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ABSTRACT

The layout of forest roads to access cut trees is often
done manually in tropical forests, yielding suboptimal road
networks with respect to the building cost. An alternative
consists in using numerical optimization techniques to
find a solution to this problem, also known as the multiple
target access problem (MTAP). We used six numerical
methods, three of which were found in the literature, to
solve the MTAP. The six methods were compared on the
basis on the building cost of the road network that they
create, and on the basis of the computing time. They were
used to solve randomly generated MTAP and also to solve
a real case-study in an Indonesian rain-forest at Bulungan.
The method that yielded the lowest building cost also
required the longest computing time. Its computing time
is actually so long that this method cannot be used in real
situations. The fastest method poorly minimized the
building cost. Among the four remaining methods, two
methods were faster than the two others (by a factor 1.5
and 2). One of these two faster methods also yielded the
lowest building costs among the four remaining methods.

Keywords: Road, heuristic, optimization, shortest path,
network, building cost.

INTRODUCTION

Planning forest roads to access timber is part of forest
planning [20]. At the strategic level [29], it consists in
building roads to access each block of a production series;
at the tactical level, it consists in building roads to access
harvested trees. This paper addresses the automated
methods for building an optimal road network to connect
targets (trees or stands) to an existing road network.
Optimality refers to a building cost, that has to be

minimized. The question of road access optimization may
be more or less simplified by considering or disregarding
spatial and temporal constraints. Spatial constraints mean
that the question is treated in the two-dimensional physical
space [20]. Temporal constraints mean that the schedule
of road construction is also optimized [3, 22]. In this paper,
we shall disregard temporal constraints, and only spatial
constraints will be faced.

The question of optimal road network with spatial
constraints may be partitioned into two categories of
problems: the road spacing problem, and the multiple target
access problem (MTAP). In the road spacing problem [27],
every point is potentially a target to reach. The question
is to build a road network that covers the study area as
densely as possible, with a stopping rule (typically a total
cost that cannot be exceeded, or a balance between costs
and expected benefit). It can be refined by considering
different categories of roads, with a trade-off between each
category [2]. Heuristic methods have been proposed to
solve the road spacing problem [27]. The MTAP [6, 19] is
dual of the road spacing problem: it consists in building a
road network to reach a set of identified targets, without
any stopping rule. In this paper, we shall focus on the
MTAP.

Hereafter, we consider m point-shaped targets that have
to be connected to an existing road network (the source).
The source can be point-shaped, or have a linear or spatial
extension. It can be composed of several disconnected
parts. The MTAP primarily deals with the building cost.
So if a route goes from a point A to a point B and then back
from B to A, the cost between A and B is counted once.
However, the MTAP can be extended to deal with other
kinds of costs or criteria to minimize, including transport
cost [2], destruction risk [31], negative impact on the
environment [14], etc. The building cost is given as a
surface (isotropic case) or as layers (anisotropic case).
We suppose that it is known, and we do not consider the
issue of estimating it from field characteristics such as
substratum, hydrology, sideslope, road slope, altitude,
topography, etc. [2, 5, 6, 9, 17, 23].

Dean [6] and Murray [19] have reviewed combinatorial
optimization problems that are related to the MTAP. In
particular the MTAP can be seen as an extension of the
Steiner tree problem where the resulting tree can be
composed of several disconnected components [19]. A
degraded version of the MTAP is obtained when the only
possible branching points of the road network are the
targets. This degraded version was faced, e.g., by Clark et
al. [3] and Gold and André [11]. Heuristic methods for
solving the MTAP have been proposed by Anderson and
Nelson [1], Dean [6], and Freycon [9]. The branch
evaluation method proposed by Dean [6] was proven to
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yield a solution close to the optimal solution. It is based
on a complete enumeration of the possible branching
patterns of the road network. The number of branching
patterns to reach m targets increases quicker than an
exponential (Appendix A). The computing time required
to obtain the solution follows the same progression. This
actually prevents from using the branch evaluation method,
even for values of m that are not high. In his paper, Dean
actually restricted to m = 4. Typical values of m are much
larger. An alternative to the branch evaluation method is
then required. The other proposed methods [1, 6, 9] require
much less computing time than the branch evaluation
method, but their solutions are not so close to the optimum.
The MTAP may also be solved using integer optimization
methods, as shown by Murray [19], but the amount of
time required to solve large problems may also be
problematic.

The goal of this study was to construct automated
methods for solving MTAPs with many targets, and to
compare them to three existing methods selected in the
literature. This comparison has not been done previously
in an extensive manner, thus preventing from choosing an
efficient algorithm. Moreover the existing methods have
not been assessed for large problems (when m is great).
We deliberately focused on heuristic methods, leaving
aside integer optimization methods. Three methods were
developed on top of the three existing methods. All six
methods were tested by comparing the road networks they
produced in randomly generated problems. Finally, the
automated methods were used to give a theoretical solution
for a real case study, that consists of trees to harvest in a
tropical rain-forest at Bulungan in Kalimantan, Indonesia.
The Bulungan case study is a large MTAP since there are
m = 60  trees to harvest in a 133 ha area.

METHODS FOR SOLVING THE MTAP

Continuous Space, Raster Or Graph Theory?

The first step is to clarify the mathematical space that is
chosen to pose and solve the MTAP. At least three
possibilities exist (Figure 1): space is continuous; space is
discrete and made of pixels (raster approach); space is
discrete and made of nodes of a network (graph approach).
The first approach is convenient to solve embedded
problems that contribute to solve the MTAP (such as the
Launhard-Weber problem, or the Voronoï diagram, see
later). In the second approach, that was used e.g. by Dean
[6] or Freycon [9], a cost is associated to each pixel, and
the cost of a road segment is the sum of the costs
associated to the pixels that form the segment. In the last
approach, that is the most frequently used [1, 11, 15, 19,
27], the nodes of the graph are located on a square grid
and spatially neighbor nodes are connected by arcs. Costs
are associated to arcs. The continuous space approach
leads to difficult analytical treatment and inference of input
data. It would require numerical optimization that would in
turn require some discretization of space.

Thus we hereafter focus on the discrete space approach.
Diagonal displacements are allowed, which means that
each pixel (raster approach) or each node (graph approach)
has eight neighbors (Moore neighborhood). Consider then
in Figure 1b the path from pixel A to pixel C through pixel
B, and the path from A to C through D. Let c1 be the cost
associated to pixel I, and let  µI  =  c 1  

/ u, where u is the
pixel size, be the linear cost rate at I. In the raster approach,
the cost associated to path ADC is  cA + cD + cC and the
cost associated to ABC is cA + cB + cC. Path ADC is
preferred to ABC if cD < cB, that is equivalent with

Figure 1. Description of the physical space for the MTAP: (a) continuous space, (b) space made of pixels (raster
approach), (c) space made of nodes of a graph (graph theory approach). The line in (a), the grey pixels in (b)
and the black arcs in (c) represent the same road segment.
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problem is known as the Launhard-Weber problem [28].
Its analytical solution in continuous space is known
for n = 3 [12, 13]. Dean’s method consists in applying  n
times the modified version of Dijkstra’s algorithm, taking
each set of nodes as an origin. Let D1…Dn be the resulting
cost functions from each of the n sets of nodes to the
other nodes. The node that is the closest from the n  sets
of nodes is taken as the node where           reaches its
minimum value.

MTAP Solution Methods

Six methods for solving the MTAP are presented. All of
them approximate the optimal solution. Three methods
were already presented in the literature: the independent
paths with reduction method [6], the branch evaluation
method [6], and the source-to-closest-target method [1, 9,
10]. However they were defined in the raster approach,
and we had to transfer them to the graph approach. Two
other methods were presented in the literature, but we
disregard them in this study: Dean’s fully independent
path method [6] was disregarded because it is obviously
less efficient than the independent paths with reduction
method; Dean’s optimal solution was also disregarded
because it requires tremendous (practically intractable)
computing time even for small sized MTAP.

All six methods were implemented in C and Perl
languages, and interfaced with R software [21]. The C
language was used to perform all computations on graphs.
The Perl language was used to derive all network
branching patterns for the branch evaluation method.

We shall illustrate the six methods with a hypothetical
example, that is shown in Figure 2a. It consists of a grid
with 5 × 5 nodes with a source made of two neighbor
nodes (existing road access) and three targets (trees to
harvest). Space is uniform, so that the cost associated to
horizontal and vertical arcs is one, and the cost associated
to diagonal arcs is   2.

Independent Paths With Reduction Method [6]

This method consists in searching the shortest path
from the source to each of the  targets independently from
each other, and then to remove the redundant segments.
It thus requires only one call of the modified Dijkstra’s
algorithm. Figure 2b shows the resulting network for the
hypothetical example. The total cost is  2 + 6   2 . 10.5. A
shortcoming of this method is that it builds parallel paths,
as appears with the hypothetical example (Figure 2b).

µ D < µB. However the length of path ADC is 2  2u and the
length of ABC is   2u, so that the linear cost of ADC is less
than that of ABC if   2µD  < µB. As a consequence,if    1/  2
< cD / cB <1, path ADC will be selected although it has a
higher linear cost. The raster approach is thus biased for
diagonal displacements [9].

This bias can be circumvented by prohibiting diagonal
displacements (using a von Neumann neighborhood
around each pixel), or by using different layers or pixels
for each direction of displacement (anisotropic costs). It
seemed easier, then, to use the graph approach that
naturally allows anisotropic costs. Moreover the graph
theory provides a theoretical background for it. Hereafter,
we shall thus focus on the graph approach. Nevertheless,
shifting from the graph approach to the raster approach
remains quite natural [19]. The algorithms of the graph
approach may be transferred to the raster approach; e.g.
to Dijkstra’s algorithm (see next section) in graph theory
corresponds the cost spreading method in GIS.

Preliminary Algorithms

Before presenting the methods for solving the MTAP,
some intermediary methods are presented. To compute
the shortest (here “shortest” is taken as a synonym of
“that minimizes the cost”) path from a node to another
node, Dijkstra’s algorithm [7, 18] is used. Dijkstra’s
algorithm actually gives the shortest paths from a node to
each of the other nodes of the graph.

To compute the shortest paths from a set of nodes
(either connected or not) to each of the other nodes, a
modified version of Dijkstra’s algorithm is used. Dijkstra’s
algorithm sequentially updates a function D(i), where i is
a node, that gives the best current estimate of the
cumulative cost to go from the origin node to i . Initially,
D(i0) = 0  where i0 is the origin node, and   D(i) = 4 for the
other nodes i …i0. The modified version simply modifies
the initialization step: D(i) = 0 if i is in the set of nodes,
and  D(i) = 4 otherwise.

The shortest path between two sets of nodes, denoted
E1 and E2, is defined as the shortest possible path between
a node of E1 and a node of E2. To compute it, one simply
has to use the modified version of Dijkstra’s algorithm
using E1 as the origin, and then to find the shortest among
the paths from each node in E2 to E1.

Finally, to find the node that is the closest from n sets of
nodes (n $3), we used the method proposed by Dean [6].
This method approximates the optimal solution. If the n
sets of nodes are reduced to singleton sets, and if the cost
to reach a node is proportional to the distance to it, this
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Source-to-Closest-Target Method [1, 9, 10]

This method is an iterative method: initially the network
is made of the sources only. At each step, the target that is
the closest to the current network is connected to it; the
shortest path from this nearest target to the current
network is merged with the network, and the shortest paths
from the current network to the remaining nodes is updated
[24]. It thus requires m calls of the modified Dijkstra’s
algorithm, where m is the number of targets. Figure 3 shows
the current network at each step for the hypothetical
example. The total cost of the final network is 5 +    2. 6.4.
A shortcoming of this method is that it build suboptimal
branching points: the length of the sub-network that

connects the three targets is four in Figure 3c, whereas it
could be 1 + 2   2 . 3.8  if the branching point was located
at line 2 column 4.

Branch Evaluation Method [6]

This method consists in considering all possible
branching patterns to connect the  targets and the source,
and to build for each branching pattern the corresponding
lowest cost network. The solution is the lowest cost among
all the networks thus obtained. For instance there are eight
branching patterns to connect three targets. They are
indicated in Figure 4, together with the corresponding
lowest cost networks for the hypothetical example. In this

Figure 2. The independent paths with reduction method for solving the hypothetical example that in shown in (a): black
nodes are the targets to reach; nodes with a star are the source. Black arcs in (b) are the solution network.

Figure 3. The source-to-closest-target method for solving the hypothetical example. At each step (a), (b), (c), the target
that is the closest from the current network is connected to it. Black nodes are the targets; nodes with a star
are the source. Black arcs are the current network.
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example, the eighth pattern (Figure 4h) appeared to yield
the lowest cost network among the eight possibilities. Its
cost is 2 + 3  2 . 6.2.

Some clarification has to be brought on how the lowest
cost network is obtained for a given branching pattern.
First, one has to distinguish inner branching points from
outer branching points. Inner branching points are not
connected to the source, such as the branching point
connected to a and b in the diagram of Figure 4e, while
outer branching points are connected to the source, such
as the lowest branching point in the diagram of Figure 4e.
The location of an inner branching point is computed as
the node that is the closest from its ascending branches
only. The location of an outer branching point is computed
as the node that is the closest from both its ascending
branches and the source.

Let Pm be the number of branching patterns for the
MTAP with m targets (Appendix A). Let Bkm be the number
of branching points in the kth branching pattern (k =
1…Pm), and let slkm $2  be the number of sets of nodes
that are connected to the lth branching point (l = 1…Bkm).

)(11 lkm
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l
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Then the branch evaluation method requires

calls to the modified Dijkstra’s algorithm, where ø (2) = 1
and ø (s) = s for s $ 3. The numbers Bkm and s1km  can be
easily computed from the listing of all branching patterns
(Appendix A shows how to obtain this listing). The number
Cm increases very quickly: C6 = 41298, C7 = 681 066, C8
= 13 021 576, etc. Its progression is quicker than an
exponential relationship.

Hierarchical Methods

Two methods were inspired by the hierarchical methods
in cluster analysis. Given n sets of nodes, we define the
lowest cost network that connects them as the set of paths
that connect the closest node from the n sets of nodes to
each of them. The hierarchical method then proceeds in
an iterative way: initially there are m + 1 unconnected sets
of nodes that are the m targets plus the source. All
networks that connect n  of them are computed, and the
lowest cost one is selected. As n sets of nodes are
connected, m – n + 1 unconnected sets of nodes are left.

n
mC 1+

Figure 4. The branch evaluation method  for solving the hypothetical example. Each subplot (a)-(h) shows the cheapest
network that corresponds to each of the eight possible branching patterns. The diagram below each subplot
is the corresponding branching pattern. The best among the eight networks is network (h). Black nodes are
the targets; nodes with a star are the source.
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Then again all                   networks that connect n of them
are computed, and the lowest cost one is selected, etc.
The procedure is repeated until the number of
unconnected sets of nodes is less than n. The remaining
sets of nodes are then connected in a single network.

We implemented the hierarchical method for n = 2 and n
= 3. To solve a MTAP with m  targets, the hierarchical
method with n = 2 requires 2m + 1 calls of the modified
Dijkstra’s algorithm, whereas the hierarchical methods with
n = 3 requires (3m + 2) \2 calls of the modified Dijkstra’s
algorithm (where backslash indicates integer division).

Figure 5 and 6 show each step of the hierarchical method
with n = 2  and 3 to solve the hypothetical example. The
total cost of the final network is 6.4 for n = 2 and 6.2 for n
= 3.

Approximation By A Minimum Spanning Tree

The last method consists in transforming the MTAP in
a minimum spanning tree problem, by defining an adequate
intermediary graph. This intermediary graph is defined as
follows. Consider the m + 1 sets of nodes, called here
“germs”, that are the m targets plus the source. The nodes
of the graph are partitioned into m + 1 cells, such that all
the nodes in the kth cell are closer to the kth germ than to
any other germ. This partition is the equivalent of the
Voronoï diagram in continuous space. Two germs are
considered neighbors if their cells share a common
boundary. Then “triangles” between any three neighbor
germs are built. These are not actual triangles, since the
shortest path between two neighbor germs is not a straight
line. This tessellation is the equivalent of the Delaunay
tessellation in continuous space. Nodes that are the closest
to the three vertices of each “triangle” are then introduced.
We call them the “centers” of the “triangles”, and let t be
their number.

The intermediary graph then has m + t + 1 nodes that
are the m + 1 germs plus the t centers of triangles. Its arcs
connect neighbor germs to each other, and connect the
centers of triangles to the germs that form the triangles.
The costs associated to the arcs are the costs of the
corresponding shortest paths. The minimum spanning tree
of the intermediary graph is then computed using Kruskal’s
algorithm [16, 18]. Finally, the branches of the minimal
spanning tree that end on a center of triangles are
recursively pruned. The resulting tree is a solution of the
MTAP. To build the intermediary graph, m + 1 calls to the
modified Dijkstra’s algorithm are required.

Figure 7 shows the tessellation of space around the
germs, the intermediary graph, and the solution of the
hypothetical example with this method. The total cost of
the final network is 2 + 3  2 . 6.2.

n
nmC 1+− MONTE CARLO EVALUATION OF

MTAP SOLUTION METHODS

Experimental Plan

We used the same Monte Carlo experimental plan as
Dean [6] to compare the six methods for solving the MTAP.
Random MTAP were generated, and the six methods were
used to solve them. The total cost of the solution computed
by each method was recorded, along with the computing
time needed to obtain it. Computations were performed by
a laptop with a 466 MHz processor. The costs and time
estimates were then analyzed statistically.

Four factors were included in the experimental plan: the
size of the study area, that is the number N of nodes; the
number S of existing access roads that is the number of
sources; the number m of trees to harvest, that is the
number of targets; and the method for solving the MTAP.
The first factor had four modalities: the study area was a
grid with 15×15 (N = 225), 20×20 (N = 400), 25×25 (N =
625) or 30×30 (N = 900) nodes. The number of sources has
little influence on the computing time [6], but it has a great
influence on the cost of the road network. Moreover, S
source nodes distributed at random do not have the same
effect as S connected nodes. The former will favor one-to-
one connections between targets and sources, and will
thus limit the complexity of the branching pattern. Hence,
contrary to Dean [6], we used low values of the number of
sources: S = 1, 2 or 3. The number of targets was m = 3, 4
or 5. It is cumbersome to use values of m greater than five
with the branch evaluation method. Finally there are six
methods for solving the MTAP. Thus, the experimental
plan comprises 4×3×3×6 = 216 combinations of factors, or
treatments.

For each treatment, one hundred MTAP were randomly
generated. The locations of sources and targets were drawn
at random without replacement. Horizontal and vertical
displacement costs were uniformly distributed on [0,1],
whereas diagonal displacement costs were uniformly
distributed on [0,  2]. The cost of the solution of the MTAP
and the computing time were then analyzed using a
completely balanced four-way analysis of variance.

Results

Table 1 shows the results of the analysis of variance of
the computing time, whereas Table 2 shows the results of
the analysis of variance of the road building costs.
Computing time depends on the number of nodes, on the
number of targets and on the method, but not on the
number of sources. Except for the method based on the
minimum spanning tree, the computing time can be broken
down into the number of times that Dijkstra’s algorithm is
called, times the computing time required for performing
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Figure 5. Hierarchical method with n = 2 for solving the hypothetical example. At each step (a), (b), (c), the two sets of
nodes (either the targets or the source) that are the closest are connected. Black nodes are the targets; nodes
with a star are the source. Black arcs are the current network.

Figure 6. Hierarchical method with n = 3 for solving the hypothetical example. At each step (a), (b), the three sets of
nodes (either the targets or the source) that are the closest are connected. Black nodes are the targets; nodes
with a star are the source. Black arcs are the current network.

Figure 7. Method based on a minimum spanning tree for solving the hypothetical example. (a) Partition of the nodes
around the germs a-d and associated tessellation; nodes with the same symbol (circle, square, lozenge,
triangle) belong to the same cell; black arcs connect neighbor germs; black nodes are the targets; nodes
labeled a are the source. (b) Additional “centers” of the “triangles” e-f: e is the center of the “triangle” (a, c, d),
f is the center of the “triangle” (b, c, d); black arcs are the additional connections. (c) Intermediary graph that
result from the connections in (a) and (b); black arcs are the minimum spanning tree of the graph. (d) Solution
of the MTAP that follows from the minimum spanning tree in (c); the arc between d and e has been pruned
since it ends on the center of a “triangle”; black nodes are the targets; nodes with a star are the source.
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Dijkstra’s algorithm. The latter approximately depends on
the number of nodes only, whereas the former depends on
the number of targets m and on the method, as clarified
previously. Mean computing time was significantly
different for all numbers of nodes, and for all numbers of
targets. However, two groups of methods were
distinguished as regards computing time: the branch
evaluation method that requires a long computing time on
one hand, and the other methods on the other hand. The
long computing time required for the branch evaluation
method directly results from the huge number of times
that it calls Dijkstra’s algorithm.

The building cost depends on all four factors (Table 2).
Building cost was significantly different for all numbers of
nodes, for all numbers of targets, and for all numbers of
sources. However, depending on the multiple range test,
three (Scheffé test) or four (Tukey and Duncan tests)
groups of methods were distinguished as regards the
building cost. The branch evaluation method  provides
the lowest cost road networks. Then the hierarchical
method with n = 2  and the source-to-closest-target method
provide the lowest cost alternative. The hierarchical
method with n = 3 and the method based on the minimum
spanning tree are in third position. Finally the independent
paths with reduction method provides the most expensive
networks.

Table 1. Analysis of variance of the computing time.

(a) Analysis of variance results

Factor df Mean square F-value p-value

No. of nodes 3  771 642 296.53  < 0.0001

No. of sources 2 13 0.00 0.9951

No. of targets 2  2 512 433 965.48  < 0.0001

Method 5  3 284 420 1262.14  < 0.0001

(b) Multiple range test results (at the á = 0.05 level)

Mean Tukey Duncan Scheffé

time (s) n test test test

No. of nodes

  15 × 15 2.00 5400 A A A

  20 × 20 5.84 5400 B B B

  25 × 25 13.92 5400 C C C

  30 × 30 29.00 5400 D D D

No. of targets

  3 0.59 7200 A A A

  4 3.28 7200 B B B

  5 34.21 7200 C C C

Method

  independent paths with reduction 0.07 3600 A A A

  source-to-closest-target 0.27 3600 A A A

  minimum spanning tree 0.41 3600 A A A

  hierarchical n = 3 0.45 3600 A A A

  hierarchical n = 2 0.61 3600 A A A

 branch evaluation 74.35 3600 B B B
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APPLICATION  TO TREE  HARVESTING
AT  BULUNGAN

Study Area

The automated methods for solving the MTAP were
used to design a road network to access harvested trees
in a tropical rain-forest at Bulungan (2°52’–3°14’N, 116°–
116°40’E) in Kalimantan (Borneo island), Indonesia. The
climate is equatorial with an annual rainfall of 4000 mm.
The topography is deeply eroded with a dense network of
steep ridges and drainage gullies. Elevations at the study
area range from 100 to 300 m above sea level [25]. The

study site is the block 27 of a 50,000 ha forest concession
managed by a state-owned timber company. Its area is 133
ha.

The MTAP and Its Hand-Made Solution

The study site was embedded in a rectangle that was
covered with a square grid of 117× 128  nodes. Each node
represents an area of 144 m2. As the study area is
characterized by steep terrain and dense river network,
the main construction activities are earthworks
(excavation, surfacing, and slope stabilization) and stream
crossings (building culverts and bridges). The road

Table 2. Analysis of variance of the network building cost.

(a) Analysis of variance results

Factor df Mean square F-value p-value

No. of nodes 3  1 110 837 5054.84  < 0.0001

No. of sources 2  302 541 1376.71  < 0.0001

No. of targets 2  828 714 3771.05  < 0.0001

Method 5  51 911 236.22  < 0.0001

(b) Multiple range test results (at the á = 0.05 level)

Mean Tukey Duncan Scheffé
cost n test test test

No. of nodes
  15 × 15 41.53 5400 A A A
  20 × 20 52.89 5400 B B B
  25 × 25 63.94 5400 C C C
  30 × 30 74.88 5400 D D D

No. of sources
  1 64.87 7200 A A A
  2 58.16 7200 B B B
  3 51.91 7200 C C C

No. of targets
  3 47.26 7200 A A A
  4 58.98 7200 B B B
  5 68.69 7200 C C C

Method
branch evaluation 55.33 3600 A A A
hierarchical n = 2 56.45 3600 B B A
source-to-closest-target 56.48 3600 B B A
hierarchical n = 3 57.66 3600 C C B
minimum spanning tree 58.16 3600 C C B
independent path with reduction 65.79 3600 D D C
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building cost at a given place was estimated as the maximum
of the earthwork cost and of the stream crossing cost. The
former depends mainly on terrain gradient and the latter
on stream width. To estimate building costs, a GIS was
used in a first stage to create raster grid cells from different
digital topographic data. A digital elevation model was
generated from contour layers to calculate slopes. Table 3
gives the unit costs assigned to the different types of
terrain condition encountered in the study area. These
costs are expressed in arbitrary units. They come mostly
from the FAO literature [8, 30] and from our field experience.
The estimate of the cost grid is shown in Figure 8. In a
second stage, costs estimated for each pixel were
converted to costs associated to arcs between two nodes.
Let cij be the cost associated to the pixel at line i and
column j of the grid of pixels, and let ãij 6kl  be the cost
associated to the arc between the node at line i column j
and the node at line k column l. We used the following
relationships: ãij6i+l,j = ãij6i,j+l, = cij  and ãij6i+l,j+1 =

ãi+1,j6i,j+l, =v2cij, for all i and j. These relationships define
the cost for all connections between nodes. They suppose
that costs are isotropic. The   2 factor was introduced not
to bias for diagonal displacement.

Table 3. Road building cost assigned to a cell, depending
on the terrain condition. Cost is in arbitrary unit.

Terrain Condition  Slope Range Cost

Easy  0-30% 10
Medium  30-50% 15
Difficult  50-70% 30
Very difficult  70-100% 45
Drain (primary)  any slope 200
Drain (secondary)  any slope 20
Existing road  any slope 0

Sixty trees have to be harvested on the study area. The
number of targets of the MTAP thus is m = 60. There are
two existing road accesses that join at the North of the
study area. They are represented as white pixels in Figure
8. One road goes around the study area from North to
South on its western limit. The other goes around the
study area on its eastern limit. Together, the existing roads
accesses cover 321 nodes. They form the source of the
MTAP. A hand-made road network was designed by forest
engineers to access the target trees. It is shown in Figure
9a and its cost is given in Table 4. The hand-made solution
located the roads on crests and crossed primary streams
only once (black pixels in Figure 8). The hand-made
solution cannot be directly compared to the numerical
solutions because we have no guarantee that the costs
given in Table 3 match the engineers’ objectives. The
comparison between the hand-made solution and the
numerical solutions should rather be seen as a way to
assess the realism of the cost grid.

Figure 8. Cost grid at Bulungan. Cost units are arbitrary.
White pixels show the existing road accesses.
Black pixels show the primary streams.

Table 4. Cost of the road network and computing time
required to obtain it by numerical methods.Cost
is in arbitrary unit.

Method  Cost Computing Time

Hand-made  11 844 ¯
Independent paths  11 549 18 s
Freycon no2  5 812 18 min 28 s
Hierarchical (n = 2)  5 794 36 min 37 s
Hierarchical (n = 3)  6 499 34 min 38 s
MST  6 376 18 min 37 s

Numerical Solutions

Due to the big size of the MTAP, the branch evaluation
method is not applicable. We thus restricted to the five
other automated methods for solving the MTAP. The
solutions computed by the five methods are shown in
Figure 9b–f. The costs and computing times are given in
Table 4. The independent paths with reduction method is
very fast but is as expensive as the hand-made solution.
The four other numerical solutions are far less expensive.
The source-to-closest-target method and the hierarchical
method with n = 2 have a similar cost (Table 4). Their
solutions are actually very similar and differ only in details
(Figures 9c and d). The hierarchical method with n = 3 and
the method based on the minimum spanning tree have a
similar cost, that is higher than that of the previous
methods. The source-to-closest-target method and the
method based on the minimum spanning tree have a similar
computing time. The two hierarchical methods have a
similar computing time that is about twice longer than that
of the previous methods.
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Thus, for the MTAP at Bulungan, the best solution is
provided by the hierarchical method with n = 2 when we
do not take account of the computing time. If computing

time is considered, the best trade-off is provided by the
source-to-closest-target method.

Figure 9. Road network at Bulungan to access the 60 target trees: (a) hand-made layout; (b) solution with the independent
paths with reduction method; (c) solution with the source-to-closest-target method; (d) solution with hierarchical
(n = 2) method; (e) solution with hierarchical (n = 3) method; (f) solution with the method based on minimum
spanning tree. White dots are target trees, primary streams are indicated by black lines and secondary streams
are indicated by thin black lines.
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DISCUSSION

Building Cost

The lowest building cost is given by the branch
evaluation method, then by the hierarchical method with
n = 2 or by the source-to-closest-target method, then by
the hierarchical method with n = 3 or by the method based
on the minimum spanning tree, and finally by the
independent paths with reduction method. This order was
obtained both with the Monte Carlo evaluation of MTAP
solution methods and with the practical case-study at
Bulungan, with the reservation that the branch evaluation
method could not be used at Bulungan due to the number
of targets.

The comparison between the hand-made solution at
Bulungan and numerical solutions must be cautious, since
the forest engineers may have used to derive their solution
some professional experience and intuition that is not taken
into account in the cost grid. Designing a realistic and
feasible road network in an automated way can actually
be split into two nested problems: 1. What cost grid should
be used? 2. Given the cost grid, which algorithm should
be used? The former question is a challenging issue by
itself, and was not the focus of this paper. Nevertheless,
the comparison between the hand-made solution and
numerical solutions can be used to assess the relevance
of the cost grid. The former question may also be the
basis for defining other criteria of assessment of the
numerical methods, namely: Is the numerical method
sensitive to small changes of the unit costs? Sensitivity
analyses would thus be required to select robust methods
that can deal with uncertainty in cost estimates [1]. As
concerns the second question, the idea is not to replace
hand-made solutions by numerical solutions, but rather
to use numerical methods to identify better strategies for
hand-made layout, in the same philosophy as computer
assisted design. The human component will still be
required to rebut, accept or modify numerical solutions in
an interactive way. At Bulungan for instance, forest
engineers have focused on crests and streams, but
apparently have attached less importance to the length of
the road network. Comparing Figure 9a to Figures 9c–f
suggests that road segments could be saved.

The results of this study were based on six heuristics.
Other methods could be imagined to get lower costs. For
instance the source-to-closest-target method is known to
build suboptimal branching points. This method could
thus be improved by identifying a posteriori all branching
points and re-computing their position as indicated before
(see “Preliminary algorithms”). The method based on the
minimum spanning tree could also be improved by
increasing the number of nodes of the intermediary graph.

This number could be increased until all the nodes of the
MTAP are included in the intermediary graph. However
computations in this case would be long.

Computing Time

The computing time can be a limiting factor to the size
of the MTAP that can be solved numerically. The Monte
Carlo evaluation of MTAP solution methods classified
the methods into two groups: the branch evaluation
method in one hand (slow method), the five other methods
on the other hand (fast methods). However the analysis
of variance was limited to small-sized MTAP. As the size
of the MTAP increases, the branch evaluation method
has to be disregarded; differences in execution time
between the five remaining methods then appear. Most of
the computing time is spent running Dijkstra’s algorithm.
The methods can then be ranked according to the number
of times they call Dijkstra’s algorithm.

The independent paths with reduction method is the
fastest, as it calls Dijkstra’s algorithm once. Let TN be the
execution time of the independent paths with reduction
method for a MTAP with  nodes. It is almost independent
of the number m of targets. The ranking of the methods by
execution speed then is: the source-to-closest-target
method (execution time . mTN); the minimum spanning

tree method (execution time . (m+1)TN); the hierarchical

method with n = 3 (execution time .[(3m+2) \2]TN); and
lastly the hierarchical method with n = 2  (execution time
. (2m+1)TN). As an example, Figure 10 shows the execution
time for the five methods for the MTAP at Bulungan, when
m varies from 3 to 60 targets. The approximate estimations
of the execution times are reliable, except for the
hierarchical method with n = 3 when m is high. In that
case, the computing time that is spent outside Dijkstra’s
algorithm is no longer negligible.

Nevertheless, we did not optimize for speed the
algorithms that we implemented. Thus, the two hierarchical
methods and the minimum spanning tree method could be
made to process faster by storing in a data structure
intermediary computations. These computations are
independent of Dijkstra’s algorithm, so the gain would be
small unless the number m of targets is high. More
importantly since most of the computing time is spent
running Dijkstra’s algorithm, we used a basic
implementation of Dijkstra’s algorithm that requires O(N2)
operations (where N is the number of nodes and O is
Landau asymptotic symbol, meaning that the number of
operations is less than some constant multiple of  N2). By
using a more complex implementation, this could be
reduced to O(Nln N) [4]. Notice also that some of the
methods are embedded in the others. Thus, the hierarchical
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Figure 10. Execution time as a function of the number m
of targets for the MTAP at Bulungan, for the
five MTAP solution methods (the branch
evaluation method). Symbols are the actual
execution times, lines are a priori approximate
estimations. Plain line and squares:
independent paths with reduction method;
dashed line and circles: source-to-closest-
target method; long-dashed line and crosses:
minimum spanning tree method; dot-dashed
line and pluses: hierarchical method (n = 3);
dotted line and triangles: hierarchical method
(n = 2).

methods can give the solution of the source-to-closest-
target method or of the minimum spanning tree method
with little additional computation. Similarly, the solution
of the independent paths with reduction method can be
given with little additional computation by any other
method.

CONCLUSION

The branch evaluation method cannot be used when
the number of targets of the MTAP increases (typically
over 6), which prevents from using it in practical situations.
The independent paths with reduction method is the
fastest of the remaining method, but it behaves very poorly
with respect to the building cost. The lowest building
cost is provided, if we disregard the branch evaluation
method, by the source-to-closest-target method and by
the hierarchical method with n = 2. Moreover the source-
to-closest-target method is about twice as fast as the
hierarchical method with n = 2. The minimum spanning
tree method is about as fast as the source-to-closest-target
method, but it yields higher building costs. As a
conclusion, the source-to-closest-target method provides
the best trade-off between building cost and computing
time for large MTAP. Other heuristics and integer
optimization methods would have to be investigated to
locate even better road design methods.
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Figure 11. Examples of branching patterns for the MTAP
with m = 3 targets that were not considered by
[6].

APPENDIX

Number of Branching Patterns

This appendix aims to provide the number Pm of
branching patterns for the MTAP with m targets. For
instance, the diagrams in Figure 4 show the eight
branching patterns for the MTAP with three targets, as
defined by Dean [6]. It seems that some branching patterns
were forgotten by Dean [6], such as the ones shown in
Figure 11 for m = 3. One may argue that the branching
patterns in Figure11 are degenerate cases of the branching
patterns in Figure 4 when the length of some appropriate
segments are set to zero, but in that case one should also
consider, for instance, that the branching pattern shown
in Figure 4f is a degenerate case of that shown in Figure
4e. Hereafter, we consider only the branching patterns
that were considered by Dean [6], to keep consistency
with the literature.

The computation of Pm is based on a recursion formula.
Given a branching pattern with s segments and b branching
points, there are s + b + 1 ways to connect an additional
target: the target can be connected to an existing branching
point, which gives b branching patterns with s + 1
segments and b branching points; the target can be
connected to an existing segment, which gives s branching
patterns with s + 2  segments and b + 1  branching points;
or the target can be connected by an independent path,
which gives one branching pattern with s + 1  segments
and b branching points. For m = 1 target, there is  P1 = 1
branching pattern with one segment and zero branching
point. Using this initial condition and the recursion formula,
one can readily check that any branching pattern with b
branching points and s segments that reaches m targets
verifies s – b = m. Moreover,  s varies between m  and 2m
- 1, and  b varies between zero and m - 1.

Hence the number of branching patterns to reach m
targets can be counted by a vector                                    such
that                     where  a

bm
 is the number of branching

patterns with b branching points to reach m targets. The
recursion formula states that the  a

bm
 branching patterns

to reach m  targets generate (b + 1)a
bm

 branching patterns
with b branching points to reach m + 1targets, and             (b
+ m)a

bm
branching patterns with b + 1 branching points to

reach m + 1targets. Initially, a
01 

= 1. The sequence then is:
P

1
 = 1, P

2
 = 2, P

3
 = 8, P

4
 = 52, P

5
 = 472, ..., P

14
 =

363,581,406,419,456,etc. The integer sequence (P
m
) is

known as the number of series-parallel networks with m
labeled edges, and is labeled as sequence A006351 in
Sloane [26]. The progression of P

m
 is quicker than an

exponential relationship.
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