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ABSTRACT 

The development and experimental verification 
of a numerical model for the dynamic behavior of a 
cableloggingsystemskylineisdiscussed. Thcmodel 
is intended to simulate the skyline behavior after a 
turn of logs breaks out of a "hang-up" on the ground. 
Output from the model may be used as a forcing 
function for a dynamic load on the tailspar or other 
component of the cable logging system. 

The numerical model uses finite difference and 
Runge-Kutta techniques. Output from the model 
consists of time-histories of the fluctuations in sky­
line tensions. From this output the frequencies of the 
skyline vibrations may be determined. The model 
was verified by experimental data collected while 
operating a small cable logging system in Oregon 
State University's McDonald Research Forest. 

Keywords: cable logging system, cable dynamics, nu­
merical modelling, skyline, tailspar, wave equation. 

INTRODUCTION 

In the Pacific Northwest, skyline cable logging 
systems (Figure 1) are commonly used to harvest 
timber. Oftentimes, in rough terrain, tailspars are 
employed in the cable system to provide more lift for 
the skyline. In the past safety concerns over the 
selection of a tree as a tailspar were limited to the 
selection of sound trees; old-growth timber was 
nearly always large enough to provide excellent 
tailspars, and guidelines for the selection of tailspars 
were available [1]. Recently, however, the increased 
harvesting of second-growth timber has resulted in 
concerns over the performance and safety of tailspars. 
A necessary step in the effective prediction of tailspar 
performance is the determination of the loads, both 

1 The authors are respectively: Ass. Professor, Civil 
Engineering; and Assoc. Professor, Forest Engineering; 
Professor Emeritus, Civil Engineering. 

Figure 1. Typical logging system. 

static and dynamic, which are placed on the tailspar. 
An accurate computer model of skyline behaviour is 
one way to efficiently determine the loads placed on 
a tailspar. 

One circumstance that creates maximum tensions 
in the skyline and, therefore, maximum loads on a 
tailspar is the hang-up of a turn of logs on a ground 
obstacle during yarding and the subsequent release or 
"break-out" of the turn from the hang-up as the yarder 
operator reels in the mainline. This situation results in 
large quantities of stored elastic energy throughout the 
system. When the hang-up breaks loose, the release of 
this energy initiates dynamic free vibration behaviour 
in the skyline with resulting fluctuations in skyline 
tensions and, thus, tailspar loads. Through resonance 
[2,3] this dynamic loading could result in tailspar 
displacements and stresses greater than those induced 
by the maximum static hang-up load. This paper 
discusses a finite difference-based computer model 
developed to duplicate the dynamic skylinebehaviour 
which results from this hang-up/break-out phenom­
ena. This dynamic skyline model can be used to aid in 
determining the potential of a specific tailspar to reso­
nate due to excitation from an oscillating skyline. 
Output from the model can also be used as input to a 
tailspar analysis program [4] to predict additional 
tailspar behaviour. 

Development of the Numerical Model 

In the numerical modelling of structural dynamics 
there are two options: finite elements or direct integra­
tion techniques. The dynamic behaviour of a cable 
logging system skyline is geometrically non-linear due 
to the large displacements which occur. Direct integra­
tion techniques, which avoid iterations and slow or 
non-convergence to a solution, are more suitable for 
this type of non-linear dynamics problem [5]. 
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The finite difference m e t h o d is a direct integra­
tion technique well sui ted to the solut ion of non­
linear cable d y n a m i c s p rob lems . The d y n a m i c 
behaviour of a cable logging system skyline is similar 
to the classic problem of a vibrat ing string. In 
appl ied mathemat ics the part ia l differential equa­
tion that governs this type of behav iour is k n o w n as 
the " w a v e " equat ion , wh ich is g iven here (in non­
linear form): 
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w h e r e vx ,, is the d i sp lacement of the str ing, x the 
posit ion along the str ing, t the time, T the tension in 
the str ing, p the l inear mass densi ty of the s t r ing and 
8 the angle of the cable at x. 

The finite difference formulat ion of the w a v e 
equat ion is obta ined by replacing the con t inuous 
differentia] te rms inequa t ion (1) wi th d iv ided differ­
ences taken be tween discrete points , wi th respect to 
both t ime and dis tance a long the s t r ing [6]. This type 
of solution is executed by first placing nodes a long 
the s t r ing and increment ing the length of t ime over 
which the analysis is to occur. The dis tance be tween 
the nodes , Ax, a n d the size of t ime increment , At, are 
usual ly kept constant to main ta in simplicity in the 
finite difference analysis. In a pictorial form this 
creates a grid, the va lue of the function v x , tat each 
grid point represent ing the d isp lacement of the 
str ing at a specific posit ion a long the cable, x, for a 
specific t ime, t (Figure 2). 
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The i and j subscr ipts indicate the relative posit ion 
a long the cable and t ime step, respectively, for each 
function value , v x l . As the finite difference solution 
is be ing executed this equat ion contains a single 
u n k n o w n quant i ty , the d isp lacement v x | l + | . 

To initiate the finite difference analysis the val­
ues of the displaced str ing are needed for the first 
two ti me steps, j=0 and j=1. The initial posi t ion of the 
cable, vX/t , are typically k n o w n or easily calculated. 
The d isp lacements of the skyline at the second t ime 
s tep, Vx,!,, can be de te rmined from the equat ion [7]: 
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Figure 2. Finite difference visual. 

The second o rder part ial der ivat ives in the w a v e 
equat ion are approx imated by second divided dif­
ferences [6]. Utilizing these d iv ided difference ap­
proximat ions for the partial der ivat ives , an algebraic 
approx imat ion of the w a v e equat ion is formed: 

where the first part ial der ivat ive of vx,, wi th respect 
to t ime is the initial velocity of the cable. A simplify­
ing a s sumpt ion , commonly used, is to set the initial 
velocity equal to zero. This results in v x l , be ing 
equal to vx,,o. In other words , the d i sp lacement of the 
cable at the first t ime step, j= l , is set equal to the 
initial posi t ion of the cable at t ime j=0. This gives the 
values of the function, v x t , for the two t ime steps 
requi red to start the analysis. The results of the first 
pass of the finite difference solut ion w o u l d be the 
d isp lacements at t ime j=2. The actual d i sp lacements 
of the cable at the first t ime s tep, j=1, are never 
de te rmined . T h i s d o u b l e u s e o f the initial condi t ions 
has little effect on the overall de te rmina t ion of the 
skyline d isp lacements . 

Once t h e analysis is s tar ted, equat ion (2) p ro­
vides an algebraic equat ion at each n o d e wi th a 
single u n k n o w n , vXjt j+,. The values of the function 
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vX/t, the displacements of the string, and 8vX/t/ ôx, the 
slope of the string, are known for all nodes at times 
t=j-l and t=j through solutions attained in previous 
time steps. 

Stability of Finite Models 

Equation (2) is the finite difference equation that 
comes directly from the divided difference approxi­
mation of the wave equation and is known as an 
explicit 5-point method; 5 values of the function vX/t 

are contained in the finite difference equation and a 
single unknown value, vXi/tj+1, is determined from 
the equation. The stability of any finite difference 
approach is a function of the relationship between 
the nodal spacing, Ax, the size of time increment, At, 
the skyline tension, T, and the linear mass density 
of the skyline, p. If the following relationship 
(the Courant-Friedrichs-Lewy condition [8]) is true 
for the given values of these variables, then 
stability of the finite difference solut ion is 
guaranteed: 

difference numerator, as an example the numerator 

(At)2T 

(Ax)2p 
<1 

(4) 

If this relationship is not true, then the finite differ­
ence solution is unstable in that it attempts to deter­
mine values of the cable displacement, vX/t, which are 
beyond its influence. 

Given tensions that can occur in cable logging 
system skylines, from a few thousand to tens of 
thousands of pounds, it is often quite difficult to use 
the explicit 5 point method and meet the conditions 
of equation (4) without using very large values of Ax, 
tens of feet on a skyline, or taking extremely small 
time steps, thousandths of a second in size. Large 
distances between nodes on the cable would reduce 
the accuracy of the solution, while small time steps 
would require lengthy computational run times. 

One solution to this predicament is to utilize a 
finite difference scheme which does not experience 
stability problems. Several such approaches are 
known [9,10], the one selected for this skyline model 
is an implicit, three unknowns in a single algebraic 
equation, finite difference method containing 9 values 
of the function vX/t. This approach is a weighted 
average of 3 different 5 point schemes [11], including 
the 5 point explicit scheme discussed previously. 
Using a shorthand notation for the basic divided 

of the second partial of vXijtj with respect to x: 
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we can express the algebraic equation which results 
from this 9 point finite difference technique: 
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As mentioned previously, the implicit nature of 
this algebraic equation results in three unknowns for 
a single equation. However, if the finite difference 
equations are solved simultaneously for all the nodes, 
X] to xn_i, at the j+1 time step, the result would be n-
1 equa t ions wi th n-1 u n k n o w n s , the cable 
displacements at time tj+j. The known endpoint 
displacements, vX(vtj and vXn/tj, which are typically 
zero, would be used in equations developed near the 
endpoints. The result is a tridiagonal system of n-1 
equations which can be solved using any number of 
existing methods. In this approach all the values of 
skyline displacements, vx t .+] , are determined simul­
taneously, and then the time is increased by one 
increment, At, and the solution repeated for the 
duration of analysis, the length of which is specified 
by the program user. 

Skyline Model 

The objective of this skyline model is to deter­
mine the fluctuations in tension and free vibration 
frequencies of a skyline that hangs up and subse­
quently ''breaks-out." These tensions and frequen­
cies, which may be extracted from a finite difference 
time history analysis, are intended for use in evalu­
ating tailspar performance and adequacy. 
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The major physical element of a cable logging 
skyline which separates it from the simple vibrating 
string problem is the large point mass on the skyline 
created by the carriage and turn of logs. This point 
mass essentially breaks the skyline into two seg­
ments. The computer model developed treats the 
skyline as two separate "string" segments with a 
shared, moving (in the transverse direction) bound­
ary condition, the carriage. This allows the use of the 
finite difference approximation on each of the two 
cable segments, once the position of the moving 
boundary (carriage) is ascertained at each time step. 
The determination of the carriage position is baseci 
on a fourth order Runge-Kutta solution [12] of the 
differential equation derived from force equilibrium 
in the direction transverse to the chord of the cable. 
The derivation of this differential equation was first 
documented by Tychonoff and Samarski [13]. In the 
original work the effect of gravity was neglected; 
however, for this application inclusion of the gravi­
tational effects is essential, resulting in the following 
force equilibrium equation: 

ô\ 

<5r 
T| sina + TRsin/J + mg (7) 

where m is the mass of the carriage and an appropri­
ate portion of the turn of logs, g the acceleration of 
gravity, vC/t the displaced position of the carriage, T|, 
the tension in the skyline to the left of the carriage 
and TR the tension in the skyline to the right of the 
carriage. The trigonometric functions are used to 
calculate the component of the skyline tensions trans­
verse to the cable chord and are based on the angles 
of the tangents to the skyline directly on either side 
of the carriage (see Figure 3). The terms on the left 
side of the equation are due to the weight of the 
carriage and turn of logs plus the inertial force 
created by the motion of the skyline. Through the 
Runge-Kutta solution of equation (7), the displaced 

position of the carriage at the next time step, vc,ti+l, 
is determined based on the known position of the 
carriage at the current time step, vc_tj. 

The fluctuations in skyline tension are a function 
of the carriage displacement. In a simplified string 
problem the tension of the string is considered to be 
a constant. However, this is not the case with a cable 
logging system skyline which experiences extreme 
variations in tension during dynamic behaviour. 
The point mass consisting of the carriage and turn of 
logs is very large compared to the mass of the sky li ne. 
This results in skyline behaviour which is similar to 
a single lumped mass dynamic system. In a single 
lumped mass system the only active dynamic mode 
is the first, or fundamental, mode. Hence, the funda­
mental mode should be the dominant mode — the 
mode primarily responsible for variations in the 
tension of the skyline. The first mode shape is a 
function of the carriage position; by determining the 
position of the carriage, as outlined previously, and 
neglecting the other modes which may occur within 
the cable segments on either side of the carriage, the 
variations in skyline tension can be determined by 
the change in distance between the carriage and the 
supports. As the distance between the carriage and 
the supports increases beyond the initial conditions, 
the skyline elongates and the tension in the skyline 
increases. Conversely, as the distance between the 
carriage and the supports decreases to less than the 
initial conditions, the skyline relaxes and the tension 
decreases. The basic relationship between changes 
in tension and elongation of an axially loaded ele­
ment is [14]: 

AT: 
AL 

- x A x E (8) 

Figure 3. Force equilibrium. 

where AT is the change in element tension, AL the 
change in element length, L0 the original length of 
the element, A the cross-sectional area and E the 
modulus of elasticity. Again, utilizing this relation­
ship and the position of the carriage relative to the 
supports, the variations of the skyline tension dur­
ing dynamic behaviour may be determined. 

This first-generation computer model contains 
several simplifications of the complicated skyline 
logging system. First, the skyline supports (tailspar 
and yarder) though flexible to some degree were 
considered as rigid supports. Second, damping and 
motion of the carriage along the skyline, which 
influences the damping, are not included in the 
computer model. However, some numerical damp-
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ing does occur in the Runge-Kutta solution for the 
position of the carriage. Third, no elevation change 
between the tailspar and yarder is considered, a 
simplification that maintains a one-dimensionality 
to the skyline displacements and eliminates the need 
to express the skyline displacements in vector form. 
With this simplification the model may be applied to 
skyline systems that have a moderate change in 
grade between the tailspar and yarder (10% or less) 
without inducing large error into the analysis. 

Model Input/Output 

indication that resonance might occur for a selected 
tailspar could help to avoid a tailspar failure. 

Verification of the Model 

In order to confirm the effectiveness of the com­
puter model, a small cable logging system was erected 
in Oregon State University's McDonald Research 
Forest. The chord length of the skyline (1.5.875 mm 
[5/8 inch] diameter wire rope) in this system was 100 
m [330 feet] with a vertical rise of 7.62 m [25 feet], for 
an incline of 7.58%. 

The required input, listed below, to execute the 
model is such that it specifies the cri teri a for the finite 
difference analysis and indicates the mechanical 
properties of the skyline and the conditions of the 
cable logging system at the time of the hang-up: 

skyline chord distance from tailspar to yarder; 
length of skyline from tailspar to tailhold; 
diameter of skyline; 
estimated initial tension in skyline (prior to 
hang-up); 
weight per foot of skyline; 
spacing between nodes along the skyline; 
weight of the carriage; 
estimated weight of the turn of logs; 
size of time steps; 
length of time history analysis; 
distance from tailspar to carriage at hang-up; 
estimated amount of carriage displacement due 
to hang-up. 

The output, in the form of time histories, is the 
variation in the skyline tension and the displacements 
of the skyline and carriage. The frequency of the 
skyline oscillations can be determined from the sky­
line tension changes. The variations in skyline ten­
sion may be used as input, a forcing function, for the 
dynamic analysis of the tailspar or other compo­
nents of a cable logging system. 

Comparing the frequencies of the skyline oscil­
lations with the natural frequencies of other system 
components (e.g., tailspar) will reveal the potential 
for resonance [2,3] within the cable logging system. 
If the natural frequency of the tailspar matches the 
frequency of the skyline vibrations resonance may 
take place, resulting in larger displacements and 
stresses than would normally occur in the tailspar. 
Determining the potential for resonance is critical in 
the prediction of tailspar behaviour in the field. An 

The field tests were designed to imitate the 
hang-up and break-out phenomenon for a turn of 
logs. Calibrated load cells were placed in the skyline 
and dropline (see Figure 1) to obtain the necessary 
values of cable tensions required to verify the model. 
An IBM personal computer with a data acquisition 
card and software was used to collect the data from 
these tests, floppy disks were used to store the data. 
A sampling rate of 0.02 seconds was used for the data 
acquisition. The data gathered from the load cells, in 
terms of volts, was later converted to tension, with 
units of pounds or kilonewtons, by using a 
spreadsheet. The conversion factor used was ob­
tained through the calibration of the load cells. 

The simulation was accomplished by bringing 
the skyline up to a reasonable tension, tying the turn 
of logs to a stump with a nylon rope and then 
engaging the yarder to reel in the carriage/log load 
until the rope broke. Five field tests, executed at 
different distances along the corridor depending on 
the availability of useable stumps to tie the rope to, 
were used for comparison with the computer model. 

o 
00 

Model 
Field Data 

Initial Tension = 25.54 kN 
Snag at 25.60 meters from tailspar 

4.00 6.00 
MME ( s e c o n d s ) 

Figure 4. Skyline tension, hang-up test #1. 



Table 1. Comparison of field data and computer model. 

Test Initial Initial 
No. Carriage to Skyline 

Tailspar Tension 
Distance 

1 25.60 25.54 
2 36.12 28.04 
3 46.94 25.04 
4 60.05 26.28 
5 68.28 23.91 

Tensions measured in kilonewtons. 

Maximum Skyline 
Tension 

Field Model Model 
%Error 

39.05 
42.35 
35.25 
34.25 
29.17 

40.57 
41.71 
36.66 
36.09 
30.50 

3.9 
-1.5 
4.0 
5.4 
4.5 

Distances measured in metres 

Maximum Envelope 
Skyline Tension 

(2 x Max. Amplitude) 

Field 

22.74 
22.04 
14.51 
13.51 
10.36 

Model 

21.55 
20.90 
18.32 
16.27 
10.92 

Model 
%Error 

-5.2 
-5.2 
26.2 
20.5 
5.4 

Maxim 
Sk 

Field 

0.574 
0.574 
0.562 
0.574 
0.598 



Journal of Forest Engineering * 61 

— — Model 
Field Data 

| Initial Tension = 23.91 kN 
: Snag at 68.28 meters from tailspar 

0 . 0 0 2 . 0 0 4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 

TIME (seconds) 

Figure 5. Skyline tension, hang-up test #5. 

Variations in the skyline tensions, obtained 
through the load cell placed in the skyline, were used 
to verify the computer model. Figures 4 and 5 are 
two examples of the variations in skyline tensions 
for field tests overlayed on output from the compu­
ter model. For this computer simulation a Ax of 
0.1524 m [0.5 feet] and a At of 0.05 seconds were used 
for the finite difference approximations. Time histo­
ries developed by the computer simulation for com­
parison with the field tests were 10 seconds in length 
(200 time steps). 

DISCUSSION 

A comparison of the field test results and output 
from the computer model is contained in Table 1. 
The errors in the model predictions of maximum 
skyline tensions and skyline frequencies for the five 
tests are all under 10%. The maximum error for the 
skyline tension is 5.4% and for the skyline frequency 
8.5%. The largest error for the computer model came 
in determining the maximum envelope (2 x maximum 
amplitude) of the damped sinusoidal skyline tension 
curve. In this case the computer model had an error 
of over 20% for two of the tests, with the error for the 
remaining three tests at around 5%. The two model 
predictions for which there were large errors, 
however, were on the conservative side; the model 
predicted larger amplitudes of change in the skyline 
tension than actually occurred. 

Overall, the model has done nicely in predicting 
the dynamic behaviour of the skyline within the 
small cable logging system set up for the purpose of 
verifying the model. Given the simplifications of the 
physical system that are contained in the model and 
the difficulty in controlling the equipment used in 
the field tests (a diesel yarder, 330 feet of skyline, a 
carriage, 1000 pound log, etc.) which made it hard to 

determine precisely the initial conditions of the cable 
system, model error which is consistently less than 
10% is highly acceptable. 

The objectives of developing this model were to 
provide information for the analysis of tailspars. 
The variations in skyline tension can be used as 
input, a forcing function, for the dynamic analysis of 
the tailspar or other components of a cable logging 
system as well. Comparing frequencies of the sky­
line oscillations with the natural frequencies of the 
tailspar will reveal the potential for resonance [2,3]. 
If the natural frequency of the tailspar matches the 
frequency of the skyline vibrations resonance may 
take place, resulting in larger displacements and 
stresses within the cable logging system than would 
normally occur. Though the tests used to verify the 
skyline model indicated no resonance in the tailspar 
for this particular skyline logging system, this was 
not known before the tests and may not be the case 
for other larger skyline logging systems. This dy­
namic skyline model can be used prior to the erec­
tion of a skyline logging system to aid in determin­
ing the potential for resonance in a tailspar. An 
indication that resonance could occur for a selected 
tailspar would be reason for selecting an alternate 
spar in order to avoid a tailspar failure. 

CONCLUSION 

A simple, first generation numerical model for 
the dynamic behaviour of a skyline has been devel­
oped. Output from this model compares quite well 
to the results of field verification tests. Excellent 
estimates for maximum skyline tension fluctuations 
and frequencies were obtained through the model 
and will serve well in helping to determine the 
likelihood of tailspar resonance and as input to a 
tailspar analysis program. 

Future work on this model should include modi­
fications to account for cable logging systems set up 
on steep slopes or extremely long span systems that 
may or may not contain intermediate supports. 
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