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ABSTRACT 

Starting from the questions of the appropriate
ness of the term juvenile wood and the uncertainty in 
predicting its location in a given stem of a typical 
Northern American conifer, some predictions are 
made concerning the impact of the proportion of ju
venile wood on bending properties of softwood 
lumber. 

Results of a recent study which looks at the rela
tive merits of proportion of juvenile wood and posi
tion in the tree stem as alternative indicators of bend
ing strength of plantation White spruce lumber are 
used to expand the discussion. This work is related 
to changing harvesting and log transportation prac
tices to those which make it possible to cut and seg
regate logs from tree stems in the relatively con
trolled environment of a sawmill rather than in the 
forest. 
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INTRODUCTION 

In recent years there has been an increase in the 
proportion of Canadian forests that are in coniferous 
plantations. It is estimated that between 1983-1986, 
the area planted as a percentage of the area har
vested rose to 27.2 percent, up from 16.8 percent 
during 1975-1980 [15]. Similar trends are observed 
in USA, and European countries. Elsewhere, for 
example, in New Zealand and Chile virtually all of 
the commercial softwood forest is in plantations of 
exotic species. 

1. The authors are respectively, Wood Products Manager, Indus
trial Domestic & Electrical Appliances Ltd., Soesdyke, East Bank 
Demerara, Guyana, South America; and Director, University of 
New Brunswick Wood Science & Technology Centre, Frederic-
ton, New Brunswick, Canada. 

Along with increased utilisation of plantation 
material and intensive forest management comes a 
shortening of the rotation period associated with 
conifers from a given geographic location. Planta
tion grown material tends to have a high proportion 
of wood from growth rings formed during the initial 
stages of development at any particular height in a 
tree stem. Structural softwood lumber from planta
tions has been found to exhibit undesirable features 
such as high knot area ratios, high degree of spiral 
grain, excessive drying degrade, [3] [26]. An ex
ample of the problems that can occur due to presence 
of juvenile core material in building structures is sea
sonal arching in trusses made from softwood lum
ber. Gorman[ll] studied King-post southern pine 
trusses and concluded that there should be a reduc
tion in the amount of "juvenile" material allowed in 
bottom chords if seasonal arching is to be avoided. 

Moody [18] analysed ninety finger jointed ten
sion specimens of 2" x 6" Southern pines, to compare 
their strengths with those of sixty unjointed control 
specimens. Thirty of the control specimens and sixty 
of the jointed specimens contained a significant 
amount of "pith-associated" (juvenile core) wood. It 
was found that the tensile strength of control speci
mens with significant amounts of pith-associated 
wood had an average strength 34 percent less than 
that of specimens without significant amounts of 
pith-associated wood. Pith-associated wood reduced 
the tensile strength of finger jointed specimens by an 
average of 22 percent. Based on Moody's work, use 
of short rotation plantation grown Southern pines, 
may require reductions in allowable design capaci
ties for elements such as tension chords in trusses, 
and glulam beams and ties compared with similar 
elements made from mature wood from Southern 
pines. 

From experience with softwood lumber from 
other species of trees, it seems likely that juvenile 
core material will have a significant influence on the 
strength and stiffness properties of White spruce 
(Picea glauca (Moench) Voss) lumber from short ro
tation plantations. Studies were initiated at the Uni
versity of New Brunswick during 1987 on two as
pects of mechanical properties of plantation grown 
White spruce from the University's woodlot. In the 
work reported here the influence of variation in po
sition in a tree stem on the bending strength and stiff
ness of lumber was studied, with the objective of op
timising quality control and "grade" recovery in a 
sawmill environment. A second study has shown 
that significantly different levels of drying degrade 
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can result from alternate conventional drying sched
ules [30]. Further projects are extending considera
tion to Red pine (Pinus resinosa Ait.). 

Juvenile Wood Content of Lumber 

Researchers have used different terms when re
ferring to immature wood near the piths of tree 
stems. Using position in the tree stem as an indicator 
of physical properties, this material has been termed 
pith wood [21], core wood [33], and inner wood [21]. 
Based on the concept of wood formation, it has been 
termed crown-formed wood [14] [7] [17] [24]. Study 
of anatomical features and their variation within 
trees has led to the term juvenile wood[22] [23] [31] 
[1] [16] [17] [5] [28] [20] [32] [29] [13]. 

The term juvenile wood refers to a phase in the 
life of a cross-section in the stem or branch being 
considered. Establishing that a particular piece of 
wood is "juvenile" does not by itself tell anything 
about the age of the tree from which it was cut. 
Juvenile wood is produced by a young cambium in 
close proximity to the foliage (crown-formed wood). 
Mature wood in a tree stem is formed below the 
crown, and as the height of the tree increases and the 
crown moves upward, the juvenile core at a cross-
section below the crown remains constant but the 
ring of mature wood surrounding it thickens with 
the formation of each new annual ring. 

Location of an exact boundary between juvenile 
and mature wood in the vertical and horizontal 
planes of a tree stem is not possible. According to 
Yank et al [29], "the mechanism that mediates the 
transition from juvenile to mature wood is still un
known". Rendle [23] attributed this to the range of 
variables concerned (tracheid or fibre length, vessel 
diameter, summerwood density, percent cellulose, 
etc.). Several researchers have attempted to clearly 
define the juvenile-mature wood boundary: [9] [12] 
[26] [6]. Unfortunately the inconsistent results ob
tained using the variables outlined by Rendle [23] 
make it difficult to locate a boundary. 

Table 1 gives an indication of how various physi
cal properties have been found to vary between juve
nile and mature wood. 

Table 1 - Physical properties indicating transition 
from juvenile to mature wood, Yank et al [291 

Greater for juvenile wood 
than mature wood 

microfibril angle, 
longitudinal shrinkage, 
cell lumen, 
lignin content, 
reaction wood, 
spiral grain, 
knottiness of lumber, 

Smaller for juvenile 
wood than mature 
wood 

relative density, 
tracheid length, 
latewood content, 
cell wall thickness, 
tangential cell 
dimensions, 
cellulose content, 
strength of 
clear wood 

No clear guidance has been found in the litera
ture concerning definition of the juvenile core in 
plantation grown White spruce. Some guidance is 
available from a literature review by Barbour [4], but 
this emphasises variations in physical properties in 
trees from mature natural stands. 

The primary information used by the authors to 
select an assumed boundary between juvenile and 
mature wood was work by Dr. L.P. Sebastian, Uni
versity of New Brunswick (UNB) on some anatomi
cal and physical properties of White spruce sap-
wood and heartwood, [25]. Tracheid length was se
lected as the most reliable indicator, and this led to 
adoption of the outer surface of the fifteenth annual 
ring as the boundary of the juvenile core. 

For species other than White spruce the juvenile 
wood-mature wood boundary has been estimated to 
lie between five and twenty growth rings from the 
pith and has generally been assumed to depend 
upon species. However, a recent study on loblolly 
and slash pine suggests that the length of juvenility 
is related to environmental factors associated with 
geographic location rather than to species differ
ences [8]. The role of silvicultural treatments also ap
pears important [19]. 

Barrett and Kellogg [3] in their work on Douglas 
fir lumber defined specimens with up to 50 percent 
of the cross-section contained in the first twenty 
annual rings as mature wood, and those with more 
than 50 percent of the cross-section contained in the 
first twenty annual rings as juvenile wood. By 
contrast, in the UNB studies on White spruce, lum-
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ber has been categorised as shown in the first column 
of Table 3. 

MATERIALS AND METHODS 

A total of 14 trees were harvested from the 
University woodlot located on the outskirts of Freder
icton, New Brunswick, Canada. These trees were 
from two pure White spruce stands approximately 
300m apart that were planted in 1935 on old fields 
abandoned in late 1920's. Both stands are on gently 
sloping sites with soil type Queens clay loam. Sample 
trees were selected to have a diameter at breast 
height (D.B.H.) of greater than 240mm and for 
straightness of the bole. The average D.B.H. was 
282mm and the coefficient of variation for D.B.H. 
was 8.36 percent. Table 2 gives details of the history 
of the two stands harvested. 

Table 2 - History of plantation stands yielding sample 
trees 

Year 

1935 

1959 
1965 
1973 
1980 

1987 

Activity 

Planting with 3 year old seedings 
on 2m x 2m grid, (approximately 

2500 stems/hectare). 
First thinning. 
Second thinning. 
Third thinning. 
Fourth thinning to approximately 
1000 stems/hectare. 
Harvesting of sample trees 
(age 55 years). 

The trees were cut into bole samples 3m long, 
commencing with base samples cut from as close to 
the ground line as practical, (stump heights approxi
mately 150mm). A 3m length allowed for cutting 
disks used to measure moisture content at harvest 
and average relative density at various heights in 
each stem, and production of 2.4m long pieces of 
lumber. The cutting yielded 14 base logs (0-3m 
above stump level), 14 lower middle logs (3-6m 
above stump level), 14 upper middle logs (6-9m 
above stump level), and 5 top logs (9-12m above 
stump level). Sampling of logs, moving up a tree, 
ceased if the minimum measured diameter fell be
low 150mm. All logs were numbered then removed 
from the sites in the green condition for conversion 
in the Maritime Forest Ranger School Training 

Sawmill, Fredericton. Disks for moisture content 
and density measurements were removed at the 
sawmill. 

Prior to conversion both ends of each log were 
carefully inspected to locate the fifteenth annual ring 
and the area at either end falling within that ring 
painted. By this means the juvenile wood content at 
each end of a piece of lumber could be easily estab
lished following conversion of the logs into lumber. 
Logs were processed to maximise the yield of nomi
nal 50 x 100mm pieces of lumber, which when dried 
and surfaced would be reduced to final section 
dimensions of 38 x 89mm at approximately 12 per
cent moisture content. The parent tree number and 
position in stem from which it was cut was recorded 
on each lumber specimen. 

A total of 184 pieces of lumber were produced 
from the 14 sample trees, and dried to approxi
mately 12 percent moisture content in two batches 
using a conventional commercial drying schedule. 
Following drying specimens were surfaced and 
tested mechanically. Mechanical tests included sym
metrical third point bending using a span of 1512mm. 
This test arrangement was used to measure modulus 
of elasticity in bending about the major axis with the 
narrow face cut from nearest to the pith loaded in 
tension. The specimen was then turned over and 
modulus of elasticity measured again with the nar
row face cut furthest from the pith loaded in tension. 
Modulus of elasticity was estimated over the middle 
third of the specimen in which region the bending 
moment was constant. Finally modulus of rupture 
was measured with the narrow face cut from nearest 
the pith loaded in tension. This was assumed to give 
the minimum strength for the two possible specimen 
orientations in bending about the major axis. Aver
age time to failure was in the region of five minutes. 

Subsidiary tests included measurement of rela
tive density and moisture content, and modulus of 
elasticity for bending about the minor axis. Also de
tailed records were made of the physical features of 
each specimen, including the nature of the failure re
sulting from the test to measure modulus of rupture. 
The subsidiary information is reported by 
Shivnaraine [27]. 
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Figure 1. Percent juvenile wood of White spruce as a function of average bole diameter and 
position in the stem - Sites 1 and 2. 
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RESULTS 

Influence of minor variation in moisture con
tents between specimens were eliminated by adjust
ing all results to 12 percent moisture content accord
ing to the procedures of ASTM D2915 (1987). Mois
ture variations were those normally observed be
tween pieces of lumber in a kiln batch and between 
batches of nominally the same material. Unadjusted 
properties of lumber corresponded to moisture con
tents between 8.5 and 14.4 percent. 

Figure 1 shows the observed percentages of ju
venile wood for each of the 47 bole samples. Individ
ual values were determined by averaging the pro
portion at either end of a 3m long bole sample. It can 

be seen that the trend is for the juvenile wood content 
to reduce with an increase in absolute bole diameter 
and increase with height above stump level. The 
proportions of the lumber samples falling into dif
ferent categories based on juvenile wood content are 
given in Table 3. 

Table 4 summarises the variation in bending 
stiffness and strength properties of the lumber speci
mens according to the height above the ground from 
which the lumber is cut. Also shown in Table 4 is 
variation in relative density based on dry weight and 
volume. 

Table 3 - Proportion of lumber specimens in each 
category based on juvenile wood content 

Percentage of cross-

section contained in 

first fifteen annual rings 

0-25 (Mature) 

26-50 (Mildly juvenile) 

51-75 (Moderately 

juvenile) 

76-100 (Juvenile) 

Number 

of 

pieces 

23 

46 

45 

70 

Proportion 

of lumber 

samples (%) 

12.5 

25.0 

24.5 

38.0 

Results of this table are discussed in more detail in 
the next section of the paper. 

The influence of percentage of juvenile wood on 
modulus of elasticity and on modulus of rupture of 
the lumber are shown in Figures 2 and 3, and Table 
5. It can be seen that there is an influence of percent
age of juvenile wood on both modulus of elasticity or 
modulus of rupture. Although not reported in detail 
here, it was also found that only weak relationships 
exist between parameters such as general slope-of-
grain, rings per inch and relative density, and bend
ing stiffnesses and strengths of the lumber speci
mens tested. Related work by Zhou has demon
strated a strong correlation of both modulus of rupure 
and modulus of elasticity with projected knot area 
[30]. Thus both proximity of the pith and projected 
knot area should be considered in visual stress grad
ing of White spruce lumber. 

Table 4 - Variation in average bending stiffness and strength properties, and relative 
density according to position in the stem (Values are for 12% moisture content). 

Position in 
tree stem 

Base (1.65m) 

Lower middle 
(4.65m) 

Upper middle 
(7.65m) 

Top (10.65m) 

Total 

MOE : / 

(MPa) 

9969 
(28.8)3/ 

9810 
(27.7) 
8775 
(26.7) 
9342 
(18.6) 

9642 
(27.9) 

MOE . u 

(MPa) 

9648 
(29.5) 
9446 
(28.0) 
8340 
(27.5) 
8754 
(17.9) 

9270 
(28.6) 

MOR2/ 

(MPa) 

32.7 
(37.5) 
29.6 
(36.3) 
25.0 
(39.2) 
26.7 
(22.2) 

9.8 
(38.1) 

Relative density 
(= Mo/Vo x 10-3) 

0.335 
(7.9) 
0.333 
(7.6) 
0.335 
(7.1) 
0.326 
(5.6) 

0.334 
(7.5) 

No. of 
specimens 

77 

60 

37 

10 

184 

Notes: 1/ MOEmax and MOEmin refer to modulus of elasticity in bending about major axis. Subscripts denote values for two 
specimen orientations tested per specimen. 

2 / MOR signifies modulus of rupture in bending about major axis. 
3 / Bracketed values are coefficients of variation expressed as percentages. 
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DISCUSSION 

If it had been decided to adopt a similar philoso
phy to that of Barrett and Kellogg [3] concerning 
classification of lumber as juvenile or mature wood, 
approximately 63 percent of pieces of lumber would 
have been classified as juvenile, and 37 percent would 
have been classified as mature. Presuming that this 
is a realistic reflection of expectations for products 
from plantation grown softwoods, significant effort 
will have to be directed towards avoidance of prob
lems associated with juvenile core material, e.g. 
drying degrade, if high quality solid wood products 
are to be produced from plantation material 50 to 60 
years old. 

From Table 4 it can be seen that there is a general 
trend of reduction in modulus of elasticity of lumber 
in bending the higher up the tree stems the lumber is 
cut. Similarly from Table 5 the reduction in modu
lus of elasticity of lumber is associated with the pro
portion of juvenile wood in the samples. 

The variability in stiffness of lumber from a par
ticular category of height above stump does not dif
fer greatly from corresponding values averaged 
across all specimens. (A possible exception is lum
ber from "top bole sections", but the number of 
samples from top bole sections is too small for such 
an exception to be suggested with any certainty.) 
Based on Figure 2, Table 5, and more detailed analy
sis not reported here, the percentage of juvenile 
wood in a piece of lumber is a good predictor of 
modulus of elasticity of White spruce lumber cut 
from a plantation. 

Table 4 shows that modulus of rupture of lum
ber tends to be reduced the higher up the tree stems 
the lumber is cut. Table 5 shows that modulus of 
rupture of lumber tends to be reduced if the propor
tion of juvenile wood is increased. For example, the 
mean bending strength of lumber from base bole 
samples was 131 percent of that for lumber from 
upper middle bole samples. Similarly, the mean 
bending strength of lumber from class 1 samples (0-
25 percent juvenile wood) was 153 percent of that for 
lumber from class 4 samples (76-100 percent juvenile 
wood). Variability in bending strength was found to 
be approximately constant at different heights above 
the stump at which lumber was cut (ignoring lumber 
from top bole samples). From Figure 3, Table 4 and 

statistical analysis, the percentage of juvenile wood 
in a piece of lumber and "height" in the tree stem 
from which lumber was cut are both good predictors 
of bending strength. Therefore, they can be used as 
indicators of likely quality of the lumber, in terms of 
bending strength. For practical purposes, length
wise position in the tree stem is a more useful segre
gation criterion than percentage juvenile wood. 

The above results indicate that it might be pos
sible to employ lengthwise position in a tree stem as 
a simple means of segregating saw logs into classes 
yielding different ranges of lumber "quality". It is 
envisaged that lumber from a given class of logs 
should be machine stress graded using a machine 
controlled process such as that described by Fewell 
[10], where lumber is typically sorted into two struc
tural grades and rejects. Combinations of grades 
sorted simultaneously would be selected to be ap
propriate to each class of logs. This two tier method 
of sorting (stress grading) material should be ca-

Table 5 - Variation in average bending stiffness and strength properties, and relative 
density according to juvenile wood class (Values are for 12%moisture content) 

Juvenile wood 
classe 

Class 1 (0-25)* 

Class 2(26-50)* 

Class 3(51-75)* 

Class 4 (76-100)* 

MOE " 
(MPa) 

11092 
(22.4)3 

10117 
(30.0) 
9082 
(25.7) 
8237 
(25.7) 

MOR2 

(MPa) 

39.95 
(33.5) 
30.63 
(45.9) 
29.55 
(31.2) 
26.13 
(28.0) 

Relative density 
(= Mo/Vo x 10-3) 

0.352 
(8.1) 
0.340 
(8.30) 
0.326 
(5.60) 
0.329 
(6.7) 

No. of 
specimens 

23 

46 

45 

70 

Notes: 1 / MOEmin refer to modulus of elasticity in bending about major axis. 
Subscript denotes value for most flexible orientation of specimen. 

2 / MOR signifies modulus of rupture in bending about major axis. 
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pable of significantly reducing the range of mechani
cal properties in each stress grade compared with a 
case where there is no segregation of material on the 
basis of position in a tree stem. As a result, the 
proportion of material going into higher value grades 
could be increased relative to current practice. 

In Canada and other countries some companies 
transport coniferous wood to the sawmills in full 
tree form for reasons of economy. This practice 
makes the sequence of sorting described above vi
able as full-length stems arriving at the sawmill can 
be segregated into log classes under a more easily 
controlled system than might be possible in the for
est. 

Clearly there is a significant amount of work that 
would have to be done before the ideas outlined 
above could be put into practice. Further study is 
needed to answer questions such as the influence of 
position in the tree stem on mechanical properties of 
plantation lumber loaded in tension or compression 
parallel to grain, and how results vary if the size and 
length of the lumber is varied. As discussed in the in
troduction, the proportion of coniferous forest in 
plantation is going to be increasing on a world-wide 
basis. Now seems an appropriate time to devise 
ways of gaining a maximum benefit from this re
source. 

CONCLUSIONS 

Based on the work discussed here, some pre
liminary conclusions are: 

1. Over the next ten to twenty years the proportion 
of wood from coniferous forests in plantation will in
crease significantly. The proportion of solid wood 
products for which direct allowance must be made 
for presence of juvenile core material during proc
essing of logs will also increase significantly. 

2. Position in the tree stem from which it is cut has 
only a moderate influence on bending stiffness of 38 
x 89mm lumber from plantation grown Eastern Ca
nadian White spruce 50 to 60 years old. 

3. Height in the tree stem from which it is cut is a 
good indicator of bending strength of 38 x 89mm 
lumber from plantation grown Eastern Canadian 
White spruce 50 to 60 years old. 

4. Percentage juvenile wood in a piece of lumber is 
a good indicator of bending strength of 38 x 89mm 
lumber from plantation grown Eastern Canadian 
White spruce 50 to 60 years old. However this seems 
to be a less practical means of segregating material 
than using height in the tree stem as an indicator of 
strength. 

Figure 3. MOR vs Average percentage juvenile wood 
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5. Potential exists for increasing the yield of higher 
value grades of lumber if the two tier approach to 
sorting (stress grading) described in this paper is 
adopted. The two tiers consist of sorting logs into 
classes on the basis of lengthwise position in the tree 
stem, and machine stress grading with log class 
specific machine settings. It is not clear whether this 
conclusion applies to parent material other than 
Eastern Canadian plantation grown White spruce. 
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