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ABSTRACT

The purpose of this study was to develop and test the
application of non-parametric Most Similar Neighbor In-
ference (MSN) for wood procurement planning. An appli-
cation developed using this method would be a part of a
stem database in Finnish forest enterprises and could pre-
dict characteristics of a marked stand with accuracy de-
manded by bucking simulation.  A stem database includes
representative samples of stands and stems, applications
to control and update data and applications to utilize the
database. The study materials used consist of two differ-
ent kinds of data: data collected by harvesters and histori-
cal forest inventory data. The harvester collected stem
data came from stands in central Finland, whereas forest
inventory data was obtained from all over Finland. The
accuracy of the MSN method was analyzed by estimating
characteristics of tree stocks and by comparing simulated
spruce, pine and birch log length-diameter distributions
with the information from actual stands.

The application presented was found to be a useful and
flexible tool for predicting characteristics of marked stands
based on the stem data collected by a harvester. The for-
est inventory data was found less suitable for reference
data. The most efficient way to create a length-diameter
distribution was to calculate length-diameter class esti-
mates from reference stands as weighted averages of the
corresponding length-diameter class. The proposed
method appears robust against measurement errors of
search variables.

Keywords: non-parametric estimation, planning in-
ventory, stand characteristics, stem data-
base, wood procurement, Betula, Picea
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INTRODUCTION

Customer oriented wood procurement requires more
accurate information than what is present from charac-
teristics of a marked stand (cutting area) for an evalua-
tion of cutting possibilities in available stands [15]. When
using cut-to-length methods, the decision to buck has to
be made in the forest according to the price of and de-
mand for  timber assortments. Bucking optimization tech-
nology is already available in modern harvesters but un-
til now production planning has been based on planner’s
experience.

This is followed by the marketing section selling the
product beforehand on the marketplace. Optimal log dis-
tribution for an individual stand may not be the same as
optimal log distribution for a forest enterprise [15]. Bet-
ter and more accurate information on reserves of marked
stands would result in more optimal allocation of cut-
ting operations in stands. With the help of additional in-
formation, sawmills may reduce trimming losses, avoid
unmarketable raw wood material and steer the flow of
wood to the best secondary processing destinations [17].

When bucking to value and demand approach is used
in optimization of harvester bucking, pre-logging infor-
mation is crucial if a group of harvesters is to be con-
trolled instead of single harvesters. Information on
marked stands should contain log length-diameter dis-
tributions produced by a simulator with the entered buck-
ing controlling parameters. Although forest management
planning information on marked stands may be available
in most cases it is not useful for bucking simulation [15].
Pre-measurements made while buying may be accurate
enough, but these methods [9,17] have turned out to be
too expensive or not sufficiently reliable.

Tommola et al. [16] used a non-parametric k-nearest-
neighbor regression to estimate characteristics of
marked stands from data which was measured by means
of log-measurement instruments installed at various saw-
mills. The results were encouraging, although estimates
could be achieved only for previously used log length-
diameter distribution constraints. For a situation where
values or demand change, the method is not appropriate.

In other forest applications, non-parametric methods
have been used mainly for forest inventory purposes. In
Finland, for example, these methods have been used when
estimating basal-area diameter distribution [3, 12], in
generalizing sample-tree information [7] and with
multisource forest inventory [6].

Non-parametric methods such as the k-nearest-neighbor
regression and the most similar neighbor inference have
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proved to be very flexible and easy to use. The k-nearest-
neighbor regression predicts the value of a variable of
interest as the weighted average of the values of neighbor
observations, the neighbors being defined with the pre-
dicting variables [e.g. 4, 1]. Moeur and Stage [13] used a
method called Most Similar Neighbor Inference (MSN) in
association with multivariate forest inventory. They used
canonical correlation analysis to derive a similarity func-
tion for neighbor selection. According to Moeur and Stage
[13], the advantages of the MSN inference are that it re-
tains a full range of variation of the data as well as the
covariant structure of the population. In their study, how-
ever, the number of neighbors was set to 1 in order to
avoid averaging the variables and the distance function
was formed from a canonical correlation.

The accuracy of the nearest neighbor method [3] and
MSN-analysis [13] were found to be similar to the com-
pared parametric methods. Maltamo and Kangas [12]
compared parametric and non-parametric methods and
found methods based on the k-nn regression to give more
accurate description of the diameter distribution than the
parametric methods. In addition, impossible predictions,
such as seen with the case of parameter estimators, can-
not occur because the most identical neighbors are cho-
sen from among actual samples. However, these meth-
ods require extensive data from the application area and
therefore cannot be utilized in situations where previ-
ously collected data is not available.

While harvesting stands with modern harvesters, a huge
amount of data from stems in marked stands can be col-
lected without considerable additional cost or work.  A
harvester collects diameter from stem for every 10
centimeters and saves this detailed data as a specific file.
Since the wood procurement managers are visiting the
stands daily that they are supposed to buy, they can eas-
ily assess the mean stand variables. These variables can
be connected to a previously collected stem database in-
formation without any additional workload. By predict-
ing tree stock from the stem database according to col-
lected stand variables it would be possible to receive
accurate information on standing tree stocks without re-
markable costs. Within this approach it could also be
useful to utilize previously collected forest inventory
data, at least in situations where appropriate harvester
collected stem data is not available. This principle cor-
responds with studies by Haara et al. [3] and Maltamo
and Kangas [12].

The purpose of the present study was to introduce and
test the non-parametric k-nearest-neighbor MSN method
used with the harvester collected stem data and the forest
inventory data. The purpose of prediction was to form
tree stock estimates accurate enough for bucking

simulations. Different amounts of information when form-
ing stand characteristics from selected most identical
stands were also tested.

MATERIAL AND METHODS

Materials

The study material consists of two different kinds of
data: harvester collected stem data and forest inventory
data measured in the 1980s. The basic concept of the
stem database is to use harvester collected stem data where
available, whereas the forest inventory data is tested in
order to be used as complementary data for situations
were harvester collected data is not available.

Harvester collected stem data was measured and stored
by Finnish forest enterprises in order to be used as the
stem database prototype (Table 1). Stem measurements
were collected from harvesters’ measurement units. Due
to different practices in enterprises, the data also in-
cludes information which was not usable as actual study
material. The suitable study data consist of 224 stands
located in central Finland, 58 of which were dominated
by Scots pine and 166 by Norway spruce.

Table 1. Description of the mean stand characteristics
in harvester collected stem data according to
the tree species present in the stand.

Scots Norway Birch
pine spruce

Number of stands
containing tree species 217 215 204
Basal area (m2·ha-1) 4,9 13,8 1,2

Basal area median
diameter (cm) 28,7 25,8 19,5
Stand height (m) 22,4 20,9 19,0
Stand age (yrs) 94 93 93

Forest inventory data was initially gathered from vari-
ous locations around Finland for practical purposes for
Finnish forest enterprises. It consists of 15434 work
units, which are used as the basic units in this study and
called from now on as stands (Table 2). Of this total,
7710 stands were dominated by Scots pine (Pinus
sylvestris L.) and 7219 by Norway spruce (Picea abies
Karst.). The remaining 497 stands were dominated by
two birch species (Betula pendula Roth., Betula
pubencens Ehrh.) and 8 stands were dominated by other
broadleaves, such as, alder (Alnus incana Moench,
Willd.) and aspen (Populus tremula L.). Diameter at breast
height was recorded in 2 cm classes by tree species from
all the trees included in stands. Height estimates were
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measured from sample trees describing the height-diam-
eter relationship. These measurements were used to gen-
eralize height for other trees using  the Näslund height
curve [14] which was estimated separately for each stand.

     (1)

where:
h = height (m)
d = diameter at breast height,
a, b = parameters

Table 2. Description of the mean stand characteristics
in forest inventory data according to the tree
species present in the stand.

Scots Norway Birch
pine spruce

Number of stands
containing tree species 14138 13384 12849
Basal area (m2·ha-1) 6,8 8,5 2,3
Basal area median diameter 25,4 20,1 18,2
Stand height 18,4 16,2 16,4
Stand age 109 106 107

Stand variables of these materials were calculated as
means and sums of standwise measurements. Other vari-
ables such as forest site, location and stand development
class were registered when these stands were originally
measured.

K-Nearest-Neighbor MSN Method

In the harvester collected stem data a target stand is a
stand which is excluded from reference stands and for
which estimates are calculated. Each stand from refer-
ence data is in turn used as the target stand. The forest
inventory data was divided in two equal-sized groups of
data according to geographical distribution to ensure that
both groups of data include evenly placed observations.
One half of the data was used as reference data and the
other half was used as test material.

In this study the estimation method is based on dis-
tance-weighted nearest neighbor estimation, where k-
most-identical stands are used for predicting the charac-
teristics of the target stand. The distance measures of
similarity are needed to compare different stands and
their characteristics. Measure of distance can be formed
from the stand variables and is calculated for each stand
in turn.

Before the k-nearest-neighbor method can be applied, it

is necessary to decide:
1. the form of distance function to be used to find the

most similar reference stands,
2. the number of nearest neighbors to be used, and
3. the form of weight function for weighting the refer-

ence stands.

In this study the similarity of stands is measured ac-
cording to the Most Similar Neighbor Inference [13].
Similarity function used in MSN method is generalized
Mahalanobis distance [11]. A canonical correlation analy-
sis provides a unified multivariate approach to the com-
putation of the weighting matrix in the distance func-
tion, by summarizing the relationship between a set of
search attributes and a set of design attributes simulta-
neously. The MSN similarity measure derived from the
canonical correlation analysis is:

     (2)

where:
D = distance between observations
X

u
= vector of known search variables from target

observation,
X

j
= vector of search variables from reference

observation,
GGGGG = matrix of canonical coefficients of indicator

variables,
LLLLL  =diagonal matrix of squared canonical correla-

tio

In the MSN similarity function (equation 2), W (equa-
tion 3) weights the elements of search variables accord-
ing to their predictive power for all elements of design
variables simultaneously, while incorporating the
covariance between the elements of design attributes.

                                                                                        (3)

where:
W = weight of search element

The nearest neighbor MSN method can be summarized
as follows:

1. Obtain search variables: complete coverage of search
variables on all parcels.

2. Determine design variables. Concentrating on the re-
lationship of search and design variables allows the
MSN analysis to be tailored to a particular set of in-
teresting characteristics.

3. Estimate the canonical coefficients and correlation
from search and design variables for the MSN dis-
tance function.
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4. Select the number of nearest neighbors to be used.
5. Perform the k-nearest-neighbor MSN analysis, se-

lecting the most identical neighbors from the refer-
ence data to assign to each search parcel “u” mini-
mizing the squared distance function.

6. Form estimates from selected most identical
neighbors using weighed averages.

In this study, the search variables were chosen from
among commonly measured stand characteristics (Table
3). With design attributes it is possible to tailor the MSN
analysis to meet the objectives of each case. In this study,
design attributes used were obtained diameters in per-
centage points of 0% (the smallest diameter), 20%, 40%,
60%, 80% and 100% (the largest diameter) of accumu-
lated basal area, a and b of Näslund’s height parameters
[14] and volume of tree species. Using percentile points,
the MSN analysis was tailored to predict size distribu-
tion, while  Näslund’s height parameters were used to
give information on diameter-height ratio (see also [5])
and volume was used as a density variable. For the basal
area calculation, the diameter of stems in the forest inven-
tory data were assumed to be  regularly distributed  within
diameter classes.

Table 3. Variables used in selection of the nearest
neighbors.

Harvester collected Forest Inventory
stem data data

Variables Location Location
describing Temperature sum Stand area
site: Stand area Stand age

Stand age Forest site type
Forest site type Stand
Main tree species   Development class
Logging period Logging method
Logging method

Variables Mean diameter Mean diameter
describing Mean height Mean height
growing Mean volume Relative proportion
stock: Relative proportion      of species

     of species Basal area per
Basal area per      hectare
     hectare

The optimal number of nearest neighbors depends on
prediction objectives and data used. Increasing the
number of neighbors leads to decreasing variation of the
predicted values and therefore to more average results.
Moeur and Stage [13] set number of neighbors to 1 to
avoid averaging of the estimates. Small number of vari-
ables may be appropriate in situations where each stand
is considered one by one, but if a group of stands is viewed

more average results may be acceptable if better average
goodness is achieved. Too small a number of neighbors
may lead to very poor predictions if there is no reference
stand similar to target stand. The variable used to meas-
ure a method’s ability to predict variation of stands was
Root Mean Square Error (RMSE). Distribution level was
used to describe average goodness.

The weights for the reference stands were calculated
inversely according to similarity distance. Thus, the near-
est reference stands are weighted according to the simi-
larity distance when target stand characteristics are
formed. The W

ij
 weight of reference stand i for target stand

j, belonging to the nearest stand, was as in Equation 4.

                 (4)

where:
Wij = weight of reference stand.

dij = distance between target stand and reference
stand.

Forming of Stand Characteristics

The estimates of stand characteristics can be derived
according to the distance between the similarity meas-
ures of the chosen reference stands and the target stand.
Stand characteristics for the forest inventory data were
formed from estimated diameter distribution and from
length parameters. In the case of the harvester collected
stem database, the characteristics of a target stand were
formed according to the estimated diameter distribution
by selecting actual stems from the stem database using
selected neighbor stands (Figure 1). The estimated stem
population was bucked with a bucking simulator to ob-
tain estimates of log length-diameter distribution  for
the target stand. Log length-diameter distribution was
also estimated from reference stand’s corresponding
characteristics by using weighted averages of each log
length-diameter class. Estimated diameter distributions
were scaled to the measured basal area of target stand,
which were assumed to be known.

Bucking Simulation

Height for each stem was calculated with a standwise
height-diameter ratio using Näslund’s parameters [14].
Stem taper was described using taper curve functions [8].
For the harvester collected stem data taper curves were
smoothened as taper curve parameters before saving on
the stem database.

Wi j =  
1

1  +  di j
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Figure 1. Possibilities of forming stand characteristics.

The stem was divided into 10-cm sections. For each
section the thin-end diameter was obtained from the ta-
per curve. Optimal bucking was performed by using dy-
namic programming [2] and bucking to value.

Comparison of Results

The RMSE is a widely used criteria to evaluate the esti-
mations given by the k-nearest-neighbor model. In the
present study, relative RMSE was used to evaluate the
estimations of volume, sawtimber volume, sawtimber/pulp-
wood ratio and median tree height. The relative root mean
squared error (RMSE %) was defined as in Equation 5.

                 (5)

          
where:
RMSE % = relative root mean square error,
n = number of observations,
y

ij
= the real value of the variable i in

stand j,

 íííííij
= the estimated value of the variable

i in stand j.
 íííííi

= the mean of estimates of variable i

The estimations of length-diameter class distribution
achieved from bucking simulation were compared to
length-diameter class distribution achieved from buck-
ing simulation using real stand values. These two distri-
butions were compared with a distribution level (see Equa-
tion 6).

                                (6)

where:
Dl = distribution level,
D

rj
= length-diameter class distribution of actual

output in stand j,
D

ej
= length-diameter class distribution of estimated

 output in stand j.

Distribution level is a simple and illustrative variable
which has been used with comparisons of demand and
actual output distributions [10]. Distribution level indi-
cates the similarity of two distributions. Identical distribu-
tions get value 100 (%) and smaller the value is, the more
different distributions are. It is also suitable for comparing
predicted and actual output distributions.

The optimal number of neighbors used can be deter-
mined by using the cross validation method, thus by maxi-
mizing the distribution level or minimizing the RMSE
of certain characteristics. Minimization of the RMSE
estimates describe deviation better than maximizing dis-
tribution level, whereas distribution level is better for
depicting average accuracy.

Sensitivity of prediction due to measurement errors
of search variables was tested by calculating estimations
in situations, where each stand variable was randomly
inaccurate by 5%, 10%, 15% or 20 % from its original value.
The importance and required  number of different search
variables were tested in situations where variables de-
scribing tree stock (proportion of tree species, basal area
or mean variables) were not involved.

RESULTS

The optimal number of neighbors was defined by
searching for the nearest neighbors with different amount
of neighbors. The number of neighbors was 3-5 if mini-
mizing the relative RMSE of tree stock variables (Fig-
ure 2) and approximately 10 if distribution level was
maximized.

When predicting tree stock variables with harvester
collected stem data the relative RMSE of estimates were
relatively low (Table 4). While actual measurements from
actual trees were used, impossible height/diameter com-
binations could not appear. Mean height was achieved by
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Table 4. Accuracy (RMSE %) of stand estimates for growing stock using the k-nearest-neighbor MSN method (k=5)
with the forest inventory data and the harvester collected stem data.

     Harvester collected stem data             Forest inventory data
Pine Spruce Birch Pine Spruce Birch

Volume 6,67 4,93 29,47 10,22 10,20 15,35
Sawtimber ratio 22,84 20,63 51,43 17,98 26,08 38,01
Sawtimber sized stem 26,16 28,37 46,44 29,50 42,20 60,74
Mean height 3,44 2,82 4,74 7,62 7,88 8,85

Figure 2. RMSE (%) of sawtimber ratio for spruce as a
function of the number of the nearest neighbor
in harvester collected stem data.

Figure 3. Distribution level for spruce as a function of
the number of the nearest neighbor in the har-
vester collected stem data.

calculating height curve parameters and basal area me-
dian diameter from the estimated tree stock.

For the forest inventory data, the proportion of
sawtimber and sawtimber sized stem (diameter at breast
height >18 cm) estimates were less accurate in most
cases  (Table 4). Volume and mean height estimates were

inaccurate due to an error in the height parameter esti-
mates. A height parameter used in calculations of vol-
ume and mean height was obtained as a weighted average
of parameters calculated for each reference stand. Esti-
mated parameters lead usually to proper estimates at the
middle of diameter distribution, but in the beginning and
in the end of diameter the distribution estimates were
less inaccurate. Inaccurate estimates of large trees lead
to distorted volume estimates. Although height param-
eter estimation leads to inaccurate volume estimates, it
was found to be a better alternative than having to calcu-
late each stand and height estimation of a representative
tree of each diameter class with original parameters and
then calculating weighted averages for representative
trees.

While need for information on forest stand character-
istics is based on the need for estimation of length-di-
ameter distribution with given price and demand list, we
simulated bucking for pine and spruce for target stands
and for estimated tree stocks (Table 5). Forest inventory
data estimates included inaccurate height estimates,
which were reflected in estimated bucking.

Due to the error caused by model chains, it proved bet-
ter to estimate the log length-diameter distribution di-
rectly from simulated bucking of reference stands (Ta-
ble 5). In the case of the forest inventory data this led to
considerable improvements in the estimates. Corre-
spondingly, distribution level for the harvester collected
data was much better when compared to bucking made
from estimated tree stock.

In order to find out method’s robustness in contrast to
inadequate number of search variables we analyzed the
model with different search variables. Results varied con-
siderably from the original model when the MSN method
was applied without variables describing the growing
stock (Table 6). On the other hand, results were almost
as good as in the original model if only mean tree vari-
ables were used. Size distribution of stands correlated
strongly with mean tree variables. It could be said that
the mean tree variables indicate right place for size dis-
tribution while other variables indicated shape and de-
viation of distribution.
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Table 5. Distribution levels for the forest inventory and harvester collected stem data with length-diameter class
distribution generated from estimated tree stock by bucking simulation, as well as length-diameter class
distribution generated by weighted averages from bucking simulations of reference stands.

     Forest inventory data Harvester collected stem data
Pine Spruce Pine Spruce

Length-diameter distribution levels
generated from estimated tree stock
by bucking simulation 70,20 75,63 73,36 81,78

Length-diameter distribution levels
generated by weighted averages
from bucking simulations of
reference stands 83,64 88,86 77,31 84,67

Table 6. Robustness against an inadequate number of
search variables. (k=10).

Distribution level
Pine Spruce

Original model 77,31 84,67
Without variables describing
tree stock 72,54 81,54
Mean tree variables only 76,96 84,24

The k-nearest-neighbor MSN method seems to be ro-
bust against measurement errors of search variables (Ta-
ble 7). Distribution level decreased only 1,88 percent with
pine and 3,37 percent with spruce from original values
with a 20% measurement error. Slightly inexact values (5%)
for search variables did not have any effect, on the con-
trary they may even produce better combinations of the
nearest neighbors than the accurate values.

Table 7. Robustness against a measurement error (k=10).

Distribution level
Pine Spruce

Real values 77,31 84,67
Deviation ±5 % 77,52 84,59

Deviation ±10 % 76,66 83,22

Deviation ±15 % 75,17 82,36

Deviation ±20 % 75,43 81,30

DISCUSSION

In this study, the k-nearest-neighbor MSN method was
used to predict the characteristics of marked stands. The
method was tested with two kinds of data; harvester col-
lected stem data, which will be primary reference data in
the stem database application for Finnish forest enter-
prises, and forest inventory data, which was tested to

complement data for situations where harvester collected
data is not available. The most similar stands were found
by using variables describing site and tree stock. Search
variables were chosen to be easily collectable within the
wood procurement manager’s visit to the target stand.

The study shows that the method presented  is a practi-
cal approach to predict stand characteristics with har-
vester collected stem data. The most efficient way to
generate length-diameter distribution is to calculate
length-diameter class estimates from reference stands
as weighted averages of the corresponding length-diam-
eter class. Actual outputs can be used when database
includes enough data with same diameter and quality con-
straints. With new or less used constraints (e.g., log di-
mension restrictions) it would be suitable to use simu-
lated bucking outputs.

With respect to diameter distribution prediction, the
forest inventory data was comparable to the harvester
collected stem data. However, height-diameter ratio es-
timates were inaccurate, which made estimates of tree
stock unsatisfactory. Nevertheless, estimated length-di-
ameter class distributions from simulated length-diam-
eter class distributions were notably better than those
derived using bucking simulation based on estimated tree
stocks.

A basic requirement of information produced by this
study was to be accurate enough to fulfill the needs of
bucking simulation. However, due to difference in size
and quality requirements used in bucking, distribution
levels cannot with compared to other studies. The near-
est neighbor method has shown to be a suitable method
for estimating log length-diameter distribution from pre-
viously measured log length-diameter distributions [16]
as well as for estimating basal area diameter distribution
[3, 12]. In this study, we could produce different log
length-diameter distributions from tree-wise data. The ac-
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curacy of estimates was comparable to a study by Tommola
et al. [16] when comparing sawtimber/pulpwood ratio.

Systematic errors have been among the biggest prob-
lems associated with the planning inventory methods. The
nearest-neighbor method does not include this kind of
error. Reference data used by Tommola et al. [16] was
strongly contingent in size and quality requirements and
in control of bucking. With the use of bucking simulations,
this kind of deficiency can be avoided.

In this study, basal area was used for scaling diameter
distribution. Scaling improves volume estimates, but
leads to overestimates, especially within the smallest di-
ameter classes (see also [12]). This may be avoided by
using density instead of basal area. However, basal area
can be measured more accurately than stem number den-
sity and is more closely related to stand volume. By using
information from previous logging operations, it may be
possible to select neighbors more accurately from stands
with similar history and diameter distribution.

The most important factor in the use of the MSN
method is its flexibility in different situations and with
different search variables. Due to canonical correlation-
based weighting, the weighting matrix can be calculated
without notable calculation time with different data or
different combinations of search variable. While stem
databases are updated with new data from harvested stands,
the weighting matrix can be re-calculated after each up-
date.

Non-parametric methods are, even when at their best,
only as good as the data used. These methods only point
out the most similar stands and if the data does not in-
clude similar stands, then the target stand estimates may
be inaccurate. Nevertheless, if properties of reference
data are uniform enough and used in estimations with
common sense, small data sets may also be usable.

Within this study, the quality of tree stock was not pre-
dicted. With Norway spruce, quality characteristics (i.e.
the amount of rotten wood) reduce timber volume. With
Scotch pine the amount of different timber grades have a
significant influence on bucking and value of a stand.
Both quality measures could be estimated from the har-
vester collected stem database with the method  presented
by adding some search variables describing quality of
the tree stock and collecting real quality based cutting
points. Bucking simulation could then be done by utiliz-
ing these quality cutting points.

ACKNOWLEDGEMENT

This research was funded by the Academy of Finland,
research project “Data basis of timber procurement enter-
prises and forest mensuration as a basis for operational
planning”. The authors would like to thank Mr Vesa
Imponen and Mr Tapio Räsänen for their cooperation
during research.

AUTHOR CONTACT

Mr. Malinen can be contacted by e-mail at --
Jukka.Malinen@joensuu.fi

REFERENCES

[1] Altman, N. S. 1992. An Introduction to Kernel and
Nearest-Neighbor Non-parametric Regression.
Am. Stat. 46: 175-185.

[2] Bellman, R. E. 1954. The Theory of Dynamic Pro-
gramming. Bull. Am. Math. Soc. 60: 503-516.

[3] Haara, A., Maltamo, M. and Tokola, T. 1997. The
K-Nearest-Neighbour Method for Estimating Ba-
sal-Area Diameter Distribution. Scand. J. For. Res.
12:200-208.

[4] Härdle, W. 1989. Applied Nonparametric Regres-
sion. Cambridge University, Cambridge, 323 pp.
ISBN 0-521-38248-3

[5] Kilkki, P. and Siitonen, H. 1975. (Simulation of Arti-
ficial Stands and Derivation of Growing Stock Mod-
els from this Material.) Metsikön puuston
simulointimenetelmä ja simuloituun aineistoon
perustuvien puustotunnusmallien laskenta.  Acta
Forestalia Fennica Vol. 145. 31 pp.

[6] Kilkki, P. and Päivinen, R. 1987. Reference Sam-
ple Plots to Combine Field Measurements and Sat-
ellite Data in Forest Inventory. Helsingin
yliopiston metsänarvioimistieteen laitoksen
tiedonantoja 19: 209-215.

[7] Korhonen, K. and Kangas, A. 1997. Application
of Nearest-Neighbor Regression for Generalizing
Sample Tree Information. Scand. J. For. Res.
12:97-101.

[8] Laasasenaho, J. 1982. Taper Curve and Volume
Functions for Pine, Spruce and Birch. Comm. Inst.
For. Fenn. 108:1-74.



International Journal of Forest Engineering  ̈ 41

[9] Lemmetty, J. and Mäkelä, M. 1992. (Methods for
Measurement of a Stand for Harvest Planning.)
Suunnittelumittauksen perusteet ja toteutus.
Metsätehon katsaus 11. 4p.

[10] Lukkarinen, E. and Vuorenpää, T. 1997. (Steering
Harvester Bucking from Office.) Hakkuukoneiden
apteerauksen ohjausta konttorista käsin.
Koneyrittäjä 1/ 1997: 12-13.

[11] Mahalanobis, P.C. 1936. On the Generalized Dis-
tance in Statistics. Proc. Nat. Inst. of Sci. India
2:49-55.

[12] Maltamo, M. and Kangas, A. 1998. Methods Based
on K-Nearest Neighbor Regression in the Predic-
tion of Basal Area Diameter Distribution. Can. J.
For. Res. 28:1107-1115

[13] Moeur, M. and Stage, A.R. 1995. Most Similar
Neighbor: An Improved Sampling Inference Pro-
cedure for Natural Resource Planning. For. Sci.
41(2): 337-359.

[14] Näslund, M. 1936. (Swedish Institute of Experimen-
tal Forestry Thinning Experiments in Pine Forests.)
Skogförsöksanstaltens gallringsförsök i tallskog.
Meddelanden från Statens Skogsförsöksanstalt
28(1).

[15] Räsänen, T. 1999. (Stem Database As An Instru-
ment of Wood Procurement Planning.) Runkopankki
puunhankinnan ohjauksen apuvälineenä.
Metsätieteen aikakauskirja 4/1999:727-729.

[16] Tommola, M., Tynkkynen, M., Lemmetty, J.,
Harstela, P. and Sikanen, L. 1999. Estimating the
Characteristics of a Marked Stand Using K-Near-
est-Neighbor Regression. Journal of Forest Engi-
neering. Vol. 10 (2):75-81.

[17] Uusitalo, J. 1995. Pre-harvest Measurement of
Pine Stands for Sawing Production Planning. Uni-
versity of Helsinki, Department of Forest Re-
source Management, Publication 9. 96 pp.


