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ABSTRACT

The relative performance of two integrated machine
concepts (combined harvesting / forwarding capabilities)
was assessed against a conventional harvester / for-
warder CTL system in a simulated thinning regime. Mul-
tiple-regression based on the simulation output was used
in deriving time-consumption functions at the systems
and machine level.  Descriptive stand variables could be
reduced to; harvest volume (m3/ha), stem volume (m3),
lead distance (m) and object volume (m3/ stand) while
maintaining acceptable statistical rigour (R2 > 0.95). The
ability of one of the integrated machines to process logs
directly onto the bunk provided it with an advantage
that more than compensated for its reduced harvesting
efficiency. Both integrated machine systems show a com-
petitive advantage in forest structures with low object
volumes and long or frequent relocations.

Factors negatively affecting forwarding productivity
(e.g. long lead distances) favour the conventional two-
machine system. A break-even economic analysis showed
that integrated machines could present a feasible alter-
native to contemporary mechanised CTL systems.

Keywords: CTL, harvester, forwarder, harwarder,
thinnings, productivity, time-consumption,
simulation.

BACKGROUND

The advent of fully mechanised cut-to-length (CTL)
systems brought with it significant capital investments
demanding efficient working procedures and effective op-
erations management. Typically, such systems consist of
a single-grip harvester and a purpose-built forwarder op-
erating in a sequential manner (here referred to as a twin-
machine system, TWIN). The economic viability of this
system is especially dependent on utilisation levels and
productivity rates.

Subtle interactions among the harvesting machines and
changes in the working environment can result in widely
varying production rates [16]. Stand attributes such as
low stem-volume or high branch density might hinder the
harvester, while topographic features such as increased
lead distances and difficult terrain might reduce forwarder
efficiency. Resulting system imbalances can imply re-
duced utilisation of one of the component machines in a
system.

In Central-Western European countries with predomi-
nantly small management units (< 5 ha.) the logistics of
frequently having to balance such a system is complex
and administratively taxing. The low potential for ben-
efiting from ‘economy of scale’ factors at a stand-level in
these forests is further eroded by the sparse dispersion
of forest stand clusters on a landscape level. Even in the
boreal forests of Scandinavia, patchwork ownership pat-
terns result in a similar forest ‘structure’. Increased relo-
cation and set-up penalties are incurred and machine uti-
lisation is reduced as a result. Contemporary silvicultural
systems requiring frequent light thinnings (low harvest-
ing volumes) compound the problem of finding economi-
cally feasible thinning methods. The necessity for restruc-
turing and innovation in the timber supply chain, both
with regard to technical, procedural, and organisational
issues has been emphasised recently (cf. [19]). A shift
toward consumer-oriented production in a chain-wide
perspective further complicates the decision-making proc-
ess.

Integrated machines (integrated felling, de-branching,
cross-cutting, loading and terrain transport capacity on
one base machine) offer an opportunity for organisational
and technical rationalisation. Development of a new gen-
eration of these machines has been ongoing since the
beginning of the 1990’s, though similar concepts have
been developed intermittently since the 1950’s [11,14].
Management complexity is alleviated as the machine op-
erates independently, only one machine needs to be relo-
cated and the operator achieves greater familiarity with
the work object at hand. More importantly, timber is sup-
plied at roadside soon after the commencement of felling,
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thereby diminishing delivery lead times, and a single ma-
chine captures, processes and transmits all production
data. A technical basis for providing customised forest
harvesting is at hand.  A number of time-studies on the
integrated machines have been published recently (c.f.
[2,10,31,32,36]) and reflect the growing interest in these
machine concepts.

The aim of this paper is to evaluate the consequences
of replacing the twin-machine system with one of two
concepts of integrated machines by comparing their rela-
tive efficiencies, highlighting their strengths and weak-
nesses and providing a basis for sensitivity analysis on
technical developments. We also reflect on the implica-
tions the application of these systems might have for
improving primary material flow in the timber supply chain.

MATERIAL AND METHODS

Simulation has proven to be a useful tool in analysing
harvesting systems and identifying bottlenecks in the
primary stages of wood delivery, and is therefore used as
the primary analytical method here. (cf. [6,7]). A harvest-
ing system, based on productivity norms including a sin-
gle-grip harvester and a purpose built forwarder, was as-
similated and simulated using the SASâ statistical pack-
age. The analysis involved identifying all significant ele-
ments from normal working procedures and deriving ag-
gregate time-consumption functions for each of the com-
ponents harvesting, forwarding and relocation. The stand-
ard CTL system (TWIN) was tested against two con-
cepts of integrated machines (Fig. 1).

The first concept is based on a forwarder chassis and
functions alternatively as a harvester or forwarder, exem-
plified by the Ponsse Buffalo Dual™  [30] (referred to as
DUAL) by attaching either the harvesting-head or alter-
natively the loading grapple to the boom. This transfor-
mation also involves mounting or detaching the stan-
chions on the bunk. Both the head and stanchions are
adapted with quick-couplings, which improve the viabil-

ity of the system. The second concept depicts a machine
with a single integrated harvesting-head and loading grap-
ple, for example the Valmet 801 Combi™  [29] (referred to
as COMBI), which is able to both fell and load the bunk in
one pass. Both the integrated machines have a crane
reach of approximately 11m with maximum felling diam-
eters of 50 cm. The DUAL system is considered to repre-
sent an intermediate machine concept in the transition
between the TWIN and COMBI concepts.

A number of adjustments equating to the reported tech-
nical differences of the integrated machines’ harvesting
and forwarding capabilities were then made running a
duplicate simulation, and the comparative performances
of the integrated machines were evaluated. Time-con-
sumption figures are given gross effective time (E

15 
 min-

utes), which include delays of up to 15 minutes, and vol-
umes are given as m3 solid-under-bark (s.u.b.).

Stand Parameters

Thinning policy was determined in accordance with
guidelines for Norway spruce (Picea Abies (Karst.) domi-
nated stands in southern Sweden [3]. A stand with a Site
Index (SI

100
) of 28, correlating to a mean annual increment

of 9 m3/ha was chosen, and three thinnings were pre-
scribed at ages of approximately 30, 40 and 55 years, each
removing around 28% of the basal area  (Table 1).

Some variation was introduced by randomising the pre-
dictor variables in accordance with more natural distribu-
tions (Table 2) (cf. [1]). Stem-volumes, lead distances (dis-
tance from stand centre to roadside stack), and the number
of trees harvested per ha. were normally distributed. Both
stand size and the relocation distance were modelled us-
ing a uniform distribution to ensure an even representa-
tion across the spectra as the actual distributions ob-
tained in Denmark were too skewed for obtaining generic
results. Lead distances were independent of stand size. A
triangular distribution was used in predicting the propor-
tion of timber processed directly onto the bunk for COMBI.

Figure 1. Illustrations of the integrated machine concepts considered: left, Ponsse Buffalo Dual (Copyright © 2002
Ponsse Oyj. All rights reserved.), right, Valmet Combi 801 (Copyright © 2002 Partek Forest AB. All rights
reserved.).
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Harvesting

Time consumption for the single-grip harvester was
based on productivity norms valid for stem-volumes be-

Table 1. Thinning parameters.

Pre-thinning Removal
Thin Stocking B.A.† Stem-vol. Height Volume Stems Volume
no. (stems/ha) (m2/ha) (m3/stem) (m) (m3/ha) (stems/ha) (m3/ha)
1 2500 28.0 0.05 14.0 180 1050 52
2 1450 33.5 0.16 18.7 271 560 90
3 890 35.7 0.27 22.6 334 390 105

† Basal area.

Table 2. Variables applied in the simulation and their respective distributions.

Variable Distribution
(parameters) 1st thin. 2nd thin. 3rd thin.

Stand size (ha.) Uniform (range) 0.1-10 0.1-10 0.1-10
Stem volume (m3) ‡ Normal (mean; s.d) 0.05;0.005 0.16;0.016 0.27;027
Lead distance (m) Normal (mean; s.d) 300;100 300;100 300;100

Average relocation distance (km) Uniform (range) 0.2-50.0 0.2-50.0 0.2-50.0

No. of trees harvested (stems/ha) Normal (mean; s.d) 1050;60 560;30 390;15

Processed directly on bunk † Triangular (mode) 0.7 0.5 0.3

Interchange heads (min.) Gamma (shape) 3 (+20) 3 (+20) 3 (+20)
† Proportion of timber processed directly on COMBI bunk.
‡ Mean stem volume of harvested trees.

tween 0.04m3 and 0.3m3 s.u.b. [5] (Fig.2). Terrain condi-
tions were classified as easy, 1:1:1 according to the sys-
tem in [9].

Figure 2. Harvester productivity as a function of stem volume (left) and harvested volume (right), by thinning.
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The following harvester work-cycle elements are nor-
mally considered in a productivity analysis: Prepare, Po-
sition, Boom-Out, Fell, Boom-In, Process, Move & Delay.
However, in simulating total productivity with a single-
grip harvester, it was considered sufficient to summarise
these into two work elements [28]; repositioning the ma-
chine between operating positions in the stand (MOVE),
and preparation, felling and processing, including all boom
movement (PROCESS).

A PROCESS penalty of 0.25 min.m3 was placed on DUAL
as compared with the single-grip harvester. The harvest-
ing function was considered to be slightly impeded by
the presence of the ‘bunk-bearing’ bogie wheel set, as
the boom is mounted behind the cabin. This implies that
timber has to be processed with the boom in an extended
position, or that the tree must be turned and processed
parallel to the striproad. In addition, a time penalty was
imposed for interchanging the harvesting head with the
grapple and removing or mounting the load bunk. This
penalty was generated from a gamma distribution (mean
23 min.), which ensured that the transition seldom took
less than 20 minutes, but delays of up to 35 minutes were
probable, as the machine has to return to the same loca-
tion to refit the head. These two penalties (productivity
and interchanging) provided the only systematic devia-
tion for DUAL from the productivity of the single-grip
harvester.

Two penalties were placed on the PROCESS capacity
of the COMBI. Firstly, a penalty of 0.25 min.m-3 was in-

curred in compensating for possible reduced efficiency
in handling and positioning the more cumbersome har-
vesting head, which is designed for both harvesting and
loading. This has  been referred to by some sources as a
potential drawback ( cf. [11,17]), though none of the pen-
alties on either machine were empirically quantified. Sec-
ondly, a productivity penalty was placed on the volume
of timber processed directly onto the bunk, as this re-
quires more handling than harvesting onto the forest floor.
For the first thinning, this penalty was fixed at 15%, for
the second thinning, 20% and for the third, 25% of TWIN
harvesting time. Approximately 70% of the volume from
the first thinning was processed directly onto the bunk,
while for the second and third thinnings the figures de-
creased to 50% and 30% respectively, along with an in-
crease in stem volume. The assumption here is that the
bunk is fixed and not slewable in the in-feed direction. In
the simulated thinnings, residual stand density is rela-
tively high, and it was assumed that this would impede
movement of the bunk. These two penalties were used as
the only technical variables differentiating the felling-
processing efficiency of the COMBI from that of the sin-
gle-grip harvester.

A number of authors have shown that MOVE time
ranges between 11% and 26% of the total harvesting cy-
cle time for a single-grip harvester  (Table 3). An analysis
of the data in Table 3 provided the following MOVE model,
which was used in allocating harvesting time to MOVE
and PROCESS elements;

Table 3. The proportion of harvester MOVE time as given in a selection of time and productivity studies.

Author (s) Plot Harv. vol Stem. vol Cycle time MOVE
(m3/ha ) (m3) (cmin/tree) (%)

Eliasson et.al. [13] a 153 0.44 49.1 14
b 90 0.39 56.4 19

Glöde [15] a 140 0.80 178.0 18
b 190 0.87 116.0 14
c 120 0.56 123.0 16

Hånell et. al. [21] a 45 0.63 97.5 23
b 52 0.48 80.0 22
c 57 0.48 80.5 20
d 60 0.25 58.2 17

Kellogg and Bettinger  [22] a 239 0.37 118.6 11
b 212 0.40 125.8 11

Lageson [24] a 63 0.10 48.7 22
b 72 0.17 58.6 26
c 69 0.15 59.2 22

McNeel and Rutherford  [25] a - - - 18
Suadicani and Fjeld  [33] a 76 0.34 103.9 22

b 72 0.31 96.2 20
c 156 0.34 94.9 17

Tufts and Brinker [35] a 96 0.32 49.6 18
b 100 0.25 55.4 21
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* = 25.2 – 0.06<

where: * is MOVE time as a percentage of cycle time
and
< is the harvested volume per hectare (m3/
ha.)@(r2=0.72)

Suadicani and Nordfjell [34] found that a high propor-
tion of harvester MOVE time includes preparatory ‘mi-
cro-positioning’ of the machine, especially in early
thinnings. Superimposing the systems in a work-proce-
dural manner clearly illustrates that the work moment
MOVE appears once each for the harvester and the for-
warder in the TWIN system, twice for DUAL but only
once for the COMBI. A problem encountered was how to
apportion this saving to either the harvesting or forward-
ing element of the COMBI work-cycle. In forwarding, the
MOVE component (Moving during Loading) almost ex-
clusively refers to linear motion, which allows it to be
modelled directly from technical parameters such as ve-
locity and strip-road length. It was therefore evaluated
that in-stand travelling with the COMBI was more pre-
cisely superimposed by the forwarder rather than the
harvester, and the implied saving was accrued against
the forwarder, as discussed under the next section.

Forwarding

The forwarding working cycle is often divided into the
sub-operations; Loading, Moving During Loading, Driv-
ing With Load, Unloading and Driving Empty [16]. In
order to facilitate analysis at a sufficiently detailed yet

comparative level, the forwarding function in the model
was grouped into the following two elements; LOAD
(Loading, Moving-During-Loading and Unloading) and
DRIVE (Driving Loaded and Driving Empty).

Productivity rates for loading, moving-during-loading
and unloading, were based on productivity norms [4] for
a thinning (after harvesting with a small single-grip har-
vester), valid for a range of 20 through 125m3/ha (Fig. 3).

The productivity rates then arrived at were decom-
posed to the elements ‘Loading’, ‘Moving-During-Load-
ing’ and ‘Unloading’ based on an assessment of the time
studies given by [22] and [34]. ‘Loading’ was randomised
around 60% (s.d. 5%) of the total LOAD time while ‘Driv-
ing while Loading’ and ‘Unloading’ times were appor-
tioned with 50% of the remaining time each. Because the
harvesting head on the COMBI machine makes for a more
cumbersome grapple, the ‘Loading’ and ‘Unloading’ ele-
ments of LOAD are penalised against those of TWIN.
This complied with the observations of [18]. The penalty
placed on ‘Loading’ and ‘Unloading’ (approximately 80%
of LOAD) for anticipated handling difficulties was gener-
ated from a triangular distribution with a mode, minimum,
and maximum of 8%, 0% and 10% respectively. The
COMBI has the ability to process logs directly onto the
bunk to varying extents, depending on the working
method, individual tree size, and the amount of handling
space. Processing directly onto the bunk (so-called Inte-
grated Off-Ground Handling) and saving on ‘Moving-
During-Loading’ represent the most significant diver-
gence from the productivity of the purpose built forwarder.
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Figure 3. Forwarder productivity as a function of harvested volume (left) and lead distance (right), by thinning.
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In [18] it is shown that on a machine with a fixed bunk
(non-slewing) this benefit comes at the expense of an
increase in harvester PROCESS time of around 20%, which
correlates to the 20% penalty imposed on the harvester
in the previous section.

The DRIVE component of the forwarding operation was
simplified, and effectively only dependent on average
extraction distance (lead distance). A mean (in-field) trav-
elling velocity of 65 metres per minute (m/min) was used
(both loaded and empty), and the load capacity of all
three machines considered equal (13 m3). Time consump-
tion for driving is also converted to E

15
 min/m3.

Relocation

Relocation refers to the movement of the machine from
one working tract (object) to another and was calculated
as the quotient of travel time and object volume (the prod-
uct of stand size and yield per hectare)  (min./m3). A uni-
form distribution was used in generating relocation dis-

tances and obtaining descriptive functions representa-
tive of the entire range (Table 2). Relocation time was
determined from the distance generated (Fig. 4). Move-
ment on road occurs at an average velocity of 15 km/hr
(under own power) alternatively 60 km/hr (low-bed truck),
and each move incurs a fixed time penalty of 30 minutes
per machine. This ‘set-up’ time is incurred irrespective of
relocation distance, and includes preparing to relocate as
well as orientation on arrival in the new stand. Relocating
outside of normal working hours does not affect G

15
 hrs.

The rationale was that tasks that could have been com-
pleted before 10:00 would have been completed on the
evening prior to the move (16:00-19:00 agreed overtime),
and therefore only the time period 10:00 to 19:00 is of
interest. This model provided a mean loss in utilisation
due to relocation of 1.9 hrs. (s.d.1.2) per move, including
0.5 hrs. set-up. This loss arises mainly due to the fact that
operations are discontinued for the day, following reloca-
tion by low-bed truck.  Given the relocation distribution
and probabilities in fig 4., the proportion of relocation
under own power vs. by low-bed truck was 60:40.

Figure 4. Flow diagram of the relocation model.
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Simulation

The productivity models were set up and run using the
SAS statistical package. This largely deterministic pro-
cedure was used to establish the relationships and sensi-
tivities of the component variables, in keeping with the
suggestions of  [20]. The simulation was carried out at
the stand level, where each iteration implied a new stand
size and thinning number as well as a relocation and lead
distance. The thinning number in turn determined the
silvicultural attributes of the stand, such as stem volume,
initial stocking and thinning intensity (Table 1). Variation
was induced using stochastic distributions for some of
the attributes (Table 2). The ratio of first, second, and
third thinnings was consistent, and each thinning in-
cluded a large number of observations (> 20 000). The
time-consumption for each system, the sum of the com-
ponent machine times, was calculated simultaneously for
each observation. Output data sets were analysed using
the General Linear Models procedure of the SAS statis-
tical package where productivity models at the machine
and system level were developed by, and across,
thinnings.

RESULTS

For clarity, each system will be subscripted H or F to
denote whether the harvesting function or forwarding
function of the system is being discussed (e.g. DUAL

H
 =

DUAL Harvesting and DUAL
F
 = Dual Forwarding). The

most significant determinants were used in deriving lin-
ear time-consumption functions by thinning and machine-
system (Table 4). The mean relocation times per machine
were 0.38, 0.23 and 0.19 min./m3 in the 1st, 2nd and 3rd

thinnings respectively, as a result of increasing object
volumes.

Harvesting

There is a significant reduction in time consumption
for harvesting between the first thinning and the second
and third thinning, for all three systems (Fig. 6). TWIN

H

and DUAL
H
 perform similarly across thinnings, though

DUAL
H
 is slightly and consistently slower than TWIN

H
.

Time for interchanging the head amounts to around 23/
objvol min./m3, the difference becoming less pronounced
with increasing object volumes (0.085, 0.051 and 0.043
min./m3 for 1st, 2nd and 3rd thinnings respectively). On av-
erage, COMBI

H
 consumed 1.01, 0.51 and 0.42 min./m3 more

than TWIN
H
 did in each thinning respectively, though

the interaction with COMBI
F
 makes it nonsensical to re-

port each component separately (Table 4).

Forwarding

Forwarding times were more consistent than harvest-
ing time across all three thinnings (ranged between 4.1
and 4.8 min./m3) (Fig. 5). Mean harvesting volumes were
52.5, 89.7 and 105.3 m3/ha for each thinning respectively.

Figure 5. Time-consumption by harvesting system and thinning. All variables set at mean values.
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DUAL
F
 and TWIN

F
 converge with increasing object vol-

ume. The integrated off-ground handling capability
strongly differentiates COMBI

F
 from the others. This

alone accounts for average reductions in COMBI
F
 time-

consumption of 1.24, 0.93 and 0.77 min./m3 by thinning,
resulting from savings in loading-time. This advantage
was slightly reduced by the penalty placed on the antici-

pated cumbersome loading grapple which resulted in in-
creases in time-consumption of 0.10, 0.09 and 0.09 min./
m3 for thinnings 1, 2 and 3 respectively. The saving on in-
stand moving time equated to 0.72, 0.62 and 0.59 min./m
in each thinning. These three effects fully explain the
time-consumption differences between TWIN

F
 and

COMBI
F
.

Table 4. Parameter estimates for the system time-consumption models derived from the simulation output (net of
relocation time).

Harvesting Thin. Regression coefficients
System  No.

â
0

â
1

â
2

â
3

â
4

â
5

TWIN
H

1 20.83 -0.05195 -119.0 - - -
2 8.578 -0.009548 -16.25 - - -
3 5.601 -0.005977 -4.070 - - -

TWIN
F

1 4.887 -0.01854 - 0.002786 - -
2 4.368 -0.01084 - 0.002786 - -
3 4.214 -0.009231 - 0.002785 - -

TWIN
TOT

1 25.72 -0.07023 -119.3 0.002776 - -
2 12.95 -0.02026 -16.34 0.002793 - -
3 9.820 -0.01507 -4.137 0.002782 - -

DUAL
H

1 21.08 -0.05183 -119.1 - 22.97 -
2 8.830 -0.009544 -16.27 - 23.08 -
3 5.852 -0.005974 -4.072 - 23.00 -

DUAL
F

1 4.889 -0.01856 - 0.002786 22.97 -
2 4.369 -0.01084 - 0.002786 23.02 -
3 4.213 -0.009226 - 0.002784 23.13 -

DUAL
TOT

1 25.97 -0.07014 -119.5 0.002772 45.97 -
2 13.20 -0.02024 -16.37 0.002791 46.10 -
3 10.07 -0.01506 -4.140 0.002780 46.14 -

COMBI 
TOT

1 25.66 -0.06491 -129.8 0.002775 - -0.4871
2 12.61 -0.01609 -17.98 0.002793 - -0.9596
3 9.383 -0.01178 -4.556 0.002785 - -0.9165

System time-consumption is obtained using the above parameter estimates in the following model:

Where:  Y = System time-consumption (min/m3) (net of relocation time)
X

1
 = Harvest volume (m3/ha).

X
2
 = Stem-volume (m3).

X
3
 = Lead distance (m).

X
4
 = Reciprocal of Object Volume (m-3).

X
5
= Proportion of timber processed directly onto bunk

R2 > 0.95 for all  functions.
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The effect of relocation can be seen in the comparison
of systems’ time consumption and object volume (Fig. 6).
Below a threshold of around 250 m3 both COMBI and
DUAL are more competitive than TWIN.  For DUAL, the
saving in relocation time outweighs the burden of inter-
changing the heads more frequently.

DISCUSSION

The time-consumption models arrived at in this study
are based on empirical productivity norms for harvester
and forwarder work-elements to which a number of tech-
nical and operational adjustments have been made. Sen-
sitivity analyses were carried out on all assumptions, and
systems’ time consumption can be seen in Fig. 7, where
the circles indicate the mean values used in the simula-
tion.

For COMBI, the heavier felling/processing/loading
head was penalised to varying degrees. COMBI-A shows
the effect a shift in the volume that is processed directly
onto the bunk (%) would have on system time consump-
tion. The associated benefit of reduced loading time with
increasing ‘integrated off-ground handling’ is counter-
acted to some extent by increased processing times on
this volume. COMBI-B shows the slight effect of penalis-
ing the ‘Load’ and ‘Unload’ functions of the machine by
8% of forwarder loading time, because of the heavier load-
ing-grapple. COMBI-C shows the effect of the penalty
imposed on the efficiency of processing directly onto the
bunk, as this requires more complex handling.  This pen-
alty was incremented with tree size, based on the assump-
tion that larger trees are more difficult to manoeuvre. The
penalty is multiplied with the volume being processed
directly, and is therefore most sensitive in the first thin-
ning, where a higher proportion is processed in this way.
COMBI-D shows the effect of the constant 0.25 min./m3

penalty placed on the harvesting head for reduced felling
efficiency.

In DUAL-A the effect of altering the constant 0.25 min./
m3 imposed because of the bunk-bearing bogie wheel-set
inhibiting processing space is shown.  DUAL-B shows
the time taken to interchange the harvesting-head with
the loading-grapple, and mounting or dismounting the
stanchions on the bunk.  This effect is virtually nullified

Figure 6. System time consumption as a function of object volume. (T=TWIN, D=Dual, C-COMBI).
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by large object volumes.

An issue with multi-functional machines is that reli-
ability is the product of reliability of the component parts
[26].  It could be argued that integrated machines would
have a lower technical availability than purpose-built
machines.  Using the time-consumption results from fig-
ure 5 together with technical availability levels of 81.8%
and 86.4% for a harvester and forwarder respectively [12],
it can be shown that for COMBI, an availability of 80.2%,
77.5% and 77.8% in the 1st, 2nd and 3rd thinnings would be
sufficient for the systems to break even. In a recent study
[31] including 12 000 m3, three integrated machines (Pika
828) achieved availability levels of 79.1%, while a number
of 7-11.5 ton harvesters showed levels around 84 %.

Results from the simulation were compared with a
number of published time studies on integrated machines
(10,31,32,36).   Mean stem-volumes ranged 0.09-0.16 m3

s.u.b.  Corresponding values for the harvested volumes
and lead distances were 37.5-79 m3/ha and 100-250 m.
These parameters were put into the functions for 2nd

thinnings (DUAL
TOT

 and COMBI
TOT

) in Table 4.

Where necessary, G
0
-time was converted to G

15
- time

using a factor 0.835 [23].  Our results were 14-27% lower
than [32], 3-32% lower than [36] and 17-36% lower than
[31]. They were however much closer to the findings of
[10], where they varied from 11% lower to 8% higher than
those.  Terrain conditions were probably the single most
significant factor in this deviation. Difficult terrain would
increase the forwarding component of total time consump-
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tion disproportionately and  affect especially COMBI
negatively.

Energy consumption is of economic and ecological im-
portance.  A reduction in fuel consumption  reduces emis-
sions to the same extent [7].  There is a good correlation
between fuel consumption and time consumption to dif-
ferent work elements, which means that the amount of
fuel consumed per productive machine hour (PMH) is
relatively constant [27].   Assuming the machines in this
study have the same rate of consumption per PMH,
COMBI will consume 5-10% less fuel than TWIN on stands
of 5 ha (cf. Fig. 5).  On smaller stands (2 ha.) the corre-

sponding values will be 9-13% less for COMBI and 1-2%
less for DUAL (cf. Fig. 6).

Reduced relocation times are a primary advantage of
the integrated machine systems. This makes them suit-
able in forest operations involving lower object-volumes
(light or early thinnings), or more frequent and longer
relocations. The relocation model presented in Fig.4 re-
quires further elaboration. The half-hour set-up penalty
could be too high where stands are strongly clustered
and where thinning prescriptions are very similar. The
effect of reduced work-place time resulting from reloca-
tion needs to be internalised in the model. The frequency

Figure 7. Sensitivity analyses for technical assumptions:

COMBI-A: The percentage of harvested volume processed directly onto the bunk (%)
COMBI-B: The percentage representing the penalty on ’Loading’ and ’Unloading’ capability (%)
COMBI-C: Reduced PROCESS efficiency on the volume processed directly onto the bunk (min./m3).
COMBI-D: The fixed penalty placed on harvesting with a more cumbersome harvesting-head (min./m3).
DUAL-A: The fixed  penalty on harvesting with the restricting bunk-bearing bogie (min./m3).
DUAL-B: Time taken to interchange the harvester-head with the loading grapple and stanchions (min.)
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and cost of utilising a low-bed truck to relocate the ma-
chines should be retained in the simulation and used to
further differentiate the system costs. To evaluate the
extent of relocation time to work-place time, empirical data
on the size and mutual distances between stands is re-
quired. This is not necessarily related to forest density.
For example, in the boreal forests in Finland, Asikainen
[6] uses average relocation distances of 30 km alterna-
tively 50 km.

The study has largely been concerned with time-con-
sumption. Differences in machine-costs could change the
suitability rankings. A break-even analysis was carried
out to allow for comparisons to be made across interna-
tional economies. The hourly operating cost of a single-
grip harvester (including all cost-components) is set at
index 100 (HARV

100
) and the cost of a purpose built for-

warder at index 75 (FORW
75

). Figure 8 shows what the
maximum hourly machine cost (as a percentage of
HARV

100
) can be for the system to operate at economic

equity with TWIN. The y-axes show the cost of using
DUAL / COMBI relative to that of using TWIN (unit cur-

rency/m3). At 100% (where the system costs break-even),
the x-axes give the maximum hourly charge permitted on
DUAL / COMBI as a percentage of the Harv

100
. For thin-

ning 1, one could at most pay 94.5% of Harv
100

 to break
even. In the case of thinnings 2 and 3, this figure falls to
around 90% and 88% respectively. For COMBI, there is a
percentage increase from 101% to around 104%, as COMBI
outperforms TWIN in all thinnings.

In this study, we have attempted to simulate contem-
porary harvester / forwarder systems in various operat-
ing environments, then adjust some technical parameters
to emulate two integrated machine concepts. The analy-
ses identified a number of points both favourable and
disadvantageous to the absolute superiority of any of
the systems.  However, in Scandinavia at least, the sus-
tained research & development effort focused on inte-
grated machines by all major manufacturers through re-
cent years is evidence of a collective recognition of the
potential these machines may hold for future mechanised
CTL operations.

DUAL hourly cost vs. Harvester (%)

DUAL, thinning 1. DUAL, thinning 2. DUAL, thinning 3.

COMBI, thinning 1. COMBI, thinning 2. COMBI, thinning 3.

DUAL hourly cost vs. Harvester (%) DUAL hourly cost vs. Harvester (%)

COMBI hourly cost vs. Harvester (%) COMBI hourly cost vs. Harvester (%) COMBI hourly cost vs. Harvester (%)
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Figure 8. Break-even analysis by system (row) and thinning (column).
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