments of the highest pri-
ority are graded, but in addition would seek opportunities to
grade other high priority segments. If successfully imple-
mented, this framework could free up future resources for
other maintenance activities, hopefully preventing future
drainage and transportation problems. Perhaps this method
would best be employed in scenarios where the manager’s
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goal is to achieve the highest level of maintenance possible,
rather than a goal of cost minimization.

It is the intention of this paper to demonstrate the poten-
tial for cost savings in grader scheduling and deployment. The
heuristic in this study performed well on both cyclical and
dendritic networks, the latter being more common in moun-
tainous terrain. The tabu search heuristic presented can pro-
vide for improved decision making with regard to routing
graders and could improve overall road maintenance.
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4], (5,101, 6,10, [7,9], [8,13], [9,13], [10,15],
11,16], [16,10]

4.6:

APPENDIX A:
Listing of Randomly Generated Service Edges
Network 1:
1.1: [1,3],[4,7]
1.2: [2,5],[5,6]
1.3: [0,2], [4,2]
1.4: [4,2],[4,7], [4,8], [5,9]
1.5: [0,1],[1,3], [4,2], [5,6]
1.6: [0,2],[1,3],[1,4],[4,7]
Network 2
2.1: [0,1],[2,5], [5,9], [4,5]
2.2: [1,4], [5,6], [4,5], [8,9]
2.3: [4,2],[4,7], [3,4], [7,9]
2.4: [0,2],[1,4], [4,2], [4,7], [0,4], [3,4], [7,9], [8,9]
2.5: [0,1],[1,3], [4,2], [4,8], [0,4], [2,6], [3,4], [6,9]
2.6: [1,4],[2,5], [4,8], [5,9], [3,4], [4,5], [6,9], [8,5]
Network 3
3.1: [0,2],10,3],[3,6],[7,9], [10,11], [11,12]
3.2: [2,/4],17,9],[9,10], [10,11], [15,16], [16,17]
3.3: [2,10],[8,91,[9,13],[11,14], [15,16], [16,10]
3.4: [0,2],[2,4], [2,10], [8,9],[11,12],[11,14], [15,18],
[16,10]
3.5: [0,1],10,3],[3,5],(7,9], [9,13], [11,12], [15,16], [16,17]
3.6: [2,4],13,5],[8,9],[9,15],[10,11],[11,14], [15,18],
[16,19]
Network 4:
4.1: [0,1],19,10],[9,13], [9,15], [10,11], [11,17], [12,14],
(14,17]
4.2: [1,4],[2,5], [3,5], [3,6], [5,10], [6,12], [7,8], [16,17]
4.3: [0,3],[0,4], [4,7],(7,8],[9,13], [11,12], [15,18], [16,17]
4.4: [0,1],[0,2],[0,3],[0,4], [1,4], [2,3], [2,4], [2,5], [2,10]
4.5: [0,4], [5,6], [6,12], [8,9], [8,13], [10,15], [12,14],
[
2,
|
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