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ABSTRACT

The layout of forest roads to access cut trees is often
donemanually intropical forests, yielding suboptimal road
networkswith respect to the building cost. An alternative
consists in using numerical optimization techniques to
find asolutionto this problem, also known asthemultiple
target access problem (MTAP). We used six numerical
methods, three of which were found in the literature, to
solve the MTAP. The six methods were compared on the
basis on the building cost of the road network that they
create, and on the basis of the computing time. They were
used to solverandomly generated MTAPand also to solve
areal case-study inan Indonesian rain-forest at Bulungan.
The method that yielded the lowest building cost also
required the longest computing time. Its computing time
isactually so long that this method cannot be used in real
situations. The fastest method poorly minimized the
building cost. Among the four remaining methods, two
methods were faster than the two others (by a factor 1.5
and 2). One of these two faster methods also yielded the
lowest building costsamong the four remaining methods.

Keywords Road, heuristic, optimization, shortest path,
network, building cost.

INTRODUCTION

Planning forest roads to access timber is part of forest
planning [20]. At the strategic level [29], it consists in
building roadsto access each block of aproduction series,
at thetactical level, it consistsin building roadsto access
harvested trees. This paper addresses the automated
methodsfor building an optimal road network to connect
targets (trees or stands) to an existing road network.
Optimality refers to a building cost, that has to be
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minimized. The question of road access optimization may
be more or lesssimplified by considering or disregarding
spatial and temporal constraints. Spatial constraints mean
that the questionistreated in thetwo-dimensional physical
space [20]. Temporal constraints mean that the schedule
of road constructionisalso optimized[3, 22]. Inthis paper,
we shall disregard temporal constraints, and only spatial
constraintswill be faced.

The question of optimal road network with spatial
constraints may be partitioned into two categories of
problems: the road spacing problem, and the multipletarget
accessproblem (MTAP). Intheroad spacing problem [27],
every point is potentially atarget to reach. The question
is to build aroad network that covers the study area as
densely aspossible, with astopping rule (typically atotal
cost that cannot be exceeded, or a balance between costs
and expected benefit). It can be refined by considering
different categories of roads, with atrade-off between each
category [2]. Heuristic methods have been proposed to
solvetheroad spacing problem [27]. The MTAP[6, 19] is
dual of the road spacing problem: it consistsin building a
road network to reach a set of identified targets, without
any stopping rule. In this paper, we shall focus on the
MTAP.

Hereafter, we consider m point-shaped targetsthat have
to be connected to an existing road network (the source).
The source can be point-shaped, or havealinear or spatial
extension. It can be composed of several disconnected
parts. The MTAP primarily deals with the building cost.
Soif aroutegoesfrom apoint Ato apoint B and then back
from B to A, the cost between A and B is counted once.
However, the MTAP can be extended to deal with other
kinds of costsor criteriato minimize, including transport
cost [2], destruction risk [31], negative impact on the
environment [14], etc. The building cost is given as a
surface (isotropic case) or as layers (anisotropic case).
We suppose that it is known, and we do not consider the
issue of estimating it from field characteristics such as
substratum, hydrology, sideslope, road slope, altitude,
topography, etc. [2,5, 6,9, 17, 23].

Dean [6] and Murray [19] havereviewed combinatorial
optimization problems that are related to the MTAP. In
particular the MTAP can be seen as an extension of the
Steiner tree problem where the resulting tree can be
composed of several disconnected components [19]. A
degraded version of the M TAPis obtained when the only
possible branching points of the road network are the
targets. Thisdegraded version wasfaced, e.g., by Clark et
al. [3] and Gold and André [11]. Heuristic methods for
solving the MTAP have been proposed by Anderson and
Nelson [1], Dean [6], and Freycon [9]. The branch
evaluation method proposed by Dean [6] was proven to
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yield a solution close to the optimal solution. It is based
on a complete enumeration of the possible branching
patterns of the road network. The number of branching
patterns to reach m targets increases quicker than an
exponential (Appendix A). The computing time required
to obtain the solution follows the same progression. This
actually preventsfrom using the branch eval uation method,
even for values of mthat are not high. In his paper, Dean
actually restricted to m= 4. Typical valuesof mare much
larger. An dternative to the branch evaluation method is
then required. The other proposed methods| 1, 6, 9] require
much less computing time than the branch evaluation
method, but their solutionsare not so closeto the optimum.
The MTAPmay also be solved using integer optimization
methods, as shown by Murray [19], but the amount of
time required to solve large problems may also be
problematic.

The goal of this study was to construct automated
methods for solving MTAPs with many targets, and to
compare them to three existing methods selected in the
literature. This comparison has not been done previously
in an extensive manner, thus preventing from choosing an
efficient algorithm. Moreover the existing methods have
not been assessed for large problems (when mis great).
We deliberately focused on heuristic methods, leaving
aside integer optimization methods. Three methods were
developed on top of the three existing methods. All six
methodsweretested by comparing the road networksthey
produced in randomly generated problems. Finaly, the
automated methodswere used to give atheoretical solution
for areal case study, that consists of treesto harvest in a
tropical rain-forest at Bulunganin Kalimantan, Indonesia.
The Bulungan case study isalarge MTAPsincethere are
m=60 treesto harvestinal133 haarea

METHODSFOR SOLVINGTHEMTAP
Continuous Space, Raster Or Graph Theory?

Thefirst stepisto clarify the mathematical spacethatis
chosen to pose and solve the MTAP. At least three
possibilitiesexist (Figure 1): spaceiscontinuous; spaceis
discrete and made of pixels (raster approach); space is
discrete and made of nodes of anetwork (graph approach).
The first approach is convenient to solve embedded
problems that contribute to solve the MTAP (such as the
Launhard-Weber problem, or the Voronoi diagram, see
|ater). Inthe second approach, that was used e.g. by Dean
[6] or Freycon [9], acost is associated to each pixel, and
the cost of a road segment is the sum of the costs
associated to the pixels that form the segment. In the last
approach, that isthe most frequently used [1, 11, 15, 19,
27], the nodes of the graph are located on a sgquare grid
and spatially neighbor nodes are connected by arcs. Costs
are associated to arcs. The continuous space approach
leadsto difficult analytical treatment and inference of input
data. It would require numerical optimization that wouldin
turn require some discreti zation of space.

Thuswe hereafter focus on the discrete space approach.
Diagonal displacements are allowed, which means that
each pixel (raster approach) or each node (graph approach)
has e ght neighbors (M oore neighborhood). Consider then
in Figure 1b the path from pixel Ato pixel C through pixel
B, and the path from A to C through D. Let ¢, be the cost
associated to pixel |, and let y;, = ¢4 /u, whereuisthe
pixel size, bethelinear cost rateat |. Intheraster approach,
the cost associated to path ADC is ¢, + ¢p + ¢ and the
cost associated to ABC is ¢y + cg + Cc. Path ADC is
preferred to ABC if cp < cp, that is equivalent with
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Figurel. Description of the physical space for the MTAP: (a) continuous space, (b) space made of pixels (raster
approach), (c) space made of nodes of agraph (graph theory approach). Thelinein (a), thegrey pixelsin (b)
and the black arcsin (c) represent the same road segment.



Up < Mg. However thelength of path ADCis2/2uand the
length of ABC isy2u, so that thelinear cost of ADCisless
than that of ABCif V2, <ug. Asaconsequence,if V1/ 2
< ¢p/ cg <1, path ADC will be selected although it has a
higher linear cost. The raster approach is thus biased for
diagonal displacements|[9].

Thisbias can be circumvented by prohibiting diagonal
displacements (using a von Neumann neighborhood
around each pixel), or by using different layers or pixels
for each direction of displacement (anisotropic costs). It
seemed easier, then, to use the graph approach that
naturally alows anisotropic costs. Moreover the graph
theory providesatheoretical background for it. Hereafter,
we shall thus focus on the graph approach. Nevertheless,
shifting from the graph approach to the raster approach
remains quite natural [19]. The agorithms of the graph
approach may be transferred to the raster approach; e.g.
to Dijkstra’'s algorithm (see next section) in graph theory
corresponds the cost spreading method in GIS.

Preliminary Algorithms

Before presenting the methods for solving the MTAR,
some intermediary methods are presented. To compute
the shortest (here “shortest” is taken as a synonym of
“that minimizes the cost”) path from a node to another
node, Dijkstra’s algorithm [7, 18] is used. Dijkstra's
algorithm actually givesthe shortest pathsfrom anodeto
each of the other nodes of the graph.

To compute the shortest paths from a set of nodes
(either connected or not) to each of the other nodes, a
modified version of Dijkstra’'salgorithmisused. Dijkstra's
algorithm sequentially updates afunction D(i), wherei is
a node, that gives the best current estimate of the
cumulative cost to go from the origin nodetoi . Initialy,
D(ig) = 0 whereigistheoriginnode, and D(i) = 4 for the
other nodesi ...i5. The modified version simply modifies
theinitialization step: D(i) = 0 if i isin the set of nodes,
and D(i) = 4 otherwise.

The shortest path between two sets of nodes, denoted
E; and E,, isdefined asthe shortest possible path between
anode of E; and anode of E,. To computeit, one simply
has to use the modified version of Dijkstra's algorithm
using E, astheorigin, and thento find the shortest among
the paths from each node in E, to E;.

Finally, to find the node that isthe closest from n sets of
nodes (n $3), we used the method proposed by Dean [6].
This method approximates the optimal solution. If the n
sets of nodes are reduced to singleton sets, and if the cost
to reach a node is proportional to the distance to it, this
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problem is known as the L aunhard-Weber problem [28].
Its analytical solution in continuous space is known
for n=3[12, 13]. Dean’'s method consistsin applying n
timesthe modified version of Dijkstra' salgorithm, taking
each set of nodesasan origin. Let D4...D,, betheresulting
cost functions from each of the n sets of nodes to the
other nodes. The node that isthe closest from the n sets
of nodes is taken as the node where =D, reachesits
minimumvalue.

MTAP Solution M ethods

Six methodsfor solving the M TAPare presented. All of
them approximate the optimal solution. Three methods
were already presented in the literature: the independent
paths with reduction method [6], the branch evaluation
method [6], and the source-to-closest-target method [1, 9,
10]. However they were defined in the raster approach,
and we had to transfer them to the graph approach. Two
other methods were presented in the literature, but we
disregard them in this study: Dean’s fully independent
path method [6] was disregarded because it is obviously
less efficient than the independent paths with reduction
method; Dean’s optimal solution was also disregarded
because it requires tremendous (practically intractable)
computing time even for small sized MTAP.

All six methods were implemented in C and Perl
languages, and interfaced with R software [21]. The C
language was used to perform all computations on graphs.
The Perl language was used to derive all network
branching patterns for the branch eval uation method.

We shall illustrate the six methods with a hypothetical
example, that is shown in Figure 2a. It consists of agrid
with 5 x 5 nodes with a source made of two neighbor
nodes (existing road access) and three targets (trees to
harvest). Space is uniform, so that the cost associated to
horizontal and vertical arcsisone, and the cost associated
to diagonal arcsis 2.

I ndependent PathsWith Reduction M ethod [6]

This method consists in searching the shortest path
from the sourceto each of the targetsindependently from
each other, and then to remove the redundant segments.
It thus requires only one call of the modified Dijkstra's
algorithm. Figure 2b shows the resulting network for the
hypothetical example. Thetotal costis 2+ 6+2 . 10.5.A
shortcoming of thismethod isthat it builds parallel paths,
as appearswith the hypothetical example (Figure 2b).
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Figure2. Theindependent pathswith reduction method for solving the hypothetical examplethat in shownin (a): black
nodes are the targets to reach; nodes with a star are the source. Black arcsin (b) are the solution network.

Source-to-Closest-Target Method [1, 9, 10]

Thismethod isaniterative method: initially the network
ismade of the sources only. At each step, thetarget that is
the closest to the current network is connected to it; the
shortest path from this nearest target to the current
network ismerged with the network, and the shortest paths
fromthe current network to the remaining nodesisupdated
[24]. 1t thus requires m calls of the modified Dijkstra's
algorithm, where misthe number of targets. Figure 3 shows
the current network at each step for the hypothetical
example. Thetotal cost of thefinal network is5++2. 6.4.
A shortcoming of this method isthat it build suboptimal
branching points: the length of the sub-network that

connects the three targetsis four in Figure 3c, whereas it
couldbe1+2/2 . 3.8 if thebranching point waslocated
aline2column4.

Branch Evaluation M ethod [6]

This method consists in considering all possible
branching patterns to connect the targets and the source,
and to build for each branching pattern the corresponding
lowest cost network. The solutionisthelowest cost among
all the networksthus obtained. For instancethere are eight
branching patterns to connect three targets. They are
indicated in Figure 4, together with the corresponding
lowest cost networksfor the hypothetical example. Inthis
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Figure3. The source-to-closest-target method for solving the hypothetical example. At each step (a), (b), (c), thetarget
that isthe closest from the current network is connected to it. Black nodes are the targets; nodes with a star

are the source. Black arcs are the current network.
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Figure4. Thebranch evaluation method for solving the hypothetical example. Each subplot (a)-(h) showsthe cheapest
network that corresponds to each of the eight possible branching patterns. The diagram below each subplot
is the corresponding branching pattern. The best among the eight networks is network (h). Black nodes are
the targets; nodes with a star are the source.

exampl e, the eighth pattern (Figure 4h) appeared to yield
the lowest cost network among the eight possibilities. Its
costis2+3/2 . 6.2,

Some clarification hasto be brought on how the lowest
cost network is obtained for a given branching pattern.
First, one has to distinguish inner branching points from
outer branching points. Inner branching points are not
connected to the source, such as the branching point
connected to aand b in the diagram of Figure 4e, while
outer branching points are connected to the source, such
asthelowest branching point in the diagram of Figure 4e.
The location of an inner branching point is computed as
the node that is the closest from its ascending branches
only. Thelocation of an outer branching point iscomputed
as the node that is the closest from both its ascending
branches and the source.

Let P, be the number of branching patterns for the
MTAPwithmtargets (Appendix A). Let By, bethe number
of branching points in the kth branching pattern (k =
1..P,), and let 5, $2 be the number of sets of nodes
that are connected to thelth branching point (1 = 1...B,,).

International Journal of Forest Engineering ¢« 39

O e
 mge

Then the branch evaluation method requires

callstothe modified Dijkstra’ salgorithm, where g(2) = 1
and g(s) = sfor s $ 3. The numbers B, and s, can be
easily computed from thelisting of all branching patterns
(Appendix A shows how to obtain thislisting). The number
C,increasesvery quickly: Cg= 41298, C, = 681 066, Cg
= 13 021 576, etc. Its progression is quicker than an
exponential relationship.

Hierarchical M ethods

Two methodswereinspired by the hierarchical methods
in cluster analysis. Given n sets of nodes, we define the
lowest cost network that connectsthem asthe set of paths
that connect the closest node from the n sets of nodes to
each of them. The hierarchical method then proceeds in
aniterativeway: initially therearem+ 1 unconnected sets
of nodes that are the m targets plus the source. All Cmﬂ
networks that connect n of them are computed, and the
lowest cost one is selected. As n sets of nodes are
connected, m—n + 1 unconnected sets of nodes are | eft.
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Thenagainal C;. ., networksthat connect n of them
are computed, and the lowest cost one is selected, etc.
The procedure is repeated until the number of
unconnected sets of nodes is less than n. The remaining
sets of nodes are then connected in a single network.

Weimplemented the hierarchical method forn=2andn
= 3. To solve a MTAP with m targets, the hierarchical
method with n = 2 requires 2m + 1 calls of the modified
Dijkstra'salgorithm, whereasthe hierarchica methodswith
n= 3requires (3m+ 2) \2 callsof the modified Dijkstra's
algorithm (where backslash indicatesinteger division).

Figure5 and 6 show each step of the hierarchical method
withn= 2 and 3 to solve the hypothetical example. The
total cost of thefinal network is6.4forn=2and6.2forn
=3

Approximation By AMinimum Spanning Tree

Thelast method consistsin transforming the MTAPIn
aminimum spanning tree problem, by defining an adequate
intermediary graph. Thisintermediary graph isdefined as
follows. Consider the m + 1 sets of nodes, caled here
“germs’, that are the mtargets plusthe source. The nodes
of the graph are partitioned into m+ 1 cells, such that al
the nodesin the kth cell are closer to the kth germ than to
any other germ. This partition is the equivalent of the
Voronoi diagram in continuous space. Two germs are
considered neighbors if their cells share a common
boundary. Then “triangles’ between any three neighbor
germs are built. These are not actual triangles, since the
shortest path between two neighbor germsisnot astraight
line. This tessellation is the equivalent of the Delaunay
tessellation in continuous space. Nodesthat are the closest
tothethreeverticesof each “triangle” arethenintroduced.
We call them the “ centers’ of the “triangles’, and let t be
their number.

The intermediary graph then hasm + t + 1 nodes that
arethem+ 1 germsplusthet centersof triangles. Itsarcs
connect neighbor germs to each other, and connect the
centers of triangles to the germs that form the triangles.
The costs associated to the arcs are the costs of the
corresponding shortest paths. The minimum spanning tree
of theintermediary graphisthen computed using Kruskal's
algorithm [16, 18]. Finally, the branches of the minimal
spanning tree that end on a center of triangles are
recursively pruned. The resulting treeis a solution of the
MTAP. To build theintermediary graph, m+ 1 callstothe
modified Dijkstra’ salgorithm arerequired.

Figure 7 shows the tessellation of space around the
germs, the intermediary graph, and the solution of the
hypothetical example with this method. The total cost of
thefinal network is2+3/2 . 6.2.

MONTE CARLOEVALUATIONOF
MTAPSOLUTIONMETHODS

Experimental Plan

We used the same Monte Carlo experimenta plan as
Dean[6] to comparethe six methodsfor solving theM TAP.
Random M TAPwere generated, and the six methodswere
used to solvethem. Thetotal cost of the solution computed
by each method was recorded, along with the computing
time needed to obtainit. Computationswere performed by
a laptop with a 466 MHz processor. The costs and time
estimates were then analyzed statistically.

Four factorswereincluded in the experimental plan: the
size of the study area, that isthe number N of nodes; the
number S of existing access roads that is the number of
sources; the number m of trees to harvest, that is the
number of targets; and the method for solving the M TAP.
Thefirst factor had four modalities: the study areawas a
gridwith 15x15 (N = 225), 20x20 (N = 400), 25%25 (N =
625) or 30x30 (N = 900) nodes. The number of sourceshas
littleinfluence on the computing time[6], but it hasagreat
influence on the cost of the road network. Moreover, S
source nodes distributed at random do not have the same
effect as Sconnected nodes. Theformer will favor one-to-
one connections between targets and sources, and will
thuslimit the complexity of the branching pattern. Hence,
contrary to Dean [ 6], we used low values of the number of
sources: S= 1, 2 or 3. The number of targetswasm= 3,4
or 5. Itiscumbersometo use values of mgreater than five
with the branch evaluation method. Finally there are six
methods for solving the MTAP. Thus, the experimental
plan comprises4x3x3x6 = 216 combinations of factors, or
treatments.

For each treatment, one hundred M TAPwere randomly
generated. Thelocations of sourcesand targetswere drawn
at random without replacement. Horizontal and vertical
displacement costs were uniformly distributed on [0,1],
whereas diagonal displacement costs were uniformly
distributed on[0,Y2]. The cost of the solution of the M TAP
and the computing time were then analyzed using a
completely balanced four-way analysis of variance.

Results

Table 1 showsthe results of the analysis of variance of
the computing time, whereas Table 2 shows the results of
the analysis of variance of the road building costs.
Computing time depends on the number of nodes, on the
number of targets and on the method, but not on the
number of sources. Except for the method based on the
minimum spanning tree, the computing time can be broken
down into the number of timesthat Dijkstra’salgorithmis
called, timesthe computing time required for performing
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Figure5. Hierarchical method with n= 2 for solving the hypothetical example. At each step (a), (b), (c), the two sets of
nodes (either the targets or the source) that are the closest are connected. Black nodes are the targets; nodes
with astar are the source. Black arcs are the current network.
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Figure6. Hierarchical method with n = 3 for solving the hypothetical example. At each step (a), (b), the three sets of

nodes (either the targets or the source) that are the closest are connected. Black nodes are the targets; nodes
with a star are the source. Black arcs are the current network.
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Figure 7. Method based on a minimum spanning tree for solving the hypothetical example. (a) Partition of the nodes
around the germs a-d and associated tessellation; nodes with the same symbol (circle, square, lozenge,
triangle) belong to the same cell; black arcs connect neighbor germs; black nodes are the targets; nodes
labeled aarethe source. (b) Additional “centers’ of the“triangles’ e-f: eisthe center of the“triangle” (a, c, d),
fisthe center of the“triangle” (b, ¢, d); black arcs are the additional connections. (c) Intermediary graph that
result from the connectionsin (a) and (b); black arcs are the minimum spanning tree of the graph. (d) Solution
of the MTAP that follows from the minimum spanning tree in (c); the arc between d and e has been pruned
since it ends on the center of a“triangle’; black nodes are the targets; nodes with a star are the source.
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Table 1. Analysis of variance of the computing time.

(a) Analysis of variance results

Factor df Mean square F-value p-value
No. of nodes 3 771642 296.53 <0.0001
No. of sources 2 13 0.00 09951
No. of targets 2 2512433 96548 <0.0001
Method 5 3284420 126214 <0.0001
(b) Multiplerangetest results (at the 4= 0.05 level)
Mean Tukey Duncan Scheffé
time(s) test test test

No. of nodes

15%x 15 200 5400 A A A

20x 20 584 5400 B B B

25x 25 1392 5400 C C C

30x 30 2900 5400 D D D
No. of targets

3 059 7200

4 328 7200 B B B

5 A21 7200 C C C
Method

independent paths with reduction  0.07 3600 A A A

source-to-closest-target 027 3600 A A A

minimum spanning tree 041 3600 A A A

hierarchical n=3 045 3600 A A A

hierarchical n=2 061 3600 A A A

branch evaluation 74.35 3600 B B B

Dijkstra' salgorithm. Thelatter approximately dependson
the number of nodes only, whereasthe former dependson
the number of targets m and on the method, as clarified
previously. Mean computing time was significantly
different for all numbers of nodes, and for all numbers of
targets. However, two groups of methods were
distinguished as regards computing time: the branch
eval uation method that requiresalong computing timeon
one hand, and the other methods on the other hand. The
long computing time required for the branch evaluation
method directly results from the huge number of times
that it calls Dijkstra salgorithm.

Thebuilding cost dependson al four factors (Table 2).
Building cost was significantly different for all numbers of
nodes, for al numbers of targets, and for al numbers of
sources. However, depending on the multiple range test,
three (Scheffé test) or four (Tukey and Duncan tests)
groups of methods were distinguished as regards the
building cost. The branch evaluation method provides
the lowest cost road networks. Then the hierarchical
method with n=2 and the source-to-cl osest-target method
provide the lowest cost alternative. The hierarchical
method with n = 3 and the method based on the minimum
spanning treearein third position. Finally theindependent
paths with reduction method providesthe most expensive
networks.



Table 2. Analysis of variance of the network building cost.
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(a) Analysis of variance results

Factor df Mean square F-value p-value
No. of nodes 3 1110837 5054.84 <0.0001
No. of sources 2 302541 1376.71 <0.0001
No. of targets 2 828714 377105 <0.0001
Method 5 51911 236.22 <0.0001
(b) Multiplerangetest results (at the 4= 0.05 level)
Mean Tukey Duncan Scheffé
cost n test test test
No. of nodes
15x 15 4153 5400 A A A
20x 20 52.89 5400 B B B
25x 25 634 5400 C C C
30x30 74.88 5400 D D D
No. of sources
1 64.87 7200 A A A
2 58.16 7200 B B B
3 51.91 7200 C C C
No. of targets
3 47.26 7200 A A A
4 58.98 7200 B B B
5 68.69 7200 C C C
Method
branch evaluation 5533 3600 A A A
hierarchical n=2 56.45 3600 B B A
source-to-closest-target 56.48 3600 B B A
hierarchical n=3 57.66 3600 C C B
minimum spanning tree 58.16 3600 C C B
independent path with reduction  65.79 3600 D D C

APPLICATION TOTREE HARVESTING
AT BULUNGAN

SudyArea

The automated methods for solving the MTAP were
used to design a road network to access harvested trees
inatropical rain-forest at Bulungan (2°52'-3°14'N, 116°—
116°40'E) in Kalimantan (Borneo island), Indonesia. The
climate is equatorial with an annual rainfall of 4000 mm.
Thetopography isdeeply eroded with adense network of
steep ridges and drainage gullies. Elevations at the study
area range from 100 to 300 m above sealevel [25]. The

study siteisthe block 27 of a50,000 haforest concession
managed by a state-owned timber company. Itsareais 133
ha.

TheMTAPand ItsHand-M adeSolution

The study site was embedded in a rectangle that was
covered withasguaregrid of 117x 128 nodes. Each node
represents an area of 144 m? As the study area is
characterized by steep terrain and dense river network,
the main construction activities are earthworks
(excavation, surfacing, and slope stabilization) and stream
crossings (building culverts and bridges). The road
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building cost at agiven placewas estimated asthemaximum
of the earthwork cost and of the stream crossing cost. The
former depends mainly on terrain gradient and the latter
on stream width. To estimate building costs, a GIS was
usedinafirst stageto createraster grid cellsfrom different
digital topographic data. A digital elevation model was
generated from contour layersto calculate Slopes. Table 3
gives the unit costs assigned to the different types of
terrain condition encountered in the study area. These
costs are expressed in arbitrary units. They come mostly
fromtheFAO literature[8, 30] and from our field experience.
The estimate of the cost grid is shown in Figure 8. In a
second stage, costs estimated for each pixel were
converted to costs associated to arcs between two nodes.
Let ¢;; be the cost associated to the pixel at line i and
column j of the grid of pixels, and let 51-1- (ki bethe cost
associated to the arc between the node at line i column j
and the node at line k column I. We used the following
relationships: &;;y; = &;,;+1, = C; and &jei+lj+1 =
&41jei j+1, ~V2C), for AI i andj. These relatlonshl psdefine
the cost for all connectl ons between nodes. They suppose
that costs are isotropic. The+2 factor was introduced not
to biasfor diagonal displacement.

Table 3. Road building cost assigned to acell, depending
ontheterrain condition. Cost isin arbitrary unit.

Terrain Condition Slope Range Cost
Easy 0-30% 10
Medium 30-50% 15
Difficult 50-70% K4
Very difficult 70-100% 45
Drain (primary) any slope 20
Drain (secondary) any slope 2
Existing road any slope 0

Sixty trees have to be harvested on the study area. The
number of targets of the MTAPthusism= 60. There are
two existing road accesses that join at the North of the
study area. They are represented aswhite pixelsin Figure
8. One road goes around the study area from North to
South on its western limit. The other goes around the
study areaon itseastern limit. Together, the existing roads
accesses cover 321 nodes. They form the source of the
MTAP. A hand-maderoad network was designed by forest
engineersto access the target trees. It is shown in Figure
9aanditscost isgivenin Table4. The hand-made solution
located the roads on crests and crossed primary streams
only once (black pixels in Figure 8). The hand-made
solution cannot be directly compared to the numerical
solutions because we have no guarantee that the costs
given in Table 3 match the engineers objectives. The
comparison between the hand-made solution and the
numerical solutions should rather be seen as a way to
assess the realism of the cost grid.
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Figure 8. Cost grid at Bulungan. Cost units are arbltrary
White pixels show the existing road accesses
Black pixelsshow the primary streams.

Table4. Cost of the road network and computing time
required to obtain it by numerical methods.Cost
isinarbitrary unit.

Method Cost Computing Time
Hand-made 11844 N
Independent paths 11549 18s
Freycon no2 5812 18min28s
Hierarchica (n=2) 579% 36min37s
Hierarchica (n=3) 6499 34min38s
MST 6376 18min37s

Numerical Solutions

Dueto the big size of the MTAR, the branch evaluation
method is not applicable. We thus restricted to the five
other automated methods for solving the MTAP. The
solutions computed by the five methods are shown in
Figure 9b—f. The costs and computing times are givenin
Table 4. Theindependent paths with reduction method is
very fast but is as expensive as the hand-made solution.
Thefour other numerical solutionsarefar lessexpensive.
The source-to-closest-target method and the hierarchical
method with n = 2 have a similar cost (Table 4). Their
solutionsare actually very similar and differ only in details
(Figures9c and d). Thehierarchical methodwithn=3and
the method based on the minimum spanning tree have a
similar cost, that is higher than that of the previous
methods. The source-to-closest-target method and the
method based on the minimum spanning tree haveasimilar
computing time. The two hierarchical methods have a
similar computing timethat is about twicelonger than that
of the previous methods.
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Thus, for the MTAP at Bulungan, the best solutionis  time is considered, the best trade-off is provided by the
provided by the hierarchical method withn=2whenwe  source-to-closest-target method.
do not take account of the computing time. If computing

Figure9. Road network at Bulungan to accessthe 60 target trees: (&) hand-madelayout; (b) solution with theindependent
pathswith reduction method; (c) solution with the source-to-closest-target method; (d) solutionwith hierarchical
(n=2) method; (€) solution with hierarchical (n=3) method; (f) solution with the method based on minimum
spanning tree. White dots aretarget trees, primary streamsareindicated by black linesand secondary streams
areindicated by thin black lines.



46 « International Journal of Forest Engineering

DISCUSSION
Building Cost

The lowest building cost is given by the branch
evaluation method, then by the hierarchical method with
n = 2 or by the source-to-closest-target method, then by
the hierarchical method with n= 3 or by the method based
on the minimum spanning tree, and finally by the
independent paths with reduction method. Thisorder was
obtained both with the Monte Carlo evaluation of MTAP
solution methods and with the practical case-study at
Bulungan, with the reservation that the branch evaluation
method could not be used at Bulungan due to the number
of targets.

The comparison between the hand-made solution at
Bulungan and numerical solutions must be cautious, since
theforest engineers may have used to derivetheir solution
some professional experienceand intuition that isnot taken
into account in the cost grid. Designing a realistic and
feasible road network in an automated way can actually
be splitinto two nested problems: 1. What cost grid should
be used? 2. Given the cost grid, which agorithm should
be used? The former question is a challenging issue by
itself, and was not the focus of this paper. Nevertheless,
the comparison between the hand-made solution and
numerical solutions can be used to assess the relevance
of the cost grid. The former question may also be the
basis for defining other criteria of assessment of the
numerical methods, namely: Is the numerical method
sensitive to small changes of the unit costs? Sensitivity
analyseswould thus be required to select robust methods
that can deal with uncertainty in cost estimates [1]. As
concerns the second question, the idea is not to replace
hand-made solutions by numerical solutions, but rather
to use numerical methods to identify better strategies for
hand-made layout, in the same philosophy as computer
assisted design. The human component will still be
required to rebut, accept or modify numerical solutionsin
an interactive way. At Bulungan for instance, forest
engineers have focused on crests and streams, but
apparently have attached |less importance to the length of
the road network. Comparing Figure 9ato Figures 9¢c—f
suggests that road segments could be saved.

The results of this study were based on six heuristics.
Other methods could be imagined to get lower costs. For
instance the source-to-closest-target method is known to
build suboptimal branching points. This method could
thusbeimproved by identifying aposteriori al branching
pointsand re-computing their position asindicated before
(see“Preliminary algorithms”). The method based on the
minimum spanning tree could also be improved by
increasing the number of nodes of theintermediary graph.

This number could be increased until al the nodes of the
MTAP are included in the intermediary graph. However
computations in this case would be long.

ComputingTime

The computing time can be alimiting factor to the size
of the MTAP that can be solved numerically. The Monte
Carlo evauation of MTAP solution methods classified
the methods into two groups: the branch evaluation
method in one hand (slow method), thefive other methods
on the other hand (fast methods). However the analysis
of variance was limited to small-sized MTAP. Asthesize
of the MTAP increases, the branch evaluation method
has to be disregarded; differences in execution time
between the five remaining methods then appear. Most of
the computing timeis spent running Dijkstra’salgorithm.
The methods can then be ranked according to the number
of timesthey call Dijkstra’ salgorithm.

The independent paths with reduction method is the
fastest, asit calls Dijkstra salgorithm once. Let TN bethe
execution time of the independent paths with reduction
method for aMTAPwith nodes. It isamost independent
of the number mof targets. Theranking of the methods by
execution speed then is: the source-to-closest-target
method (execution time . mT,); the minimum spanning
tree method (executiontime . (m+1)Ty); thehierarchical
method with n = 3 (executiontime . [(3m+2) \2]T,); and
lastly the hierarchical method withn=2 (executiontime

. (2m+1)Ty). Asanexample, Figure 10 showstheexecution
timefor thefive methodsfor the MTAPat Bulungan, when
myvariesfrom 3to 60 targets. The approximate estimations
of the execution times are reliable, except for the
hierarchical method with n = 3 when mis high. In that
case, the computing time that is spent outside Dijkstra's
algorithmisnolonger negligible.

Nevertheless, we did not optimize for speed the
agorithmsthat weimplemented. Thus, thetwo hierarchical
methods and the minimum spanning tree method could be
made to process faster by storing in a data structure
intermediary computations. These computations are
independent of Dijkstra’salgorithm, so the gain would be
small unless the number m of targets is high. More
importantly since most of the computing time is spent
running Dijkstra’s algorithm, we used a basic
implementation of Dijkstrasalgorithm that requires O(N2)
operations (where N is the number of nodes and O is
Landau asymptotic symbol, meaning that the number of
operationsislessthan some constant multiple of N2). By
using a more complex implementation, this could be
reduced to O(NIn N) [4]. Notice also that some of the
methods are embedded in the others. Thus, the hierarchical
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Figure10. Execution time as afunction of the number m
of targets for the MTAP at Bulungan, for the
five MTAP solution methods (the branch
evaluation method). Symbols are the actual
executiontimes, linesare apriori approximate
estimations. Plain line and squares:
independent paths with reduction method;
dashed line and circles: source-to-closest-
target method; long-dashed line and crosses:
minimum spanning tree method; dot-dashed
line and pluses: hierarchical method (n = 3);
dotted line and triangles: hierarchical method
(n=2).

methods can give the solution of the source-to-closest-
target method or of the minimum spanning tree method
with little additional computation. Similarly, the solution
of the independent paths with reduction method can be
given with little additional computation by any other
method.

CONCLUSON

The branch evaluation method cannot be used when
the number of targets of the MTAP increases (typicaly
over 6), which preventsfromusing itin practical situations.
The independent paths with reduction method is the
fastest of the remaining method, but it behavesvery poorly
with respect to the building cost. The lowest building
cost is provided, if we disregard the branch evaluation
method, by the source-to-closest-target method and by
the hierarchical method with n = 2. Moreover the source-
to-closest-target method is about twice as fast as the
hierarchical method with n = 2. The minimum spanning
tree method is about asfast asthe source-to-closest-target
method, but it yields higher building costs. As a
conclusion, the source-to-closest-target method provides
the best trade-off between building cost and computing
time for large MTAP. Other heuristics and integer
optimization methods would have to be investigated to
locate even better road design methods.
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APPENDIX
Number of Branching Patterns

This appendix aims to provide the number P, of
branching patterns for the MTAP with m targets. For
instance, the diagrams in Figure 4 show the eight
branching patterns for the MTAP with three targets, as
defined by Dean[6]. It seemsthat some branching patterns
were forgotten by Dean [6], such as the ones shown in
Figure 11 for m= 3. One may argue that the branching
patternsin Figurell are degenerate cases of the branching
patternsin Figure 4 when the length of some appropriate
segments are set to zero, but in that case one should also
consider, for instance, that the branching pattern shown
in Figure 4f is a degenerate case of that shown in Figure
4e. Hereafter, we consider only the branching patterns
that were considered by Dean [6], to keep consistency
withtheliterature.

The computation of P,,,isbased onarecursion formula.
Given abranching pattern with ssegmentsand b branching
points, thereare s+ b + 1 waysto connect an additional
target: thetarget can be connected to an existing branching
point, which gives b branching patterns with s + 1
segments and b branching points; the target can be
connected to an existing segment, which givessbranching
patternswith s+ 2 segmentsand b+ 1 branching points;
or the target can be connected by an independent path,
which gives one branching pattern with s+ 1 segments
and b branching points. For m= 1 target, thereis P; = 1
branching pattern with one segment and zero branching
point. Using thisinitial condition and therecursionformula,
one can readily check that any branching pattern with b
branching points and s segments that reaches m targets
verifiess—b= m. Moreover, svariesbetweenm and 2m
-1, and bvariesbetween zeroand m- 1.

Hence the number of branching patterns to reach m
targets can be counted by avector (agp, ..., ay,_1,) SUch
that P, ==;7a,, where a _ isthe number of branching
patterns with b branching points to reach m targets. The
recursion formula states that the a, branching patterns
to reach m targets generate (b + 1)a, branching patterns
with b branching pointsto reach m+ 1targets, and (b
+m)a, branching patternswith b + 1 branching pointsto
reachm+ 1targets. Initialy, a , = 1. Thesequencethenis:
P=1,P,=2P, =8P, =52 P =472 ..,P, 6=
363,581,406,419,456,etc. The integer sequence (P, ) is
known as the number of series-parallel networks with m
labeled edges, and is labeled as sequence A006351 in
Sloane [26]. The progression of P_is quicker than an
exponential relationship.
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Figure1l. Examplesof branching patternsfor the M TAP
with m= 3 targetsthat were not considered by

(6.
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