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ABSTRACT

A silvicultural project encompasses tasks such as site-
level planning, regeneration, harvest, and stand-tending
treatments. An essential problem in managing silvicultural
projects is to efficiently schedule the operations while
considering project task due dates and costs of moving
scarce resources to specific job locations. Transporta-
tion costs represent a significant portion of the total op-
erating cost. The main difficulty in developing such a
management system is finding an optimal transport sched-
ule while handling complicated constraints, such as prec-
edence and temporal relations among project tasks,
project due dates, truck routing, weather, and other op-
erational conditions. It is well known that finding an op-
timal solution to these types of problems involves high
computational complexity. They are usually NP-hard. For
this reason, we propose to use simulated annealing –a
meta-heuristic optimization method– that interacts with
a network simulation model of the system in which the
precedence and temporal relations among project tasks
and logistics are explicitly accounted for. The approach
has been tested using data provided by a silvicultural
contractor located in Alabama. The results obtained solv-
ing one instance of a small size problem with five
worksites showed that the best solution could be found
in less than four minutes using a personal computer with
a processor Pentium III (1 GHz). A good solution for a
larger problem with twenty worksites was found in thirty
minutes. Also a resource analysis is performed to evalu-
ate the impact of each resource on the best solution.

Keywords: Project management, silvicultural systems,
forest operations, meta-heuristic, optimi-
zation, simulation.

INTRODUCTION

Silviculture is defined as managing forest vegetation
by controlling stand establishment, growth, composition,
quality and structure for the full range of forest resource
objectives [7]. This is a broad definition encompassing a
multitude of concepts, all of which must be translated
into manipulations of a given trait or characteristics to
effect some change at a stand or sub-stand. The range of
manipulations used on any given stand can vary consid-
erably, but as the science of silviculture matures the com-
plexity and number of entries into stands for manage-
ment activities has tended to increase. At the same time,
the need to reduce the cost of these activities has lead to
specialized equipment and contractors to implement cus-
tom prescriptions efficiently across many locations.
When the primary resource being manipulated is timber,
cost of silvicultural operations is of particular importance
and new ways are being sought to reduce the amount of
input resources needed to establish and maintain maxi-
mum growth rate.

Forest landowners in the Southeast US, particularly
large industrial forest product companies, often use
silvicultural service providers as a means of implement-
ing their management prescriptions. These providers can
perform a broad spectrum of management activities at
low cost, but, as in logging, there is always a need to
further improve the efficiency of the operations. Service
providers have turned to new technology in order to im-
prove their cost effectiveness, in particular adapting tech-
niques from precision agriculture to reduce chemical in-
puts. Adopting logistical strategies used successfully in
other industries also holds the promise of improving op-
erational efficiency. Providing silvicultural services typi-
cally implies performing numerous operations simultane-
ously across a large geographic area. These operations
share equipment resources. For example, a crawler tractor
might be used for road improvement work as well as in
site preparation plowing. Scheduling the use of these
limited resources has a large impact on the efficiency of
the entire operation. Equipment must be dispatched to
sites in a sequence that minimizes total moving costs,
primarily a function of distance traveled, and that also
accounts for temporal aspects of task completion. The
scheduling process is further complicated by constraints
on movement of the equipment and by external factors
such as weather. Management and scheduling of these
activities is currently done by people with experience in
such matters, but as companies become larger and the
number and complexity of jobs increases, silvicultural
service providers are looking for improved methods of
assigning resources to jobs in a manner that optimizes
their operational efficiency.
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The scope of scheduling silvicultural tasks lies within
what is called project scheduling under resource con-
straints, which has been extensively studied [6]. One of
the simplest project scheduling approaches is the Critical
Path Method (CPM) [17]. In this method, the set of tasks
are represented as a network to denote the precedence
relations among pairs of tasks. The goal in the CPM ap-
proach is to determine the smallest possible project com-
pletion time without violating the precedence relations of
the tasks. The method assumes infinite availability of re-
sources. A more realistic variant of the CPM is the Re-
source-Constrained Project Scheduling problem (RCPSP)
[10]. Several approaches have been proposed to solve
the RCPSP. Pritsker et al. [15] proposed one of the first
mathematical formulations, a 0-1 linear programming model
to solve the RCPSP. The formulation requires the defini-
tion of up to nT binary variables, where n is the number of
activities and T is the number of time periods. The com-
plexity of the model is O(n2+mT), where m is the number
of resources. More 0-1 linear programming models can be
found in [3, 11]. Although the RCPSP is more realistic, it
still has some limitations. One of the drawbacks of the
RCPSP formulation is that it assumes constant availabili-
ties of the resources during the planning horizon, but it is
common in practice that machines are scheduled for main-
tenance or they are required for other projects. Also, due
dates cannot be considered within the RCPSP framework.
The Generalized Resource-Constrained Project Schedul-
ing Problem (GRCSP) [10] overcomes some of these limi-
tations and has been successfully used in manufacturing
applications [4]. Despite its high practical relevance, the
GRCSP is still not a good model for use in scheduling
silvicultural tasks since the method neglects transporta-
tion costs. There is also a large literature on transporta-
tion routing problems, which are modeled and solved with
various approaches [8, 12]. The reader is referred to [5]
for an overview of vehicle routing problems. However,
these models do not implicitly account for the ordered
sequence of tasks that may use these transportation re-
sources.

This paper proposes a computer meta-heuristic model
for scheduling simultaneously several silvicultural
projects, each project consisting of an ordered sequence
of tasks requiring the use of limited equipment resources.
The model implicitly considers due dates of each project,
the order and nature of steps to complete tasks, task-
duration times, resource requirement constraints, task-
precedence relationships, geographic location of the
projects, transportation costs, and due date violation
costs. The goal of the model is to allocate shared expen-
sive assets and minimize transportation costs and com-
pletion time of the projects. The resulting optimization
problem is a nontrivial generalization of the GRCSP. To
solve meaningful problems, we have developed an opti-

mization procedure consisting of a simulated annealing
(SA) [16] algorithm that interacts with a network simula-
tion model of the silvicultural multi-project system.

The paper has been organized as follows. In section 2,
we describe the proposed approach. In section 3, we de-
scribe our experimental methodology and summarize nu-
merical and performance results. In section 4, a resource
capacity sensitivity analysis is performed to evaluate the
impact of each resource on the best scheduling solution.

PROPOSED  APPROACH

The problem of managing silvicultural projects can be
formulated as efficiently scheduling transportation and
project tasks while considering project due dates and
costs of moving resources to specific job locations. Sched-
uling transport among several competing locations and
functions is critical in efficiently managing silvicultural
projects. Transportation costs represent a significant
portion of the total operating cost. Trucks are needed for
delivering timber to mills and for carrying machinery be-
tween worksites, which can be located anywhere within a
large geographic area. A transportation management sys-
tem that allocates limited truck resources optimally among
competing interests and takes into account project due
dates could increase the total operational efficiency of a
procurement entity.

Problem Description

A solution X to the transportation-scheduling problem
consists of a set of routes for each of the resources that
visit each project location such that all projects can be
completed. A route specifies the sequence in which the
resource will visit the worksites. For example, for a set of
projects consisting of four worksites and three resource
units, a solution could be given by the set of routes X=
{(1, 4, 3, 2, 3), (2,1,4), (4,2,1)}. In this solution, resource 1
is scheduled to start at worksite 1, then travel to worksite
4, and so on. In our formulation, we assume R different
classes of resources and that each class k (k=1,..,R) has
rk identical units available. For example, four similar trac-
tors (three John Deere and one Allis Chalmers) may form
the “resource class” tractor. Each tractor is then a re-
source unit. We assume that once an activity releases a
particular resource, the resource can start its travel to the
next activity scheduled to use this resource unit. The
next activity can be located at the same or at a remote
worksite. This assumption implies that if the resource
unit requires a truck, the truck will be available to trans-
port it. Notice, however, that a truck can also be modeled
as a resource unit and it can be requested by activities. In
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the case that the resource unit has its own transportation
(can move by itself), the assumption is also valid. Figure
1 shows an example of a transport schedule (a solution)
for a forest project with 5 worksites, two identical units of
the resource class 1, and one unit of resource class 2.
Here, worksite 0 (W0) is assumed to be a central worksite
where maintenance activities can be performed. The fig-
ure shows that the first unit of resource class 2 is cur-
rently at worksite 0 and is scheduled to visit worksite 4
and then worksite 3.

Figure 1. A solution for a multi-project problem.

Mathematical Model

We assume that the silvicultural multi-project consists
of N spatially dispersed worksites. Each worksite is con-
sidered one project. The quantity dij is the distance be-
tween worksites i and j. At each worksite i (i=0, ...,N-1), a
set of Mi tasks need to be performed.  The set of tasks to
be performed at worksite i is denoted by {t1i, t2i,…}. The
task precedence relationships, resource requirements, and
execution times of the tasks are all part of a project de-

scription, which we denote by W=[W0,..,Wi,..,WN-1]. The
due dates of the projects are denoted by D=[D0,..,Di,..,DN-

1]. Figure 2 presents a hypothetical example of a project
description outlining the tasks to be performed at worksite
1, project description W1. The figure shows the precedence
relationships, duration, and resource requirement of each
activity. The available resource classes, quantities, and
initial positions of each of the resource units are part of
the transport description, which we denote by T =
[T1,…,Tj,...,TR] (R resource classes.)

The mathematical model for minimizing project
durations can be written as follows:

Min z
Subject to  C = F(X; W,T);  C ≤ 1z;  C ≤ D

Where C is a vector in which entry i is the completion
time of project i. F(.) is a function that evaluates the com-
pletion time of each project given the descriptions of the
projects and transport, and the solution X. The vector 1
denotes a vector with all entries equal to 1, i.e. 1=[1, 1,…,1].

Solution Approach

The solution approach consists of two main compo-
nents, a network simulation model and a search heuristic.
The simulation model is used to evaluate the function F,
i.e. the completion time of the projects. The purpose of
the search heuristic component is to select a good solu-
tion X, and is implemented using a Simulated Annealing
(SA) algorithm. In the literature there are multiple applica-
tions of SA to forest management and planning. Öhman
and Lämås [14] studied long-term planning of harvest
activities considering biodiversity, recreation and new
road planning. They concluded that the spatial dimen-
sion of the problem increased complexity, but that the SA
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approach could effectively generate optimal solutions.
In another study [1], Baskent and Jordan used the SA
approach to solve a new landscape management model.
They tested their model on a 20,000 ha (987 stands) hy-
pothetical test problem. The result showed that the SA
meta-heuristic technique was capable of solving large-
size stochastic problems with hard constraints.

The SA algorithm starts by generating an initial solu-
tion to the transportation-scheduling problem. In our ap-
proach, the initial solution can be either provided by the
user or generated randomly. The simulation model is next
used to evaluate the quality of this initial solution. The
inputs to the simulation model are the data correspond-
ing to the project descriptions and the transport sched
ule for the resources (a solution). The simulation model
outputs performance measures, such as completion times
for the tasks and distances traveled by the resources.
The SA algorithm searches for a better solution using the
information provided by the simulation model and the
current solution. We have implemented three neighbor
operators to perturb the current solution. One operator
generates a new solution by switching two worksites (ran-
domly selected) of the current solution within a route of a
specific unit. The second operator generates a new solu-
tion by switching two worksites between two different
units of a same class. The units and the worksites are
randomly selected. The third operator generates a new
solution by moving one worksite from a unit to another
unit of the same resource class. We use a random selec-
tion process to choose the operator to be applied at each
neighborhood search. The search procedure uses the simu-
lator every time that it needs to evaluate the performance
of a new solution. An optimal or close to optimal solution
is obtained by iteratively running this search procedure.
Figure 3 shows a block diagram of the solution approach.

Simulated Annealing

Simulated Annealing [16] is one of the nature-inspired
heuristics that are applied to combinatorial optimization
problems. It was derived from statistical mechanics. The
algorithm, which was proposed by Kirkpatrick et al. [9],
is based on an analogy between annealing treatment of
solids and solving combinatorial optimization problems.
Annealing is the physical process of heating a solid and
then cooling it down slowly until it crystallizes. At a given
temperature, the probability distribution of system ener-
gies is determined by the Boltzmann’s probability equa-
tion:

                                                                                             (1)

where E is system energy, k is Boltzmann’s constant, T is
the temperature and P(E) is the probability that the sys-
tem is in a state with energy E. To simulate the evolution
to thermal equilibrium of a solid for a fixed value of tem-
perature T, Metropolis et al. [13] proposed a Monte Carlo
method, which generates sequences of the states of the
solid.

In the analogy between solving a combinatorial optimi-
zation problem and the annealing process, the states of
the solid represent the feasible solutions of the optimiza-
tion problem. The energies of the states correspond to the
values of the objective function computed for those solu-
tions. The minimum energy state corresponds to the opti-
mal solution of the problem and rapid quenching can be
viewed as local optimization. The basic steps of a SA al-
gorithm are as follows:

Step 0: Create an initial solution. This is the first current
solution.

Figure 3. Optimization model.
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Decide the initial temperature, number of repeti-
tions at each temperature step, temperature re-
duction rule and total number of iterations to be
performed.

Step 1: Generate a new set of solution/s from the current
solution.

Step 2: Evaluate the solution in terms of the objective
function. Keep track of the best solution found
so far.

Step 3: If the newly created solution is better, then up-
date the current solution to the newly found
better solution. If not, decide whether the new
solution can still become the current solution,
depending on Metropolis’s criterion [13]. If it
passes the criterion, then the newly found solu-
tion becomes the current solution; otherwise the
current solution stays the same.

Step 4: Iterate through steps 1, 2 and 3 for a defined
number of times as decided by the number of
repetitions at each temperature step. After those
many repetitions go to Step 5.

Step 5: Decrease the temperature using the decided re-
duction criterion. Iterate through steps 1, 2, 3
and 4 for the decided number of times. After
those many number of iterations, stop. Use the
best solution found so far.

EXPERIMENTAL  RESULTS

Using data from a silviculture contractor located in
South Alabama, we have created a test-bed problem to
verify our approach. The problem consists of four projects
that are performed at four different sites and one central
site, namely worksite 0. Table 1 gives the distances be-
tween each of the worksites.

Table 1. Distance between worksites (in miles).

Worksites 0 1 2 3 4

0 - 107.5 220 330 82.5
1 - 112.5 437.5 142.5
2 - 550 245
3 - 322.5
4 -

The set of tasks performed at each of the worksites are
given in Table 2. This table describes location (worksite),
duration, precedence, and classes of moveable resource

for each task.

We assume five classes of moveable resources are avail-
able. These resources are considered critical for the op-
eration of the projects. Table 3 gives the number of iden-
tical units and their initial locations for each resource
class. We assume that the resources move at a fixed aver-
age speed of 50 mph. Notice that this assumption is not a
restriction since each moving object in the simulation
can be modeled to move at its own speed.

Minimizing Project Durations (Makespan)

In order to test our model, we first set the objective of
the optimization model as minimizing the makespan of all
the projects. The makespan of a project is defined as the
completion time of the last task. Minimizing project
durations is equivalent to maximizing the utilization of
the resources. After running the algorithm several times
with different parameters, we decided to set up the initial
and cooling temperature of the SA algorithm to be 150
and 10 F°, respectively. In addition, the temperature of
the SA algorithm is decreased at each iteration by 2%. At
each temperature step, the neighborhood of the current
solution is searched two hundred times. To evaluate the
sensitivity of the SA algorithm to the initial solution, we
ran the algorithm ten times. For each run the initial solu-
tion was randomly generated. The results of the test prob-
lem – best, average, and worst – of ten replications were
225, 231 and 253 hours, respectively.

To find whether the best solution was optimal, we com-
puted the objective function assuming an infinite number
of resource units available. In this relaxed problem, all
projects can be independently completed at a minimum
time, determined by the precedence relationships only,
and not by the availability of the resources. The minimum
makespan of this problem can be easily calculated by
hand and it was equal to the minimum makespan of our
best solution to the original problem. Therefore, we con-
cluded that the best solution was optimal. However, if
they had not been equal, then we could not conclude
that the best solution was optimal. Nevertheless, the so-
lution of the relaxed problem could be used as a lower
bound.

The best solution, for this particular case, which was
also solution, the total distance traveled by the resources
was 3423 miles. As shown in table 4, the 2nd unit of re-
source class 1 had a route defined as “3®3 (1)®4 (6)”,
meaning the initial location of this unit was worksite 3
and it was scheduled to subsequently be used by the 1st

task at the same worksite and by the 6th task at worksite 4.
This particular route was 322.5 miles long.
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Table 4. Routes that minimized project durations.

Resource Unit       Optimal Route Total
Class       Worksite (task)  Distance

(Miles)

1 1 0→2 (3) 220.0
1 2 3→3 (1)→4 (6) 322.5
2 1 0    0.0
2 2 1→1(2)→4(2)→4(3)→1(3) 285.0
2 3 0→4(1)→2(7) →4(8)→1(6) 715.0
2 4 2→2(6)     0.0
2 5 0→1(3)→4 (5) →3(6) 572.5
3 1 0→1(5) 107.5
4 1 2→2 (4)    0.0
4 2 0→3 (2)→4(7) 652.5
5 1 1→1(1)→1(4)    0.0
5 2 2→2 (5)→3(4) 550.0

Minimizing Total Traveled Distance

Next, we changed the objective function to minimize
the total traveled distance. The results – best, average,
and worst – of the computational experiment were 2047.5,
2387.5, and 2717.5 miles, respectively. The best solution
is illustrated in Table 5. For this solution the duration of
the longest project is 366.55 hours.

Table 5. Best routes that minimize the total traveled dis-
tance.

Resource Unit       Optimal Route Total
 class       Worksite (task) Distance

(Miles)

1 1 0→4(6)→2(3) 327.5
1 2 3→3(1)    0.0
2 1 0    0.0
2 2 1→1(2)→1(3)→1(5)→3(6) 437.5
2 3 0→4 (1)→4(2)→4(3)→4 (5)   82.5
2 4 2→2(6)→2(7)    0.0
2 5 0→1(4)→4(8) 250.0
3 1 0→1(5) 107.5
4 1 2→2(4)    0.0
4 2 0→4(7)→3(2) 405.0
5 1 1→1(1)→1(4)→3(4) 437.5
5 2 2→2(1)    0.0

It is clear that the real-world ‘optimal’ solution would
require making an explicit trade-off between the objective
of minimizing the makespan and minimizing the total
traveled miles. Figure 5 depicts this trade-off by display-
ing a set of feasible solutions. Each point identifies the
makespan and traveled miles of a particular solution.

Table 2. Task description.

Worksite Task Duration Preceding Resource
Task  Class

(Quantity)

1 1 4 - 5(1)
1 2 7 - 2(1)
1 3 4 2 2(1)
1 4 8 1,3 5(1)
1 5 14 4 3(1)
1 6 4 5 2(1)
1 7 8 6 2(1)
2 1 4 - 5(1)
2 2 5 1 -
2 3 8 - 1(1)
2 4 6 3 4(1)
2 5 8 2,4 -
2 6 12 2,4 2(1)
2 7 8 6 2(1)
3 1 3 - 1(1)
3 2 8 1 4(1)
3 3 8 - -
3 4 14 3 5(1)
3 5 10 2,4 -
3 6 4 5 2(1)
4 1 4 - 2(1)
4 2 9 - 2(1)
4 3 4 2 2(1)
4 4 3 1,3 -
4 5 8 4 2(1)
4 6 10 5 1(1)
4 7 8 4 4(1)
4 8 4 7 2(1)
4 9 3 6,8 -

Table 3.  Resource units and their initial positions.

Resource Class Resource Unit Worksite

1 1 0
1 2 3
2 1 0
2 2 1
2 3 0
2 4 2
2 5 0
3 1 0
4 1 2
4 2 0
5 1 1
5 2 2
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Notice that the three points joined by the line dominate
all other solutions. All solutions lying on this line are
called Pareto optimal solutions [2]. Pareto optimality is a
measure of efficiency. A solution is Pareto optimal if there
is no other solution that makes every objective better off.
A final decision that explicitly considers the trade-off
between the makespan and the traveled miles should lie
on or near this Pareto curve. Notice also that the range of
the solutions is quite large. For example, there are many
solutions that have the minimal makespan of 225 hours,
but have different total traveled miles ranging from 2410
to 3400 miles. Here, there is a potential for an improve-
ment of 990 fewer miles. Furthermore, without an optimi-
zation procedure, the company could be operating at any
point to the right of the line in the figure, for example the
point marked ‘A’ where traveled total distance is 2750
miles and makespan is 325 hours. By using one of the
solutions lying on the curve, say traveled total distance
equal to 2300 miles and makespan equal to 260 (point
marked ‘B’ in the figure), the company could reduce the
completion time by 65 hours (20%), and the total traveled
distance by 450 miles (16%).

Minimizing Project Durations and Total Traveled Miles

The trade-off of makespan and total traveled miles was
modeled using a linear cost function. We added a penalty
cost of K1 dollars per each hour that a project was over-
due and a cost of K2 dollars per each hour spent traveling
between sites. We assumed equal overdue penalty costs
for all the projects for simplicity only. Introducing differ-

ent penalty costs for each of the projects can been done
in a straightforward manner. The number of overdue hours
for each project was calculated in hours as:

Overdue hours = MAX (0, project completion hours -
due date hours)                    (2)

In equation 2, the term “due date” refers to the number
of hours from the current hour in which the project is
required to be completed. The total overdue hours for all
worksites was computed by adding up the individual over-
due hours.  Thus, the total cost of a particular schedule-
solution was the sum of the total overdue penalty costs
and total travel time costs:

Total Cost = K1 x Total Overdue Hours + K2 x Total Travel
Time Hours                                                  (3)

In our example, we assumed that K1 and K2 are 50$/hour
and 80$/hour, respectively. Moreover, we assumed for
this example that the due dates of each project were 225,
196, 180, and 187 hours. After running the solution algo-
rithm, the best scheduling solution was found to have a
total cost of $4,381.  This schedule completed all the
projects on time (before due date) and had a total traveled
distance of 2,738 miles.

In Table 6, we have summarized the total costs by mini-
mizing each cost component separately and both costs
simultaneously. If we set the objective to minimize the
total overdue hours of the projects only, the overdue
cost is zero, but the travel cost is $4,249. On the other

Figure 5. Trade-off between makespan and traveled miles.
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hand, if we set the objective to minimize just the total
travel hours, the travel cost is $3,246 and the overdue
cost is $46,092. However, if we set the objective to mini-
mize both total overdue hours and the total travel hours,
the proposed algorithm gives a solution in which the travel
costs is $4,381 and zero overdue cost. All projects are
completed on time.

Table 6. Cost components with different objectives.

Objective Travel Overdue Total
cost ($)  cost ($)  cost ($)

Minimizing total
   overdue hours 4,249  0   4,249

Minimizing travel time 3,246 46,092 49,338

Min. both total overdue
   and travel time 4,381 0   4,381

Sensitivity Analysis

The previous results depended on the values of K1 and
K2. To observe the effect of these two cost coefficients,
we changed K1 within the range $10/hour to $70/hour
and K2 within the range $40/hour to $100/hour.  Table 7
gives the cost components, travel miles and overdue
hours for different values of K1 and K2.

To study the effect of the problem size on the CPU
time, we ran the algorithm with four larger problems. These
new problems had 8, 10, 15, and 20 worksites. We set the
size of the local search proportional (40 times) to the
number of worksites.  Figure 5 shows the CPU time ver-
sus the number of worksites of each of these problems
for the cases in which the local search was kept constant
over the problem size, and when the local search was
proportional to the problem size.

RESOURCE  CAPACITY  PLANNING

Resource capacity planning is the process of determin-
ing how much equipment is required to accomplish tasks.
The goal of capacity planning is to achieve a balance
between resource capacity and work demand.  Resource
capacity planning is critical in the current forest business
environment as companies strive to achieve the highest
return on investment for their project portfolios while
minimizing expenses. Project-related work often requires
significant adjustment during its lifecycle to align capac-
ity and demand. Such changes inevitably affect other
work. Our proposed model can also be used to assess the

impact of changes on the amount of equipment. The abil-
ity of the model to manage capacity is achieved by mak-
ing modifications to the number of resources and ob-
serving the performance of the projects. The perform-
ance of the projects is evaluated by the total cost. Figure
6 shows the percent reduction in total cost when a new
resource is added and the added resource starts at worksite
0. For example, adding one unit of resource 1 the total
cost of completing all the projects can be reduced by
13%. This is from $4,381 to $3,812. Similarly, if one unit of
resource 2, instead of resource 1, is added the total cost
of completing all the projects can be reduced by 4%. The
capacity analysis shows that for this example addition of
resources 1 and 5 provide the highest cost reductions.

We next decrease each resource class in one unit. Fig-
ure 7 shows the percent of increase in total cost when
one unit of each resource is removed. For example, re-
moving one unit of resource 1 the total cost of complet-
ing all the projects can be increased by 13%. This is from
$4,381 to $4,942. Similarly, if one unit of resource 2, in-
stead of resource 1, is removed then the total cost of
completing all the projects can increase 20%, i.e. to $5,278.
Notice that resources 4 and 5 have the highest cost in-
creases, 43% and 61%, respectively. Reduction in resource
class 3 is not shown in Figure 7, because resource class 3
has only one unit that the reduction leads to an infeasible
solution.

DISCUSSION

A heuristic procedure for scheduling transport re-
sources to tasks at remote locations has been described.
The use of a simulation model makes the proposed ap-
proach very attractive because detailed features of a com-
pany’s operation can be easily included. The results ob-
tained solving one instance of a small size problem showed
that the best solution could be found in less than four
minutes using a personal computer with a processor
Pentium III (1 GHz). Notice that the problem may be small
compared with a real world problem, but the search space
of the problem is still quite large. For example, the number
of all possible paths, through which a particular resource
unit can visit worksites is a function of the number of
permutations of all these locations. Considering that the
small size problem has 12 resources and that each re-
source unit visits on the average 4 locations, the size of
the solution space is roughly (4!)12, which is close to 1017.

The results from problems of larger sizes show that the
relation between CPU time and number of worksites de-
pends strongly on the size of the local search. If the
number of local searches is set independently of the prob-
lem size (number of worksites), the relation between CPU
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 Table 7. Total cost of best solution when travel and due-date costs are minimized

K1 K2 Total Cost Overdue Cost Travel Cost Traveled
($/hour) ($/hour)  ($)  (% of total cost)  (% of total cost)  mile

10 40 2374 8% 92% 54.43
10 60 3635 16% 84% 50.89
10 80 4667 11% 89% 51.98
10 100 5491 12% 88% 48.53
30 40 2326 0% 100% 58.16
30 60 3752 0% 100% 62.54
30 80 4419 0% 100% 55.24
30 100 6203 0% 100% 62.03
40 40 2326 0% 100% 58.16
40 60 3490 0% 100% 58.16
40 80 5003 0% 100% 62.54
40 100 5524 0% 100% 55.24
50 40 2326 0% 100% 58.16
50 60 3490 0% 100% 58.16
50 80 4381 0% 100% 54.76
50 100 6254 0% 100% 62.54
60 40 2104 0% 100% 52.59
60 60 3490 0% 100% 58.16
60 80 4653 0% 100% 58.16
60 100 5476 0% 100% 54.76
70 40 2187 0% 100% 54.67
70 60 3490 0% 100% 58.16
70 80 4653 0% 100% 58.16
70 100 5816 0% 100% 58.16

Figure 5. CPU time versus problem size (Pentium III 1 FHz and 256 MB)
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time and problem size is almost linear; however, when the
number of local searches is set proportional to the number
of worksites, the relation between CPU time and problem
size becomes close to a quadratic function. The CPU time
depends more on the size of the local search than on the
execution time of the simulator. Nevertheless, if a real
world problem is too big to be solved directly with our
approach, the problem can be partitioned into smaller
manageable sub-problems by identifying resources and
geographic areas for each of them and using the pro-
posed algorithm solve each sub-problem separately.

A silvicultural services company could achieve signifi-
cant savings by using this approach to schedule its op-
erations. It is well known that transportation costs repre-
sent a significant portion of the total operating cost of a
forest products company. Additionally, transportation
cost reduction has positive environmental effects as fuel
use is minimized. Future research plans are to incorporate
into the simulation model random components such as
breakdowns of machines or trucks and weather uncer-
tainties.
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Figure 6. Capacity analysis by increasing the number of resources.
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Figure 7. Percent increase in total cost when one unit of a resource class is removed.
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