INTRODUCTION AND BIOSTRATIGRAPHIC PRINCIPLES
Biostratigraphy is generally defined as the use of fossils in stratigraphic correlation (Holland, 1990), or the use of fossils as a stratigraphic tool. Furthermore, "it is the study of the biostratigraphic features in rocks that laid the foundation for modern stratigraphy, and it is biostratigraphy that still provides the most reliable means of correlation between sedimentary successions around the world" (Lemon, 1990, p. 203). In other words, the ultimate goal of biostratigraphy is to determine the relative temporal relationships between fossiliferous rocks of one area and those of another.

The foundations for biostratigraphy are rooted in the classic, pioneering studies of such individuals as William Smith of the early 19th century and of Alcide d'Orbigny and Albert Oppel of the mid-19th century (see Hofmann, 1987), but it is to Oppel that we owe our modern perception of what is meant by a biostratigraphic zone (= biozone of the North American Stratigraphic Code, 1983). It is no coincidence that all of the above three workers made their fundamental discoveries in the richly fossiliferous Jurassic strata of western Europe. However, comparable studies of the Paleozoic were not far behind, and by the mid-1800s, the use of fossils in the correlation of Silurian and Devonian rocks of Britain and continental Europe had been demonstrated by such pioneers as Murchison (Rudwick, 1985). Later, and more significantly and specifically, Charles Lapworth in a seminal series of publications (1879-1880) clearly demonstrated the value of Ordovician and Silurian graptolites as regional biostratigraphic tools. Farther afield, parallel studies of Barrande (1850) and Perrier (1894-1899) in Bohemia and James Hall in Quebec and New York State (1865) were no less significant, since these studies, of necessity, had no recourse but to rely entirely on the fossil content of the rocks to correlate them with the type sections of Great Britain. Many of these correlations, especially those of Hall, were remarkably accurate. In short, these geological giants fully demonstrated the value of fossils as geographically long-range correlation tools.

The fundamental unit of biostratigraphy is the biozone (in this paper the terms "zone" and "biozone" are used interchangeably), much as the species is the fundamental unit of taxonomy. In essence, the biozone is the operational biostratigraphic unit, and may be defined as a body of strata distinguished by a unique assemblage of species, a definition that developed from the time of Oppel (1856). The biozone is named after an important faunal element, the first appearance of which usually defines its base. For example, the base of the Silurian is now universally recognized to be at the base of the Para kidograpthus acuminatus Zone (Cocks, 1988); similarly, the base of the Devonian is defined at the base of Monograptus uniformis uniformis Zone (Martinson, 1977), marked by the first appearance of the subspecies.

It is generally assumed that the first appearance of that species may approximate a time line, or one that is as close as possible in the geological sense (see Murphy (1977) for a general discussion; and Finney and Bergström (1986) for the detailed discussion of the Nemagraptus gracilis Biozone). Independent tests for this are, however, difficult to come by, although magnetostratigraphy may ultimately provide such a check because of the short durations of magnetic reversals (Johnson and Nigrini, 1985, p. 538).

In setting up any biostratigraphic zonation, two requirements are paramount: accurate and carefully control-
led stratigraphic sampling of a number of sections, and sound taxonomy. These points, though obvious, need to be emphasized.

In some cases, multigroup biostratigraphy leads to a much-refined zonation. This has proven to be the case for Mesozoic biostratigraphy where the integration of the biostratigraphic schemes of different organismal groups (e.g., bivalves, brachiopods, ammonites, foraminifera) has resulted in a separate set of unique zones which are much more refined than those derived from any individual group (Kauffman, 1970; Surlyk and Birkeland, 1977). This approach has seldom been attempted in the Paleozoic, but is, however, one which needs to be pursued with more vigor.

The quantitative or numerical approach to biostratigraphy has only occasionally been applied to Paleozoic biostratigraphy. Graphic Correlation, as developed by Shaw (1964), shows considerable potential for refined biostratigraphic zonation and correlation, and to express time equivalence between stratigraphic sections. The technique is based on interpretation of graphic plots of first- and last-occurrences of taxa. Edwards (1984), using simulated data, demonstrated that the method is sound.

Sweet (1984), for example, used graphic-correlation to establish a stratigraphic standard for the Middle and Upper Ordovician of the eastern North American Midcontinent Realm. Sweet’s composite stratigraphic section representing about 37 million years is divisible into 80 Standard Time Units (STU) based on conodont ranges, an average of about 462,500 years per zone. These 80 STUs, by comparison, correspond to four zones and subzones of the North Atlantic Realm.

Finally, it is clear that biofacies analysis is an integral part of biostratigraphy (see also Ludvigsen et al., 1986; Ludvigsen, 1989). The utility of various zonal nomenclatures and the limits to regional and inter-regional correlation can be fully understood only in an environmental and ecological context, and it is for that reason that the influence of biofacies patterns is emphasized in this paper.

PALEOZOIC BIOSTRATIGRAPHY

The Paleozoic world was profoundly different from the present one. It differed not only in the obvious faunal and floral differences, but also in continental and oceanographic configurations, all of which changed throughout the era. The Paleozoic world also differed strikingly in the presence of vast epicontinental seas, some with broad cratonic shelves. For more than the first half of the era, anoxic basins (often equated with dark, organic and pyrite-rich “graptolitic shales”) were prevalent and widespread along continental margins. The North American paleocontinent (Laurentia) which lay within tropical and subtropical zones was, for example, covered by huge, north-south trending (relative to the current continental configuration) seas, the bottoms of which were often anoxic and excluded benthic faunas. Carbonate environments prevailed on the cratons and along the basin margins. The carbonates hosted richly diverse shelly faunas, including corals, brachiopods, stromatoporoids, bryozoans, echinoderms, conodont animals, and trilobites. During the Carboniferous and Permian, large, calcareous foraminifers and rich terrestrial flora were added to the overall biota. Basinal and slope faunas were dominated by graptolites during the the Ordovician to Lower Devonian, ammonoids (Lower Devonian to end of Permian), to some extent by conodonts and trilobites and, locally, during the Silurian and Devonian, by dacyranoiid tentaculitids.

In addition to major changes in the paleogeography of the continents and oceans, the Paleozoic world underwent two major climatic cycles: the “greenhouse” condition of the Ordovician to Devonian (interrupted by a brief latest Ordovician southern hemisphere glacial event), followed by a general worldwide cooling during the “icehouse” event of the Carboniferous and Permian (Fischer, 1984). All of these had profound effects on the evolution and distributions of the world’s biota and, therefore, their biostratigraphic potential (see discussions in Johnson, 1971; and Johnson and Sandberg, 1988).

One of the challenges facing a biostratigrapher is that of provinciality: the existence of two or more globally distributed biogeographic realms which were influenced to a great extent by global climates and continental configurations. During periods of high cosmopolitanism, comparable biotic communities occupying similar environments are widely distributed over the Earth. At such times, genera and species, zonal assemblages, and even entire zonal successions are highly similar over large areas of the world, permitting long-range, precise correlation. For example, Llandovery graptolites, most Silurian conodonts, and Upper Devonian conodonts and brachiopods, are very widespread and strikingly similar. Refined correlation at these times is attainable.

During times of high provinciality, endemism is high, and a community of one realm shares few, or no, elements in common with that of other realms. Inter-provincial correlation may, therefore, be difficult. For example, late Arenig and early Llanvirn graptolites, Emsian brachiopods, Middle to Late Cambrian trilobites, and Late Ordovician and Late Permian conodonts differ considerably from province to province. During the Emsian, for instance, at least three separate brachiopod provinces prevailed (Johnson and Boucot, 1973).

Fortunately, however, the biogeographic boundaries of one group do not always closely coincide to those of another organismal group and, as a result, inter-provincial correlation can, in most instances, be achieved directly or indirectly. For instance, during the late Pragian and early Emsian, when brachiopod (and coral) provinciality was at a maximum, inter-provincial correlation of the brachiopod faunas is achieved using graptolites and conodonts, when present in the same beds.

Biofacies differentiation offers perhaps the greatest challenge facing the biostratigrapher. Differences in organismal preferences for factors such as water temperature, depth and chemistry (e.g., salinity), nutrients, food and substrate differences, can lead to the establishment of a series of biofacies along an environmental gradient. The well-known Silurian brachiopod biofacies (“communities”) recognized by Ziegler (Ziegler et al., 1968; see also Fürsich and Hurst, 1974 for a discussion of the underlying environmental factors) are a classic example of this type of distribution pattern.

High levels of biofacies differentiation limit the areal extent over which zones may be recognized, even within a single basin. In any biofacies-lithofacies grouping, the numerically dominant taxa offer the best basis for zonations, simply because they have the highest probability of discovery in stratigraphic sections. Consequently, zonations tend to be biofacies specific, so that several
parallel zonal schemes will be needed to adequately characterize the biostratigraphy within each biogeographic province (see Ludvigsen et al., 1986 for further discussion). At least a few species will be shared between adjacent biofacies, so that correlations between local zonations can be established. Ludvigsen et al. (1986) termed this approach "dual biostratigraphy" in order to emphasize that both the environmental and temporal distributions of faunas must be considered in a complete biostratigraphic analysis.

Correlations between biozonations established for different biofacies are attainable because some taxa range well outside their preferred habitat, albeit in generally lesser abundance. For example, species and subspecies of the brachiopod *Eocoeola*, one of the key elements of the *Eocoeola* community, are found sparingly in the deeper water *Pentamerus* and *Stricklandia* communities (Ziegler et al., 1968), permitting correlation among the three adjacent communities. Furthermore, environmental ranges of one organismal group, whether pelagic or benthic, need not coincide with those of another and, in fact, may be markedly different. Rare occurrences of one group in biofacies dominated by another provide important aids to correlation: for example, graptolites and/or conodonts within two or more shallow-water brachiopod or coral-dominated biofacies.

Integration of data from several fossil groups provides the best basis for biostratigraphic correlation, and this approach is strongly advocated (see "A Correlation Puzzle").

For this paper, no attempt has been made to cover or survey all, or even most, Paleozoic organismal groups; rather, a few groups of different life habits and strategies are examined in more detail. Groups examined comprise graptolites, brachiopods, conodonts, palynomorphs and trilobites.

Graptolites, representative of Paleozoic plankton, have long been considered as near-ideal biostratigraphic tools, at least for basin and basin margin settings. Overall, species range is short and species diversity is high throughout most of their existence. Ordovician faunas, especially those of the Arenig and Llanvirn as well as those of the Llandovery, show particularly high diversity. During such times of high diversity, zonal assemblages may comprise as many as 20-30 species, whereas, during times of low diversity, as for example, the mid-Wenlock, Pridoli and Lower Devonian, individual zones may contain no more than two or three species.

Brachiopods, representing sessile benthons, were abundantly diverse and widespread throughout most of the Paleozoic, and most of the principles of paleocommunity analysis derive from Paleozoic brachiopods. Most individual brachiopod species are relatively long-ranging, but because of their collective overall abundance and high diversity in sequences of strata, are very amenable to the so-called assemblage zone approach. Correlation at the stage level is generally readily attainable. Some taxa (genus or species group), however, underwent rapid evolution and are capable of fine time resolution.

Conodonts, which range through the Paleozoic, are representative of Paleozoic nektobenthic and pelagic organisms which underwent rapid evolution. They ranged over much wider lithotopes than occupied by purely benthic organisms and, at times, their biostratigraphic precision equals, or even surpasses that of graptolites. During parts of the Ordovician and during the late Devonian (Frasnian and Famennian), for example, their precision is unrivalled.

Carboniferous and Permian palynomorphs include spores, pollen, acriarchs and scolecodonts. Most extensively studied are spores and pollen derived from land plants, and these form the basis of most late Paleozoic palynological zonations. Spores and pollen, being dispersed by wind and transported by water, may be present in a variety of continental and sedimentary facies, thus making them valuable for correlation across facies boundaries and in areas where other fossil groups may be affected by local phenomena, such as water temperature or salinity (Traverse, 1988).

Trilobites also underwent rapid evolutionary turnover, especially during the Cambrian, and provide the basis for finely divided zonations. They have been used widely and successfully for correlation of Lower Paleozoic sequences across a variety of lithofacies within individual faunal provinces. Global correlation is often hindered by high degrees of provincialism, although Cambrian gnornost trilobites, which tend to be more cosmopolitan in distribution, have shown promise for global correlation of at least deep shelf and basinal facies.

A number of other groups are equally capable of high-resolution biostratigraphy. They are not discussed in this paper, a fact related only to the expertise of the contributors. Nevertheless, for the interested reader, a number of important groups and relevant citation(s) are included as follows: Carboniferous and Permian large calcareous foraminifers: Mamet (1977), Douglass (1977); Devonian ammonoids as representative of Paleozoic ammonoids: House (1962) and Chiupač and Turek (1983); Chitinozoa: Grahn (1982); dacryconarid tentaculitids (especially Devonian representatives): Lardeux (1969); and Devonian acritarchs: Playford (1977).

The various sections of this paper are written by the following: introduction and graptolites by A.C. Lenz, brachiopods by J. Jin, conodonts are by A.D. McCracken, palynomorphs are by J. Utting, and trilobites are by S.R. Westrop.

GRAPTOLITES

Biostratigraphy and Biogeography

Graptoloid graptolites ("true" graptolites) flourished from almost earliest Ordovician (Arenig) until approximately mid-Early Devonian (end of Pragian). Because of rapid evolution and widespread distribution, graptolites are, arguably, the finest interbasinal biostratigraphic tool for the Lower Paleozoic basinal and slope environments (see discussion of principles of graptolite biostratigraphy in Berry, 1977), although their use in shallow, platformal environments may be limited.

The monumental studies of Elles and Wood (1901-1918) clearly demonstrated the biostratigraphic potential of graptolites for basin and basin-margin facies, and firmly laid the groundwork for graptolite zones and zonation. During the last thirty years, sparked, in part, by exploration of more remote regions of the world (e.g., northern and Arctic Canada, northern and northeastern regions of Russia and Siberia, Kazakhstan and China) and, in part, by the stimulus of international studies on geologic systems and systemic boundaries, a vast amount of new data have been amassed. These continuing studies demonstrate that in basinal environ-
ments at least, graptolites are excellent correlation tools, and permit increasingly precise zonation and correlation of graptolitic sequences. As an example, the northern Yukon zonal scheme of Jackson and Lenz (1962) comprised 23 Arenig to Pragian (Lower Devonian) biozones, whereas there are now 50 spanning this 100 million year interval (Lenz, 1982, 1988a, 1988b; Lenz and Chen, 1985b; Lenz and Jackson, 1986; Lenz and McCracken, 1982). Even greater temporal refinements have been attained in the Silurian of the British Isles, where 30 zones are recognized (Rickards, 1976) in the Llandovery through Ludlow, an interval of approximately only 20 million years.

The use of graptolites as globally effective biostratigraphic tools is highly dependent on their biogeographic distribution. Graptolite species and genera exhibit a broad degree of cyclicity in the extent of global distribution; that is, there was oscillation between periods of cosmopolitanism and provincialism (Fig. 1). During the periods of cosmopolitanism, global correlation is realized, whereas during times of endemism, correlation may not extend beyond the boundaries of the individual provinces.

The Tetragraptus approximatus Zone of the early Arenig, the Nemagraptus gracilis Zone beginning in the late Llandovery, almost all of the Llandovery with the exception of the uppermost zone, the early Ludlow Neodiversograptus nilssonii Zone, and part of the Lower Devonian were, for example, times of cosmopolitanism distributions of many species and species assemblages. Long-distance correlation of great accuracy, in the order of one million years or less per zone, is possible during these times.

Particularly striking are the Nemagraptus gracilis Zone, and the many zones of the major portion of the Llandovery. The N. gracilis Zone exhibits a near-global distribution in basinal and basin-margin facies (Fig. 2b), contains many co-occurring species (Finney, 1984; Cooper and Lindholm, 1990), and

<table>
<thead>
<tr>
<th>DEV</th>
<th>ENDEMIC</th>
<th>COSMOPOLITAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRAG</td>
<td>uniformis Zone</td>
<td></td>
</tr>
<tr>
<td>LOCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUDL</td>
<td>nilssoni Zone</td>
<td></td>
</tr>
<tr>
<td>WENL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLAN</td>
<td>turriculatus Zone</td>
<td></td>
</tr>
<tr>
<td>ASHG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLDO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLDO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREN</td>
<td>approximatus Zone</td>
<td></td>
</tr>
<tr>
<td>TREM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 (above) Chart showing alternation of periods of global endemism and cosmopolitanism in Ordovician to Early Devonian graptolites. Times of high endemism and cosmopolitanism are given specific labels, most of which are discussed in the text.

Figure 2 (right) (a) Early Ordovician continental configurations showing the low-latitude distribution of the graptolites of the Pacific Faunal Province and mostly high-latitude position of the graptolites of the Atlantic Faunal Province. Continental configurations from Scotese and McKerrow (1991). (b) Early Middle Ordovician continental configurations showing the widespread distribution of Nemagraptus gracilis. Continental configurations from Scotese and McKerrow (1991). (c) Early Silurian continental configurations showing the high to low latitude distributions of Monograptus turriculatus. Continental configurations from Cocks and Scotese (1991).
is a fine example of a widely applicable graptolite biozone. More striking are the sequences of faunas of all but the up-
permost Llandovery, most of which are very widely distributed and precisely correlatable (see distribution of Mono-
graptus turriculatus, Fig. 2c). A comparison of species, zonal sequences, and zonal assemblages shows them to be
highly similar in regions as widely spread as northern Yukon (Lenz, 1982), Arctic Canada (Melchin, 1989), British
Isles (Rickards, 1976), Siberia (Obut and Sennikov, 1977), Baltic region (Paskevićius, 1979), and China (Wang,
1987).

The late Pragian time is a particularly interesting one for the graptolites. At that time, just prior to their extinction,
graptolite species-diversity was moderate, having increased dramatically from the impoverished underlying zones.
They were distributed across many areas of the world (Cordilleran and Arctic North America, central Europe,
north Africa, Australia, Thailand, southern China, Tibet (= Xizang), Timan, Kazakhstan and a number of localities in
neighboring Siberia). In spite of increasing provincialism among benthic organisms (e.g., brachiopods: Johnson,
1971; rugose corals: Oliver and Pedder, 1979), the value of these last graptolites as biostratigraphic tools is undimin-
ished, a suggestion supported by their consistent association with particular

species of conodonts (Klapper, 1977) and dacryoconarid tentaculitids (Lütke, 1979).

Graptolite endemism was high during the late Arenig to late Llanvirn, late Ashgill, and approximately the mid-Wenlock; moderately so during the late Ludlow and early Pridoli; and weak during
the late Lochkovian and early Pragian. Most striking is the period of late Arenig to late Llanvirn (late Lancefieldian
to late Darriwilian of the Australasian stage terminology: Fig. 3), during which time endemism was particularly pro-
nounced. During that time, the graptolite world comprised two main and approximately equal-sized faunal prov-
inces, the predominantly warm-water and carbonate-rich Pacific Province (Skevington, 1974, 1976; see also
Scottes and McKerrow, 1991 for Ordovician continental configurations) and the mostly higher-latitude and cooler-water
Atlantic Province (Fig. 2b). The faunas of the former are well known from, for example, Australasia (Cooper, 1979;
Cas and Vandenberg, 1988), Canadian Cordillera (Lenz and Jackson, 1986; Lenz, 1988a), Newfoundland (Williams
and Stevens, 1988), Texas (Berry, 1960), Great Basin (Ross and Berry, 1963), and northern Greenland (Bjerrskov, 1989),
as well as from Siberia, Kazakhstan and southern China. The various regions of the Pacific Province contain, overall,
remarkably similar faunas and zonal as-

<table>
<thead>
<tr>
<th>AUSTRALASIA</th>
<th>YUKON</th>
<th>S. BRIT. ISLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GISB</td>
<td>gracilis</td>
<td>gracilis</td>
</tr>
<tr>
<td>DAR</td>
<td>euglyphus interstitius austrodentatus</td>
<td>tertiusculus decoratus tentaculatus</td>
</tr>
<tr>
<td>YAP</td>
<td>crudus morsus uspion</td>
<td>Oncograptus</td>
</tr>
<tr>
<td>CAS</td>
<td>maximus victoriae lunatus</td>
<td>maximus lunatus</td>
</tr>
<tr>
<td>CH</td>
<td>protobifidus</td>
<td>protobifidus</td>
</tr>
<tr>
<td>BE</td>
<td>fruticosus</td>
<td>fruticosus</td>
</tr>
<tr>
<td>LA</td>
<td>approximatus</td>
<td>approximatus</td>
</tr>
</tbody>
</table>

Figure 3. Correlation chart comparing Australasian stages and zones of Australasia and Yukon (Pacific Faunal Province) with those of the classic southern British sequence (Atlantic Faunal Province). After Cooper and Lindholm (1990). Lenz and Chen (1985b), Lenz and Jackson (1986). LA, Lancefieldian; BE, Bendigonian; CH, Chiewonian; CAS, Castlemanian;
YAP, Yapeenian; DAR, Darriwilian; GISB, Glisbornian; LLVN, Llanvirn; LD, Llandeilo.

By comparison, graptolite faunas of the the Atlantic Province which are de-

monstrably shown to be coeval by asso-
ciated conodont faunas (Bergström and Cooper, 1973; see also "A Correlation

Puzzle" herein) and by rare occurrences of mixed faunas such as found in southern Sweden (Cooper and
Lindholm, 1990), comprise the classic
graptolite regions of southern Britain,
most of western continental Europe,
northern Africa, South America, and
"central" China (Fig. 2a). These faunas
are only moderately diverse and yield
high abundances of robust "tuning fork"
(e.g., Didymograptus (Didymograptid-
tellus) murchisoni, D. (D.) artus, and related species) and abundant exten-
siform-type of didymograptids.

Other times of endemism at a lesser level, include those of the late Ashgill,
and the mid-Wenlock. Late Ashgill (i.e.,
the Hirnantia-fauna interval) was a time
of southern hemisphere glaciation
(Beuf et al., 1971), the results of which
had a profound effect upon global
faunas, including graptolites (see
Sheehan, 1973, 1988 for a discussion of
the overall faunal changes at that time;
and Melchin and Mitchell, 1991, for a
discussion of the graptolites). Endem-
ism at the species level was moderately high, and correlation among various
regions such as, for example, Arctic Can-
ad, southern China, Australia, north-
eastern Siberia, and the British Isles, is
impaired by the absence of widely dis-
tributed co-occurring species.

The Wenlock is marked by the almost
universal occurrence of many species of the genus Cyrtograptus (Fig. 4).
Some species of this genus were more
or less cosmopolitan in their distribution
during Early and Late Wenlock permit-
ting good correlation at these times.
During about mid-Wenlock, however,
cyrtograptids briefly disappear from
western Europe, but appear to have
been continuously present and to have
evolved local species in Arctic Canada
and eastern Siberia (see Lenz and
Melchin, 1989). Precise long-range cor-
relation between the Arctic regions and,
for example, western Europe, is difficult
during this time interval.
Graptolite Biofacies and Lithofacies Controls
Graptolite occurrences are not, as once believed, independent of lithofacies, a fact that has become abundantly clear in recent years (Lenz and Chen, 1985a). Paleocological analysis of graptolites is extremely difficult and the rocks containing their remains reveal little of their habitat or habitat preferences for two reasons. First, graptolites were pelagic and they could have been subjected to long-distance post-mortem transport. Second, and more importantly, "communities" would have been mixed during their post-mortem descent to the sea floor. It is well recognized that the highest diversity faunas occupied deep water "black shale" environments (Finney, 1984; Cooper, 1979; Ross and Berry, 1963; Lenz, 1982; Lenz and Jackson, 1986; Lenz and Chen, 1985a; Melchin, 1989, and especially Cooper et al., 1991). However, even in these environments, diversity and compositional differences appear to more or less parallel those of the regional lithofacies. Finney (1984) demonstrated noteworthy differences between faunas occurring in deep water "black shale" facies and those in nearby and adjacent shallower calcareous shale facies.

Detailed studies of Silurian rocks and graptolites in the Baltic region (Paškevičius, 1979), perhaps the most intense and detailed regional ecosтратigraphic study across a broad array of lithotopes to date, are illustrative. They show that maximum species diversity occurs in the faunas of basinal and basin-margin grey, greenish-grey and black shales, which also include many delicate species. In contrast, species found in the shallower platformal carbonates comprise long-ranging and robust morphs such as Monograptus priondon, Retiollites geinitzianus, and large Monograptus.

The problem is further emphasized by a comparison of faunas of the classical North American Cincinnatian Series (Bergström and Mitchell, 1986; 1990) and the similar faunas of the St. Lawrence Valley (Riva, 1969, 1974) with those of either the basin or basin-margin faunas of the Appalachian Trough, or the continental margins of the North American Cordillera. The first faunas, termed "mid-continent" faunas, are of only moderate diversity and comprise mainly biserial forms (Mitchell and Bergström, 1991), whereas different biserial species and a rich population of Diplocraterion, Dicranograptus or Leptograptus are present in the basinal and/ or continental margin settings. Correlation between these graptolite faunas is difficult (Bergström and Mitchell, 1986).

Relatively rare occurrences of Middle to Late Ordovician graptolite faunas of the North American shallow-water epicontinental carbonate sequences probably represent the extreme limits of graptolite tolerances. Hudson Bay (Jackson, 1973), northwestern Hudson Bay (Jackson, 1971), Akpatok Island (Cox, 1933; Workum et al., 1976), Anticosti Island (Barrass, 1954), southern Baffin Island (Miller et al., 1954) and northeastern Ontario and adjacent Quebec (Foerste, 1924) have yielded well-preserved graptolite faunas, most of which are biserials of low species diversity. Correlation of these strata with other faunas in a similar cratonic setting, or with those in deeper-water lithofacies solely by means of their contained graptolites has not been achieved with satisfaction.

To account for the differences in graptolite litho- and biofacies, Berry and Boucot (1972) suggested that different species and morphotypes occupied different water depths; to these, Finney (1984) added a factor that he termed "water-mass specificity". Recently, Cooper et al. (1991), in a comprehensive study to account for Early Ordovician distributions, proposed that graptolites occupied a near-surface, oxygen-rich epipelagic zone, an intermediate depth, mesopelagic zone, and possibly a deep bathypelagic zone, the latter two being oxygen-poor, but diversity rich. They further recognized a somewhat ill-defined, low-diversity, inshore zone as a subdivision of the epipelagic zone.

In developing an actualistic model for the distribution of graptolites, Berry et al. (1987, and references therein) suggest that the oceanward projecting, below-surface, nitrate- and bacteria-rich tongues of waters on either side of the equator along the Pacific side of South America serve as good analogs for graptolite habitats, at least for those graptolites inhabiting moderate depths. Further, they suggest that with the long-term stability and equitable climates characteristic of most of the Ordovician

Figure 4 Cyrtograptus sakmaricus Koren, from Arctic Canada. (Hypotype GSC 57523). Species of this genus are the main paleobiological tools for the zonation of latest Llandoverian to late Wenlock strata and are widely distributed throughout the world.
and Silurian, the depth and geographic distribution of the nitrate-rich, oxygen-depleted waters would be much more pervasive than at present.

The Berry et al. (1987) and Cooper et al. (1991) models, however, do not fully account for the distribution of some graptolites, in particular those low-diversity faunas found in far-inshore positions on very broad, shallow, platformal areas such as referred to above. A slight modification and extension of these models is proposed herein (Fig. 5).

It is suggested that in regions with very broad and gently sloping carbonate-rich areas, such as on the North American craton, only a few hardy species could thrive in the these regions of probably greater physical stress. Representatives include robust biserials in the Ordovician, and Monograptus priodon types and large monocladiids in the Silurian, (species groups A and B of Fig. 5). Faunas B-E (Fig. 5), from the more offshore, less turbulent, but oxygen-rich near-surface waters would correspond to typical epipelagic faunas of Cooper et al. (1991). Silurian representatives of this ecozone include Monograptus priodon and other robust similar morphotypes, large retiolitids such as Retiolites geinitzianus, and probably a few robust cyrtograpids. Faunas F-R comprise high-diversity, low-oxygen-tolerant (or -loving) species comparable to those of the mesopelagic zone. Further, however, nitrate-rich, oxygen-poor waters might not so consistently and pervasively extend onto the intermediate-depth shelf margin, permitting the division into moderate-depth faunas F-L, and the consistently deeper-water faunas I-R (Fig. 5). The subtle differences in Appalachian Ordovician faunas discussed by Finney (1984) and Silurian faunas from northern Yukon described by Lenz and Chen (1985a) could fall into these two categories.

In this scenario (Fig. 5), the graptolite fossil record would (or could) record, at least, three coeval assemblages: 1) the very distinctive, low-diversity, shallow-water, platformal faunas (species groups A and B), 2) a moderate-diversity fauna of the more offshore, but near-surface and the intermediate depth assemblages (species groups B-E plus F-L), and 3) a high diversity, offshore deep water assemblage: the near-surface plus the deep-water species (species groups B-E plus I-R). Thus, graptolites of assemblage 1 and those of the more offshore, near-surface, taxa B-E, are generalized and euptychic, and of low biot stratigraphic potential; those of assemblages 2 and 3, comprising both euptychic (B-E) and stenotopic species (F-L and I-R), have excellent biot stratigraphic potential because of the rapid evolution of the stenotopic taxa.

BRACHIPODS

Brachiopods constitute one of the most abundant and diverse groups in the Paleozoic fossil record, and they occur in nearly the entire array of marine sedimentary facies, from clastic to carbonate and shallow shelf to basin. Articulate brachiopods in the Cambrian formed only minor parts of the benthic communities and are, therefore, of little biostratigraphic value, but inarticulate brachiopods have been used successfully to establish zones in the Upper Cambrian (e.g., Kurtz, 1971). In the Ordovician to Devonian, articulate brachiopods became one of the major components of marine shelly faunas and have been used widely for biostratigraphic studies. Many groups of brachiopods become extinct near the end of the Devonian, and some others, especially the spiny or bizarre-shaped productids and chonetids, flourished in the carbonate shelf and reef environments during Carboniferous and Permian times. In the following discussion, particular groups in the Silurian will be used to illustrate various aspects of Paleozoic brachiopod biostratigraphy.

Silurian Brachiopod Biostratigraphy

Brachiopods have been used in biostratigraphy most effectively in three ways:

1) unique associations or assemblages of numbers of taxa (including faunas, "communities") used as the bases for establishing biozones (the assemblage zone of the North American Stratigraphic Code, 1983).

2) short-lived but widespread individual species or genera serving as "index fossils" or as the bases for biozones.

3) rapid turnover and species replacement within single genera or genus group in which the first appearance of each succeeding species forms the base of a biozone.

Assemblage Biozones

The importance of brachiopods in biostratigraphy lies in their overwhelming abundance and diversity, especially in Ordovician, Silurian and Devonian shallow-water carbonate sequences. Cooper’s (1956) work on Middle and Late Ordovician brachiopods, for example, greatly improved the understanding of the Chazyian through Trentonian strata of North America, although later studies of conodonts have further refined the biostratigraphic correlation of these rocks.

Sophisticated delineation and correlation of brachiopod biozones have been applied successfully to some De-
vonian rocks. In central Nevada, for example, Johnson (1977, 1979) and coworkers (Johnson and Niebuhr, 1976; Johnson et al., 1980) were able to recognize 30 faunal intervals, based on brachiopod zones and faunas (recently expanded into 46 brachiopod-dominated communities by Johnson (1990) based on numerical abundance data). These brachiopod biozones have been directly correlated with the conodont biozones of the same region. Some of the biozones attain a resolution equal to, if not higher than, the conodont biozones. Unfortunately, many of these biozones are largely endemic to Nevada and southeastern California and cannot be correlated precisely with coeval brachiopod faunas in other regions of North America, or elsewhere.

Index Taxa

Study of the *Virgiana* faunas has greatly helped to refine correlation of the lower Llandovery (Rhuddanian) carbonate rocks of North America (Berry and Boucot, 1970). Most species of *Virgiana* are characterized by relatively large, coarsely ribbed, posteriorly rounded and umbonally much-thickened shells (Fig. 6a, b), which commonly occur in rocks indicating shallow and turbulent water conditions, associated with such sedimentary structures as channelling, scour and fill, cross-stratification, and common coquinas of broken *Virgiana*

Figure 6 Characteristic pentamerid brachiopods of Early Silurian age. (a, b) *Virgiana* barrandeii (Billings, 1857), lectotype GSC 2372b, Besacie Formation, Anticosti Island, Quebec, 1.2×. (c, d) *Pentamerus* oblongus (J. de C. Sowerby, 1839), hypotype GSC 59165, upper Jupiter Formation, Anticosti Island, 1.2×. (e, f) *Clorinda* tumulata (Billings, 1866), hypotype GSC 95508, lower Atwiapiskat Formation, Ekwok River, Hudson Bay Lowlands, 3×. (g, h) *Pentameroides* septentrionalis (Whiteaves, 1904), type GSC 95499, Atwiapiskat Formation, Atwiapiskat River, Hudson Bay Lowlands, 1.5×. (i) *Costotriclindia* gaspeensis (Billings, 1859), lectotype GSC 3047a, Gaspésie, Quebec, 0.6×. (j) *Kulumbella* biconvexa Nikiforova, in Nikiforova and Andreeva, (1961), hypotype GSC 59174, upper Gun River Formation, Anticosti Island, 1.4×. (k, l) *Stricklandia* lens *intermedia* Williams, 1951, hypotype GSC 59176, lowermost Jupiter Formation, Anticosti Island, 1.4×.

With the ending of the latest Ordovician glaciation in the southern hemisphere (for recent summary, see Sheehan, 1988) and the beginning of the Early Silurian transgression, the shallow-water (intertidal to upper subtidal) Virgiana communities evolved abruptly, dispersed widely in North America and Siberia, and disappeared by latest Rhuddanian-earliest Aeronian time. As a result, various species of Virgiana have served as excellent biostratigraphic tools.

Intercontinental correlation can be shown by the co-occurrence of Virgiana barrandei from both Anticosti Island and the Siberian platform, where the Virgiana-bearing beds from both regions are correlated with the late Rhuddanian Coronograptus cyphus Zone (Copper and Long, 1989; Lopushinskaya, 1976, respectively). During the Late Ordovician and Early Silurian, both North America and Siberia were stable carbonate platforms covered by shallow epicontinental seas. Destruction of the core of the Iapetus Ocean in the late Silurian time probably pulled North America and Siberia, as well as northern Europe (Baltica), close together (Pickering et al., 1988). With the onset of marine transgression after the terminal Ordovician glaciation, the Virgiana faunas probably followed the shallow-water environment and spread onto both continents.

A similarly short-lived but widespread genus is the middle Llandovery stricklandiid Kulumbella (Fig. 6j) originally described from Siberia (Nikiforova and Andreeva, 1981; Lopushinskaya, 1976). The genus, found in abundance in only the upper Gun River Formation (lower Aeronian) of Anticosti Island (Jin and Caldwell, 1991), also occurs in rocks of the same age in Estonia (Rubel, 1970), Greenland (Hurst and Sheehan, 1982), and South China (Rong and Yang, 1981).

Rapid Turnover and Species Replacement in a Single Genus

Although brachiopods generally show slow rates of evolution, some genera are known to have speciated rapidly and spread widely and, therefore, can be used as the basis for establishing biozones. In Llandovery time, the large-shelled pentamerids, *Pentamerus* and *Stricklandia* (Fig. 6c, d, k, j) and the small-shelled rhynchoellid *Eoecollia*, flourished in shallow shelf environments and epicontinental seas of North America, Siberia-Kazakhstan, northern Europe, and South China. Average duration of species in these stocks is unusually short, approaching that of contemporaneous graptolite species. As shown in Figure 7, the five species or subspecies of *Stricklandia* in the Llandovery Series had an average span of 2 m.y., and the four species of *Eoecollia* in the late Aeronian and Telychian probably had an even shorter one. These short-ranged successions have proven to be valuable tools for regional, and even global, correlations.

Careful study of brachiopod morphological and speciation trends has lead to important biostratigraphic implications. In the type area for the Llandovery Series, Wales, rapid evolution in two generic groups, *Stricklandia-Coelosticklandia* and *Eoecollia*, have been used as bases for biozones supplementary to the standard graptolite zones (Cocks et al., 1984). Speciation trends in *Stricklandia* to *Coelosticklandia* were first examined by Williams (1951), who identified a number of stratigraphically related directional trends including, 1) increase in the strength of the shell costae, 2) reduction of the outer brachial plates, and 3) enlargement of the cardinalia (see also Rubel, 1977). A quantitative biometric re-evaluation of the *Stricklandia* stock by Baarli (1986) has confirmed the validity of the *Stricklandia-Coelosticklandia* trends, although one of the trends (enlargement of cardinalia) was regarded by Baarli as ecologically controlled. In the Llandovery type area, the two earliest sub-species of the lineage, *Stricklandia lens prima* and *S. lens lens*, are known to be associated with the graptolite Coronograptus cyphus Zone (Fig. 7). *S. lens intermedia* and *S. lens progressa* with the Monograptus convolutus and *M.*

<table>
<thead>
<tr>
<th>SERIES</th>
<th>STAGE</th>
<th>GRAPTOLITE BIOZONES</th>
<th>PENTAMERIDS</th>
<th>RHYNCHOELLIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLANO</td>
<td>VERO</td>
<td>crenulata</td>
<td>S. laevis</td>
<td>E. sulcata</td>
</tr>
<tr>
<td>TEL</td>
<td>YCHIAN</td>
<td>griestoniensis</td>
<td>S. lens progressa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>crisus</td>
<td>Costricklandia tirata</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>turriculatus</td>
<td>E. intermedia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sedgwickii</td>
<td>E. curvis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>convolutus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>argentus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>magnus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>triangulatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AER</td>
<td>ONIAN</td>
<td>cyphus</td>
<td>S. lens intermedia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>acinaces</td>
<td>Coelosticklandia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atavus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>acuminatus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7 Correlation of standard graptolite biozones with brachiopod biozones in the Llandovery type area, Llandovery, Wales. (Modified after Cocks et al., 1984).
sedgwicki zones, S. laevis with M. turriculatus through M. griesoniensis zones, and Costistriclandia larata with the M. griesoniensis through M. centrilagus zones (Cocks et al., 1984). The integration of data between graptolite and brachiopod biozones serves as a crucial tool for correlating rocks of basinal facies with those of shelf and platform facies, where graptolites are rare or absent. In graptolite-poor carbonate sequences of North America, Stricklandia and Costistriclandia are common in the Anticosti (Fig. 8; see also Jin, 1984; Cooper and Long, 1989) and American mid-continental basins (Johnson, 1979), and along the western marginal platforms. Species- and sub-species-level identification enables reliable correlation of the stricklandidae-bearing beds with those in the Llandovery type area and, ultimately, with the standard graptolite biozones.

The Eocoelia succession presents yet another example of the successful application of brachiopod evolution to biostratigraphy. The genus is believed to have lived in shallow-water habitats, probably in the upper subtidal zone (Ziegler, 1965; Boucot, 1975). By examining mainly the collections from British Isles, Ziegler (1966) recognized four successive and short-ranged species, E. hemisphaerica-E. intermedia-E. curtisi-E. sulcata, characterized by progressive reduction of shell costae and gradual strengthening of the articulatory mechanism from late Aeronian to earliest Wenlock time. Various species of Eocoelia are widely distributed in northern Europe (for example, Britain and Norway), eastern North America (Anticosti Island, Quebec and Nova Scotia; see Ma, 1984), and Siberia (Tunguska region; refer to Nikiforova and Andreeva, 1961). Ma's (1984) detailed study of Eocoelia not only confirms the species succession as recognized in Britain, but also recognizes other intermediate forms, in the Jupiter Formation (late Aeronian-early Telychian) of Anticosti Island. In the British Llandovery type area, the specific ranges of Eocoelia have been correlated to the standard graptolite zones (Cocks et al., 1984). Indirectly, therefore, correlation of the Eocoelia succession from eastern North America with that of Britain is of chronostratigraphic significance.

In North America, dating and correlation of the upper Llandovery carbonate rocks have relied heavily upon the replacement of Pentamerus oblongus by Pentameroides subrectus. This replacement has been well recorded in the upper Jupiter Formation of Anticosti Island (Jin, 1984), the upper Fossil Hill Formation of Manitoulin Island, Ontario, and the Hopkinson Dolomite of eastern Iowa (Johnson, 1979). Despite the long species duration of P. oblongus and P. subrectus compared to that of the species of Stricklandia and Eocoelia, they have been used widely to correlate Lower Silurian rocks because of their unusual abundance and cosmopolitan distribution.

Endemic taxa generally have very limited biostratigraphic value except for local correlations. Recently, however, Jin et al. (1990) reported a rapid turnover in the rhynchoellid brachiopod Fenestriostra from the Merrimack and lower Gun River formations (late Rhuddanian) of Anticosti Island. Three successive species, F. primaevae, F. glacialis, and F. pyrrha, show a directed trend of reduction in the strength of shell costae and hinge structures, which may have been adaptive responses to low-energy marine conditions. The evolutionary modifications were unusually rapid for brachiopods, estimated to have been accomplished in less than 1 m.y., with an average species duration of 0.3-0.4 m.y. (Fig. 8). Biostratigraphic application of the fast-evolving Fenestriostra succession, however, is confined to the Anticosti Basin, because the stock has not, as yet, been found in any other regions.

Although there is still some debate as to whether some of the morphological changes recognized in brachiopods are the result of evolution or of ecological control, some genera or species of brachiopods seem more susceptible to

<table>
<thead>
<tr>
<th>SERIES</th>
<th>STAGE</th>
<th>FM.</th>
<th>PENTAMERIDS</th>
<th>RHYNCHONELLIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLANDOVERY</td>
<td>TELYCHIAN</td>
<td>JUPITER</td>
<td>Pentameroides subrectus</td>
<td>Fenestriostra primaevae</td>
</tr>
<tr>
<td></td>
<td>AERONIAN</td>
<td>MERRIMACK</td>
<td>Pentamerus oblongus</td>
<td>F. glacialis</td>
</tr>
<tr>
<td></td>
<td>RUHDDIAN</td>
<td>BECSCOIE</td>
<td>Stricklandia lens intermedia</td>
<td>F. pyrrha</td>
</tr>
</tbody>
</table>

Figure 8 Occurrences of a succession of four brachiopod species in the Llandovery Series of Anticosti Island, Quebec. (Data from Jin, 1984; Ma, 1984; Copper and Long, 1989, and Jin et al., 1990).
morphological modification by environmental factors than others. Most species of Early Silurian *Eococelia, Pentamerus*, and *Stricklandia* stocks, for example, show little ecologically induced variation and can be found virtually unaltered from platform carbonate facies in North America to siliciclastic facies in Wales and the Welsh borderland. On the other hand, the Late Silurian genus *Atrypoidea*, as documented from Arctic Canada by Jones and Narbonne (1984), shows great morphological plasticity controlled by environmental factors. Three morphologically gradational species, *A. phoca, A. foxi*, and *A. bioherma*, have been interpreted to occupy respectively, the low intertidal, shallow intertidal and biohermal zones. Fluctuations in sea level and bathymetry resulted in horizontal shifts and, consequently, an apparent vertical succession of species of *Atrypoidea*. Obviously, these apparent biostratigraphic zones based on successions of environmentally controlled species are analogous to a diachronous rock unit and, thus, much less reliable than biozones based on environmentally more independent species.

Paleocommunities and Paleoecology
Due to their sedentary mode of life, brachiopods constitute one of the fossil groups that is ideal for paleoecological studies. For the Ordovician, Silurian and Devonian periods, numerous brachiopod biofacies have been recognized and reconstructed to indicate various biofacies or substrate conditions (*The Ecology of Fossils* edited by McKerrow 1978 provides an excellent summary). One of the best examples is the reconstruction of Silurian brachiopod biofacies (= "communities" of Ziegler et al., 1968; "benthic assemblages" of Boucot, 1975), which show both vertical succession and lateral replacement in shelf environments (Ziegler, 1965; Cocks and McKerrow, 1978; Johnson and Campbell, 1980; Sheehan, 1980b). In Llandoverian time, an array of *Lingula, Eococelia, Pentamerus, Stricklandia*, and *Clorinda* assemblages spread from intertidal, subtidal, to marginal zones, and merged into the basinal graptolite facies (Fig. 9; for a recent summary, see Pickerill and Brenchley, 1991). Although there is some extent of mixing of characteristic taxa among these benthic assemblages, each assemblage can be recognized by quantitative analysis of species composition (Ziegler et al., 1968). In general, the *Eococelia, Pentamerus* and *Stricklandia* assemblages are confined to the inner to mid-shelf facies and rarely occur in either the intertidal or basinal facies. By the Wenlock and Ludlow times, the shallow-water habitat of *Eococelia* was taken over by the *Salopina* assemblage, the deeper-water habitats of *Pentamerus* and *Stricklandia* assemblages were occupied by the *Sphaerirhyncha* and *Isorthis* assemblages, and the marginal *Clorinda* assemblage gave way to the *Dicoelosia* and *Visbyella* assemblages. Because many brachiopod communities could successfully establish themselves in both carbonate and siliciclastic environments, study of these brachiopod associations can provide crucial information for inter-basinal analysis and paleobiogeographic reconstructions.

Studies on Lower Silurian brachiopod biostratigraphy and recognition of water-depth related brachiopod biofacies (Boucot, 1975, p. 50) have inspired a series of attempts to reconstruct changes in sea level (McKerrow, 1979; Johnson and Campbell, 1980; Johnson et al., 1981; Johnson et al., 1985). For example, by tabulating the occurrences of the *Pentamerus, Stricklandia, Clorinda* and other assemblages, Johnson and co-workers were able to recognize four minor transgression-regression cycles in the carbonate stratigraphic sequences in Iowa, New York, Michigan, Anticosti Island, and other regions of eastern North America.

In translating stratigraphic occurrences of the depth-related assemblages into sea-level curves, however, caution is needed to take into consideration facies changes. Ziegler's original model of "community" zonations was proposed on the basis of brachiopod occurrences in an essentially clastic setting, where a sediment ramp with a fairly uniform gradient from inter-

Figure 9 Schematic representation of Early Silurian brachiopod biofacies distribution: (A) on a siliciclastic shelf with a relatively uniform gradient, the assemblages are depth-related and arranged in zones parallel to shoreline, perhaps with some extent of overlapping and mixing. (B) a carbonate platform with bioherms providing irregular substrate conditions, local water-energy level becomes more important than water depth in controlling the community distribution.
tidal zone to shelf margin is assumed to have existed. In comparison, North America, being in a low paleolatitude in Silurian time, was dominated by a carbonate environment with shallow inland basins and marginal platforms dotted with coral-algal-stromatopoid reefs and bioherms. Like modern carbonate platforms, the Early Silurian carbonate seas must have had a much greater degree of heterogeneity (with minimal gradient) in their substrate topography than in a clastic environment and, consequently, distribution of biofacies would have been complicated by a combination of water-depth, water-energy, and other factors. In the clastic environment, an assemblage (for example, Stricklandia or Clarinda) occupied a relatively deep-water zone probably because it preferred quiet substrate conditions. In a carbonate environment, both high- and low-energy conditions can exist adjacent to each other within a biothermal complex and the “deep water” community can be found in the generally shallow biothermal setting (Fig. 9). This is shown clearly by the brachiopods in the biothermal rocks of the Attawapiskat Formation in the Hudson Bay Lowlands, where both Pentameroides (Pentamerus community of Ziegler, 1965 = Benthic Assemblage 3 of Boucot, 1975), and Clarinda (= Benthic Assemblage 5) occur in great numbers and in the same beds (Jin and Caldwell, 1991). The most feasible interpretation is that, within a single biothermal complex, the large thick-shelled Pentameroides lived in relatively turbulent-water niches and the small-sized Clarinda preferred quiet, protected ones.

CONODONTS
Conodonts are the phosphatic mouth parts of small, eel-like chordates that lived from Cambrian through Triassic times (Aldridge, 1987). The term “conodont” covers three groups (each arguably of phylum rank; Sweet, 1988), each differing in their histology (Bengston, 1983): protoconodonts, paraconodonts and euconodonts (“true conodonts”). Conodonts are invaluable tools for Paleozoic and lower Mesozoic biostratigraphy because of their rapid evolution, abundance and widespread distribution in marine rocks of a variety of lithologies. These durable microfossils are most easily isolated from carbonate rock by acid digestion and, thus, most of the data are from carbonate platform or shelf environments. Species distribution suggests that many conodonts were pelagic while others were nektobenthic (cf. Sweet and Bergström, 1984; Sweet, 1988; Pohler and Barnes, 1990).

Lower and Middle Paleozoic Conodont Provincialism and Biostratigraphy
Conodont biostratigraphic schemes reflect changes not only in the evolution of the conodont animal, but also in their paleoecology, which is influenced by continental configurations (Fähræus, 1976). Charpentier (1984) presented quantitative analyses of distribution records to show similarities between conodont faunas, these analyses involved data from the entire stratigraphic range of the conodonts. Periods of strong provinciality which occurred in the Ordovician, Early Devonian, and Permian, alternated with times of endemism and it seems likely that climatic temperature was the principal regulator of conodont distribution. The following discussion on biostratigraphy during the Cambrian to Devonian relies heavily on Charpentier’s data.

Cambrian
Provincialism began, after the appearance of euconodonts, in two broad realms: a warm-water realm of shallow seas at low to mid-paleolatitudes, and a cold-water realm comprising high latitudes and more open oceans, as well as deep-water marginal seas of low-latitude continents (Miller, 1984). Euconodont faunas displaced proto- and paraconodont faunas and dominated the Warm Faunal Realm by latest Cambrian time, while the latter continued to dominate the Cold Faunal Realm through the earliest Ordovician (Dubinina (1991) has recognized a third, “Transitional Realm” in Upper Cambrian and Lower Ordovician). Two biostratigraphic schemes reflect these provincial differences in Late Cambrian and earliest Ordovician (Miller, 1984).

Ordovician
The two conodont realms which began during the latest Cambrian-earliest Ordovician (cf. Charpentier, 1984; Ethington and Repetski, 1984) continued through to the glacial period at the end of the Ordovician (Pohler and Barnes, 1990). These (Fig. 10a) are the North American Midcontinent and North Atlantic realms representing the warm-water, low-latitude, and the cold-water, high-latitude faunas, respectively (cf. Bergström, 1971, 1973; Sweet and Bergström, 1974, 1984). Faunas of the North American Midcontinent Realm are associated with lithic and paleomagnetic data, suggesting that the strata accumulated within a latitudinal belt less than 30° from the paleoequator (Sweet and Bergström, 1984). By the time of the Late Ordovician Oulodus velicuspis Zone, two warm-water provinces (and six biofacies) and three cold-water provinces (three biofacies) are recognizable (Sweet and Bergström, 1984; Pohler and Barnes, 1990). The biofacies generally reflect water depth and temperature, or depth-related environmental factors.

The Late Ordovician biofacies are named for the taxa or taxa that numerically dominate the faunas. For example, in the North American Midcontinent Realm, species of Plectodina comprises 30-40% of the faunas in environments that were apparently more shallow than those comprising the contemporaneous Phragmodus Biofacies. These biofacies are found in both the Red River Province (a belt between 15°N and 16°S paleolatitude) and the Ohio Valley Province (south of 16°S paleolatitude). Species of Phragmodus and Plectodina are found in both provinces of this realm, and in biofacies of the North Atlantic Realm. It is this “sharing” of taxa between biofacies, and between provinces, that allows correlation of strata beyond the local scale.

The degree of provincialism in the Ordovician has led to the development of two parallel biostratigraphic schemes. The biostratigraphic succession in the Middle to Late Ordovician provides an example of how two regional schemes are integrated. Major contributions to the scheme for North America include Ethington and Clark (1981), Swet et al. (1971), and Sweet (1984). The scheme used in Europe was developed by Lindström (1971) and Bergström (1971) and now comprises about 24 zones and subzones for strata of the North Atlantic Realm (Löfgren, 1978; Ross et al., 1982; Bergström, 1983).

The biostratigraphic succession in the Middle and Late Ordovician provides examples of how two regional schemes are integrated. Sweet and
Bergström (1984) were not able to directly recognize the *Oulodus velicuspis* Zone outside North America because of the lack of the key species elsewhere. However, the recognition that the boundary between the Amorphog-

Early Ordovician
- North American Midcontinent Realm
- North Atlantic Realm
- ? Realm Assignment

Early Silurian
- Low Latitude Realm

Early Devonian
- Tasman - Cordillera province
- Aurelian province
- Provinicial assignment unknown

nathus superbus and *A. ordovicicus* zones of the North Atlantic Realm corresponds to a level in the upper part of the North American *Oulodus velicuspis* Zone, permits indirect correlation between the two realms.

The epicratonic areas of overlap in regional biostratigraphy are particularly interesting because not only do they allow integration of the two conodont schemes representing the warm- and cold-water realms, but they also provide the link between conodont and graptolite biostratigraphy. For example, Bergström (1978) reported on Middle and Upper Ordovician conodonts from the Marathon area of west Texas, and correlated between Pacific Province graptolite, North Atlantic Realm conodont, and Atlantic Province graptolite biozones (see "A Correlation Puzzle" herein, and Fig. 11).

Rare, conodont-bearing carbonate beds occur in two forms in the graptolite-bearing fine-grained clastic strata of the basinal environment in the northern Canadian Cordillera. These represent either allochthonous debris flows, or autochthonous carbonate sedimentation. Typically, the Ordovician carbonates from basinal strata contain a mixture of conodont species from both warm- and cold-water faunas (e.g., McCracken and Lenz, 1987), whereas conodonts from the purely carbonate facies are more characteristic of the warm water platformal facies up-slope (e.g., Nowlan et al., 1988).

Silurian

The end of the Late Ordovician glaciation, centered in southern Gondwana, was accompanied by a global shift toward a warmer and drier climate that lasted through the Devonian. In contrast to the Ordovician, one global scheme has generally been practicable, due, in part, to changes in continental configurations and to collection biases. For example, Baltica, which was in high latitudes in the Ordovician, had drifted south by the Silurian to join Laurentia, Siberia and northern Gondwana in the low latitudes. In addition, as Sweet (1988) observed, most Silurian collections have been from between the present-day 40th parallels. Nevertheless, although independent biostratigraphic schemes for platformal sequences have been developed for strata in North America (e.g., Rexroad and Nicoll, 1971) and in Wales (Aldridge, 1972), the bio-

Figure 10 (a) Early Ordovician (Arenig) conodont distribution. Paleogeographic reconstruction is from Cocks and McKerrow (1991), conodont data are from Charpentier (1984). Faunas of southern Gondwana are poorly known and cosmopolitan, hence realm assignment is unknown. (b) Early Silurian (Llandover) conodont distribution. Paleogeographic reconstruction is from Cocks and Scotese (1991), conodont data are from Charpentier (1984). (c) Early Devonian (Lochkovian) conodont distribution. Paleogeographic reconstruction is from Cocks and Scotese (1991), conodont data are from Charpentier (1984). Faunas of eastern American Laurussia have low endemism and mainly cosmopolitan species, hence provincial assignment is unknown.
stratigraphic scheme developed by Walliser (1971) from strata in the Austrian Carnic Alps is generally still applicable for most known Silurian continental shelf faunas.

Work is now in progress to integrate the carbonate platform-based conodont biostratigraphic scheme for the Silurian with the graptolite biostratigraphic scheme of basinal environments. Although the latter is well documented (e.g., Lenz and McCracken, 1989 for the northern Canadian Cordillera), earliest Silurian conodont faunas in the pelagic or offshore facies often cannot be correlated with the standard platform-based conodont zonation (cf. Cooper, 1980) because these conodont faunas lack the key short-ranged species. A parallel biostratigraphic scheme will eventually have to be established for the deeper-water facies. For this reason, Armstrong (1990) was forced to establish new earliest Silurian biostratigraphic units for the outer platform and slope facies in North Greenland. Two of his biozones promise to be useful in the basinal environments of northwestern Canada: a third early Llandovery basinal biozone was recently proposed by McCracken (1991).

Devonian

An apparent increase in provinciality occurred in the Early Devonian (cf. Baltica in Figs. 10b, 10c), one province being centered about a semi-restricted seaway (now Europe, Turkey), and the other on the margins of a larger oceanic basin (western American Laurussia, Siberia, Australian part of Gondwana). Both provinces were at low to mid-latitudes, but the former was likely warmer due to oceanic current patterns (Charpentier, 1984). A third, transitional fauna occurred in eastern American Laurussia. The subsequent increase in cosmopolitanism through the Middle and Late Devonian reflects the relative movement of Laurussia toward Gondwana.

As for the previous two periods, two biostratigraphic schemes have evolved for the Devonian (see Ziegler, 1971 for Europe, and Klapper et al., 1971, for North America). The rapid evolution, short stratigraphic ranges and wide distribution, however, make Upper Devonian conodonts exceptionally useful for precise biostratigraphy (Fig. 12). The Upper Devonian conodont zonation of Germany has been refined such that the 14-20 million years is now represented by 32 conodont zones or subzones (i.e., an average of approximately 437,500-625,000 years per unit), which represent pelagic or offshore environments. By comparison, nearshore environments are represented by only nine zones (or subzones) in the scheme of Sandberg and Dreesen (1984). In contrast to previously discussed biostratigraphic zonations, the Upper Devonian scheme (especially the offshore one) is built largely on the successive and steplike first appearances and replacements of short-ranged species and sub species belonging to only a few genera, in particular the genus Palaeotetraloselis. This scheme makes use of two distinct intervals of accelerated evolution in the polygnathid group of conodonts; the first beginning in latest Middle Devonian, the second in the mid-Late Devonian (Sweet and Bergström in Robison, 1981).

Palygnomorphs

During the Late Paleozoic, Pangea was divided into a northern (Laurasia) and southern (Gondwana) continent. There were major influences on the flora due to glaciations in Gondwana and these had corresponding effects on climates and environments in Laurasia. As a result of all these factors there was extensive differentiation into regional floras (Chaloner and Meyen, 1973) and this differentiation has a significant bearing on palynological zones (Figs. 13, 14, 15).

Carboniferous and Permian microspores (male reproductive structures) vary in size, but generally range from 20-100 μm. The less common mega spores (female reproductive structures) are 200 μm or more, and some of the larger ones may be visible to the naked eye. The small size and abundance of palygonomorphs are major advantages when dating very small pieces of rock from subsurface well cuttings or side-wall cores, hence the importance of palynology to the resource industry. Pollen and spores may be found in a variety of rock types including grey shale, carbonaceous shale, coal, argillaceous carbonate, argillaceous anhydrite, and greenish glauconitic and fine-grained sandstone and siltstone. Some productive samples can yield up to tens of thousands of specimens per gram of rock. Normally unproductive

<table>
<thead>
<tr>
<th>W. Nfld.</th>
<th>W. Texas</th>
<th>Appalachians</th>
<th>Britain</th>
<th>Baltoscandia (Conodonts)</th>
<th>North America</th>
<th>Trilobite Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>(no fauna known)</td>
<td>aethridiellae</td>
<td>aethridiellae</td>
<td>dentatus (bifidus)</td>
<td>variabilis</td>
<td>parva</td>
<td></td>
</tr>
<tr>
<td>australodontus</td>
<td>maximus</td>
<td>isograptus</td>
<td>hirundo</td>
<td>orginalis</td>
<td>isograptus</td>
<td></td>
</tr>
<tr>
<td>victoriae</td>
<td>bilidus</td>
<td>bilidus</td>
<td>gibberus</td>
<td>navis</td>
<td>triangulans</td>
<td></td>
</tr>
<tr>
<td>lunatus</td>
<td>bilidus</td>
<td>"protobifidus"</td>
<td>nitidus</td>
<td>evae</td>
<td>bifidus</td>
<td></td>
</tr>
<tr>
<td>bifidus</td>
<td>"protobifidus"</td>
<td>"protobifidus"</td>
<td>deflexus</td>
<td>elegans</td>
<td>fruticosus (3 + 4 branch)</td>
<td></td>
</tr>
<tr>
<td>fruticosus (4 branch)</td>
<td>fruticosus (3 + 4 branch)</td>
<td>fruticosus (4 branch)</td>
<td>fruticosus (3 + 4 branch)</td>
<td>fruticosus (4 branch)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11 Correlation of Early Ordovician Didymograptus (Didymograptellus) bifidus graptolite zone in North America and Europe using trilobites and conodonts. Data from Williams and Stevens (1988) for western Newfoundland; Berry (1960), Finney (1982) for west Texas; Berry (1962, 1972) for Appalachians; Bergström and Cooper (1973) for Baltoscandia conodonts; Bergstrom and Cooper (1973); Williams and Stevens (1988) for Britain and North America; Ross (1951) for trilobite zones. Modified after Bergström and Cooper (1973).
rock types include pale grey "clean" carbonate units, coarse clastics, and red-brown siltstone and sandstone speckled with greenish-grey in which the organic matter has been oxidized. In some facies, the generic and specific content of spore assemblages is much more diverse than in others, and this aspect is discussed further under palaeoenvironments. Also, the total number of species may not accurately reflect the actual number of parent plant species. This is because the taxonomy of pollen and spores is based on morphological criteria, and the exact botanical affinities of many upper Paleozoic spore taxa below the level of family are unknown. In addition, a single sporangium may contain a considerable range of variations of mature grains (Schweitzer, 1986).

The quality of preservation (Fig. 16a) is important in making correct identifications and, thus, zonal determinations, and may also be an indicator of palaeoenvironment and thermal maturity. The exines of pollen and spores from marine deep basinal black anoxic shales or continental lacustrine anoxic shales rich in pyrite, are often severely pitted by the growth of opal sulphide minerals, making identification difficult or impossible (Figure 16b). The colour change of spores from yellow to black with increasing thermal maturity is a useful indicator of thermal history of a

<table>
<thead>
<tr>
<th>SERIES / STAGE</th>
<th>CONODONT ZONE</th>
<th>CONODONT ZONE</th>
<th>DEFINED BY FIRST APPEARANCE OF</th>
<th>DEFINED BY FIRST APPEARANCE OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAMENNIAN</td>
<td></td>
<td></td>
<td>U Protognathodus kockeli</td>
<td>U NO FIRST APPEARANCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>(Extinction of "I." raymondii)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L Siphonodina praeucata</td>
<td>M "I." costatus darbyensis</td>
</tr>
<tr>
<td>UPPER DEVONIAN</td>
<td></td>
<td></td>
<td>U Bispathodus ulimus</td>
<td>L "I." costatus costatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M Bispathodus aculeatus</td>
<td>Morphotype 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L Palmatoles graciilis expansa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U Palmatoles gracilis manca</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L Palmatoles perlobata postera</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U Pseudopolygnathus granulosus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>marginifera</td>
<td></td>
<td>L Palmatoles rugosa trachytera</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U Scaphigastus velifer velifer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rhombidea</td>
<td></td>
<td>L Palmatoles marginifera utahensis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L Palmatoles marginifera marginifera</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U Palmatoles rhomboides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crepida</td>
<td></td>
<td>L Palmatoles glabra pectinata</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U Palmatoles glabra prima</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M Palmatoles termini</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L Palmatoles crepida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>triangulairis</td>
<td></td>
<td>U Palmatoles minuta minuta</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M Palmatoles delicatula platys</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L Palmatoles triangularis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>linguiformis</td>
<td></td>
<td>Palmatoles linguiformis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rhenana</td>
<td></td>
<td>Palmatoles rhenana rhenana</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L Palmatoles rhenana nasuta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jamiiae</td>
<td></td>
<td>Palmatoles jamiiae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hassi</td>
<td></td>
<td>Anconygnathus triangularis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L Palmatoles hassi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>punctata</td>
<td></td>
<td>Palmatoles punctata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transita</td>
<td></td>
<td>Palmatoles transitans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>falsiovalis</td>
<td></td>
<td>Mesotaxis asymetrica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L Mesotaxis falsiovalis</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12. Correlation of Late Devonian conodont zonal schemes for offshore and nearshore biofacies. Note that many bases of the biozones and subzones are defined using short-ranged and rapidly evolving species of one genus. From Ziegler and Sandberg (1984), Sandberg and Dreesen (1984), Austin et al. (1985), Klapper and Johnson (1990). See Irwin and Orchard (1991) for other references.
<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>STAGE</th>
<th>EASTERN CANADA</th>
<th>WESTERN AND NORTHERN CANADA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SPORE ZONE</td>
<td>ZONE TYPE</td>
</tr>
<tr>
<td>PERMIAN</td>
<td>UPPER</td>
<td>OCHIGAN</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>LOWER</td>
<td>GUADALUPIAN</td>
<td>Data</td>
</tr>
<tr>
<td>CARNIFEROUS</td>
<td>UPPER</td>
<td>WOLFCAMPIAN</td>
<td>Vittatina</td>
</tr>
<tr>
<td></td>
<td>LOWER</td>
<td>Stephanian</td>
<td>Potonieisporites</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thymospora</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WESTPHALIAN</td>
<td>Torispora</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vestispora cancellata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G. spinosa - b. magnificus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S. acadiensis - K. triradiatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. noctuina var. noctuina</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K. stephanophorus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. decorus - S. claviger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S. pretiosus var. pretiosus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V. vallatus (S. caboti</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U. distinctus-U. obscurus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. rotatus - f. explanatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tripartites incisotrilobus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tumulispora rurituberculata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M. aurita - R. fracta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Convolutinga var.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Denosporum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tatarian: No Data
Kazanian: Taeniaesporites sp.
Ufimian: A. plicatus - Jugasporites sp.
Kungurian: No Data
Artinskian: L. monstruosus - V. costalis
Branchian: V. striata - P. perfectus
Asselian: Potonieisporites spp. - Vittatina sp.
Kasimovian: Potonieisporites novicus - Vittatina sp.
Moscovian: Vittatina sp. appears
Bashkirian: Potonieisporites magnus
eŭtie disaccates present
Serpukhovian: Potonieisporites elegans

Cool, Arid, Humid: Climate conditions
Figure 13 (facing page) Spore zones of Carboniferous and Permian of eastern, and western and northern Canada. G. spinosa = Grandispora spinosa; lb. magnificus = Ibrahimisporites magnificus; S. acadiensis = Schopfpollenites acadiensis; K. triradiatus = Knoxisporites triradiatus; L. noctuina var. noctuina = Lycospora noctuina var. noctuina; K. stephanophorus = Knoxisporites stephanophorus; C. decorus = Colatisporites decorus; S. claviger = Schopfites claviger; S. pretiosus var. pretiosus = Spelaeeotriletes pretiosus var. pretiosus; V. vallatus = Vallatisporites vallatus; S. caboti = Spelaeeotriletes caboti; E. rotatus = Emphanisporites rotatus; I. explanatus = Indotriacites explanatus; A. pliacatus = Alisporites pliacatus; L. monstruesus = Limitisporites monstruesus; V. costabilis = Vittatina costabilis; V. striata = Vittatina striata; P. perfectus = Protopalaeopyxis perfectus; M. aurita = Murospora aurita; R. fracta = Rotaspore fracta. Also shown is zone type (CR, Concurrent Range Zone; A, Assemblage Zone); facies (C, continental; M, marine); climate (arid); author = source of data (see numerals listed below): 1) Barss et al., 1963; 2) Barss and Hacquebard, 1967; 3) Hacquebard, 1972; 4) Yeo et al., 1988; 5) Neves and Belt, 1971; 6) Utting, 1977a; 7) Playford 1964; 8) Utting, 1977b; 9) Utting, Keppie et al., 1989; 10) Utting, 1989; 11) Bamber et al., 1989; 12) Utting, 1991; 13) Utting, 1995; 14) Utting, Jachowicz et al., 1989; 15) Braman and Hills, 1977; 16) Staplin, 1960; 17) Hacquebard and Barss, 1957.

Figure 14 Upper Paleozoic floral provinces based on macrofloral and microfloral data from Wagner (1962), Chaloner and Lacey (1973), Chaloner and Meyen (1973), Plumstead (1973), Kemple (1974), Meyen (1962, 1987), Chaloner and Creber (1988), and Utting and Piasecki (in press), Balme (pers. comm., 1992). S, Siberian; P, Pechoran; SA, Sub-Angara; EU(AT), Euramerica (Atlantic); EU(NA), Euramerica (North American); C, Cathaysia; G(N), Gondwana (northern); G(S), Gondwana (southern).

Figure 15 Upper Paleozoic floral provinces, based on the data listed for Figure 14, plotted on paleogeographic reconstruction based on Lottes and Rowley (1990) and Nie et al. (1990). S, Siberian; P, Pechoran; FE, Far Eastern; SA, Sub-Angara; EU(AT), Euramerica (Atlantic); EU(NA), Euramerica (North American); C, Cathaysia; G(N), Gondwana (northern); G(S), Gondwana (southern).

Rock, and regional studies may assist in determining whether metamorphism is local (due to igneous intrusions), or regional. The Thermal Alteration Index (TAI) is also used to determine whether sufficient thermal alteration of the organic matter has taken place for the generation of oil and gas (e.g., Utting and Hamblin, 1991). However, samples with a high TAI may contain spores that are so dark that it is impossible to identify them unless they have a prominent distinctive ornament, such as large distinctive spines, baculate or verruculate elements, that extends beyond the spore margin. Visèan assemblages of the Kelybolte Peninsula of northern Ellesmere Island and Svathevaag of northern Axel Heiberg of the Sverdrup Basin (Utting et al., 1989) contain good examples of such thermally altered, but distinctive taxa (Fig. 16c).

Palynological Zones
Some spore zones in the Carboniferous and Permian of western and northern Canada are broader and less refined, whereas those in eastern Canada, where more detailed work has been carried out, are more precise and based on relatively few, short-ranged taxa (Fig. 13). First appearance of species, on which the base of a zone is established (Fig. 16d), and/or in some circumstances, the last appearance on which the top of a zone is established, can only be reliably determined by studying numerous sections and facies within a basin where sedimentation was approximately continuous. Species may disappear locally in a vertical succession due to environmental changes unfavourable for the growth of a particular plant species, only to reappear in younger rocks elsewhere, or even higher in the same section if a suitable environment is re-established on the land area. Even though an assemblage may contain 30-50 species, many of these may be long-ranging. The first appearance of taxa and the last appearance ("tops")
are criteria given different emphasis by the palynologist depending on the type of work being carried out. The first appearance of a species is usually stressed for outcrop material, although "tops" may also be important. However, with subsurface well cuttings, "tops" are more important because down-hole contamination by caving can give false first stratigraphic appearances.

In addition to using unique associations of taxa to define zones, relative abundance of individual species in a part of the stratigraphic column (the acme zone of the Stratigraphic Code, 1983), is sometimes used in palynology. In spite of the fact that such a zone may be primarily of ecologic significance, it can be geographically widespread and significant within a basin, or regionally. For example, such a zone of possible
local significance occurs in the Lower Carboniferous (upper Tourmaisian) of Atlantic Canada (Figs. 13, 16e), where, in the type section of the Cheverie Formation of the Horton Group, assemblages are dominated by *Spelaeotriletes pretiosus* (Playford) Neves and Belt var. pretiosus Utting (Playford, 1964; Utting *et al*., 1989). Quantitative changes of genera and species in vertical sections can be of considerable importance to local correlations between beds. For example, quantitative data and coal petrology have been successfully used to correlate coal seams of the Upper Carboniferous of Atlantic Canada (Hacquebard and Donaldson, 1969; Yeo *et al*., 1988; Hyde *et al*., 1991).

Once a pollen and spore zonal scheme has been established, it is important that the age of the zones be established with regard to marine faunal groups. In some areas, for example, the Upper Carboniferous and Permian in Yukon and the Sverdrup Basin of the Canadian Arctic (Fig. 13), this has been achieved by studying palynological assemblages from sections dated by marine faunas of ammonoids, fusulinacean and non-fusulinacean foraminifera, conodonts, brachiopods and corals (Bamber *et al.*, 1989; Utting, 1989). After the age has been established relative to the marine fauna, it is then subsequently possible to accurately date other non-marine rock sequences. In continental facies, the spore zones may be dated with respect to macro-plant fossils or vertebrates. For example, the age determination of the spore and pollen zones of the Upper Carboniferous of Atlantic Canada (Barsz and Hacquebard, 1967; Hacquebard, 1972) were largely based on those established for the macroflora by Bell (1938, 1940, 1944, 1968), whereas the age of the Early Permian spore zone was determined from vertebrates described by Langston (1963) from Prince Edward Island.

No marine fauna are known from the Upper Carboniferous of Atlantic Canada, but the palynological assemblages have many features in common with those of western Europe, where a marine fauna of goniatites (Ramsbottom, 1981) and conodonts (Higgins and Austin, 1985) enables part of the sequence to be correlated. The fact that the generic and specific composition may be largely independent of facies enables correlations to be made across facies boundaries. An example of this is the late Viséan of Yukon (Bamber *et al*., 1989; Utting, 1991) where marine shelf carbonate facies with shale intercalations, dated by brachiopods, foraminifers and goniatites, contain palynomorph assemblages similar to those of the lacustrine and fluvialite facies of the Sverdrup Basin of the Canadian Arctic Archipelago (Utting *et al*., 1989). Assemblages from different facies may contain similar taxa qualitatively, but there may be significant differences in the relative quantitative proportions of genera and species. In some cases, it may not be clear to what extent these are related to slight age differences or due to the environment. For example, in the late Viséan of the northeastern part of the Sverdrup Basin, the dominantly fluvialite facies contains abundant cirquulate genera (*i.e.*, stout forms with a thickened rim of exine at the equator), whereas to the southeast in the dominantly lacustrine facies, of probably similar age, the species composition shows greater diversity.

Provincialism
Three main macrofloral provinces have been established for the Upper Paleozoic of the world (Angara, Euramerica/Cathaysia, and Gondwana; Fig. 15). These may be further subdivided into smaller units (Meyen, 1982, 1987). Western and northern Canada are part of the sub-province called Sub-Angara (Meyen, 1987) which includes eastern Greenland, Svalbard, the Pechora Basin and the Urals area of Russia. Eastern Canada is part of Euramerica which includes the eastern United States and western Europe (Fig. 14). The distinct provinces established by paleobotanists are clearly reflected in the palynological data. Sullivan (1985), van der Zwan (1981), and Clayton (1985)

Figure 16 (facing page) Magnifications are all 500x unless otherwise stated; all specimens are Geological Survey of Canada (GSC) figured specimens.

(a) Well-preserved specimen of triporate spore Murospora tripulivata Staplin from Lower Carboniferous (upper Viséan) lacustrine beds of Sverdrup Basin, Emma Fiord Formation, Grinnell Peninsula, Devon Island, Northwest Territories, GSC 92903.

(b) Poorly preserved triporate spore from Lower Carboniferous (Tourmaisian) black, anoxic, lacustrine shales rich in pyrite, Newfoundland. Note cubic cavities showing impression of sulphide minerals. Crouse Harbour Formation, Conche, Great Northern Peninsula, Newfoundland, GSC 103389.

(c) Thermally altered (black) triporate spore Diatomomziecylotriletes hughesi Playford from Lower Carboniferous (upper Viséan) rocks of Sverdrup Basin. Note the distinctive equatorial ornament that enables identification to be made in spite of the high thermal maturity. Kleybothe Peninsula, Ellesmere Island, Northwest Territories, GSC 92943.

(d) Schöpfipollenites acadensis Utting from Lower Carboniferous (upper Viséan) rocks of Nova Scotia. An example of a distinctive species of monolete spore used to define the base of a concurrent range zone. Upper Windsor Group, Port Hood Island, Cape Breton, Nova Scotia, GSC 73822.

(e) Spelaeotriletes pretiosus (Playford) Neves and Belt var. pretiosus Utting that makes up 90% of the assemblage in an acme zone in the Lower Carboniferous of the Horton Group. Nova Scotia. Cheverie Formation, Nova Scotia, GSC 73799.

(f) Murospora aurita (Waltz) Playford from the Lower Carboniferous (upper Viséan) of Sverdrup Basin. Abundance of this species may indicate humid conditions. Emma Fiord Formation, Grinnell Peninsula, Devon Island, Northwest Territories, GSC 92900.

(g) Protohaploxypinus perfectus (Naumova) Samoilovich, from the Permian of western and northern Canada. This strulate disaccate pollen has a wide stratigraphic range of several stages, but it is common in the Lower and Upper Permian. Toldt Fiord Formation Grinnell Peninsula, Devon Island, Island, Northwest Territories, GSC 103390.

(h) Vittatina striata (Luber) Jansonius, from the Permian of western and northern Canada. A typical Permian species; however, abundance of this pelycopous pollen along with taeniate disaccate pollen may indicate an arid climate. Sabine Bay Formation, Melville Island, Northwest Territories, GSC 103391.

(i) Lycospora sp. from the Upper Carboniferous (Westphalian C) of Newfoundland. Abundance of this genus may indicate a forest vegetation in shallow more or less stagnant water in which decomposition was anaerobic. Shears Seam, Barachois Group, southwestern Newfoundland, GSC 103392.

(j) Botryococcus sp. from the Lower Carboniferous (Tourmaisian) of New Brunswick. Abundance of this freshwater alga may indicate good source rock potential for oil. Albert Formation, New Brunswick, GSC 76391 (750x).
recognized regional differentiation of Lower Carboniferous palynomorph assemblages of western Europe and North America that can be related to the macroflora. Thus, not only does palynology provide useful information supporting the geographic distribution of floral provinces, but where no macroflora are present, they may be the only evidence available (e.g., the Upper Carboniferous and Permian of Yukon and the Sverdrup Basin). Identification and delineation of floral provinces provide useful data for plate reconstruction, although the differences in assemblages between floral provinces may make palynostratigraphic correlation more difficult. In general, correlation within the same floral province, but between areas that are now distant geographically due to subsequent migration of continents, is straightforward. For example, it is possible to correlate relatively precisely, Viséan assemblages of eastern Canada and those of western Europe, or Viséan material of western and northern Canada with those of Svalbard (Utting, 1987a; Utting, Jachowicz et al., 1989). On the other hand, correlations between the different provinces of western and northern Canada, and eastern Canada are less precise. Regrettably, taxonomic treatment of Upper Paleozoic pollen and spores has not been the same throughout the world, and this has hampered precise palynostratigraphic correlation. For example, the taxonomy used in Canada, the United States, and western Europe differs from that used in Russian literature. As a result, correlation with the stratotypes of Russia is made difficult, but not impossible (Utting and Piatecki, in press). The problem can be solved by closer communication and co-operative studies between workers.

Paleoclimatic
The use of pollen and spores in determining paleoclimate for the upper Paleozoic is in its infancy, but has considerable potential. Many modern and fossil plant taxa are very sensitive to climatic change, and these changes will be reflected in the palynological record. It is important to know which taxa are climatically controlled when establishing a zonal scheme because the "first appearance" of climate-specific taxa may vary locally, and not represent the true first stratigraphic appearance. Based on the relationship between the composition of palynomorph assemblages, "climate sensitive" rocks, and phytogeographical distribution, as revealed by multivariate statistical analysis, van der Zwan (1981) and van der Zwan et al. (1985) proposed that for the Lower Carboniferous of North America and Europe, four climatic zones (dry, moderately humid, humid and very humid) could be recognized using key taxa. The relative frequency of certain species or genera are indicative of dry conditions, and of humid conditions, while other species are neutral and not specific to any single climatic zone. Low diversity assemblages can be an indicator of aridity. For example, in Atlantic Canada (Fig. 13) middle to upper Viséan rocks consist of thin evaporites along with red-brown siltstone and carbonate, and spore assemblages are dominated by two species Crassispora trychera and Rugospora minuta, although some samples contain slightly more diverse assemblages reflecting periodic moderately humid intervals (van der Zwan et al., 1985; and Utting, 1987a). Low diversity continues into the Namurian (Neves and Bell, 1971), but in the Westphalian (Fig. 13), there is increased diversification of assemblages in the coal measures (Hacquebard, et al., 1960; Hacquebard, 1972; Hyde et al., 1991), reflecting greater humidity. On the other hand, late Viséan rocks in western Canada (Braman and Hills, 1977; Stalpin, 1960; Hacquebard and Bars, 1957; Barclay et al., 1991), in Yukon (Bamber et al., 1989; Utting 1991), and the Sverdrup Basin (Utting, Jachowicz et al., 1989) contain diverse assemblages. They are similar to those of Svalbard (Playford, 1962, 1963) which, based on the abundance of Densosporites and Murospora aurita (Fig. 16f) in the middle Viséan, were subject to a very humid climate (van der Zwan, 1981; van der Zwan et al., 1985). In the Lower Permian (Asselian-Sakmarian, Artinskian) of northern Canada (Fig. 13) dominance of taeniata disaccate (Fig. 16g) and polyplacate pollen (Fig. 16h) suggests an arid climate, and this conclusion is supported by the presence of evaporites at some horizons in the Sverdrup Basin. In overlying Ufimian (Roadian), diverse and abundant assemblages of trilete spores, taeniata and non-taeniata disaccate pollen and monosaccate pollen indicate increased humidity; these beds in places contain thin coal and carbonaceous shale intercalations (Utting, 1989).

Paleoenvironments and Biostratigraphy
Variations in the relative proportions of genera and species in assemblages may be used to determine local paleoenvironments within a zone or subzone, enabling local subdivisions and correlation similar to that discussed above for acme zones. For example, pioneer work carried out by Smith (1962) on the coal measures of Britain indicated that, on the basis of the abundance of certain taxa in coal seams, four different phases corresponding to distinct coal swamp environments could be recognized. The Lycospora Phase (Fig. 16i) represents a forest vegetation in shallow, more or less stagnant water in which decomposition was anaerobic. A Transition Phase resulted from withdrawal of the ground water cover due to changes in sea level or elevation of bog surface due to accumulation of peat in a humid climate; the forest vegetation was replaced by a more diverse open vegetation with aerobic decomposition. A Densospora Phase occurred where there was high precipitation and humidity, and decomposition was aerobic, and an Incursion Phase records flooding of the environment, which had a catastrophic effect on vegetation, but which brought in material from other environments, producing diverse fossil assemblages. The general concept outlined by Smith (1962) has been applied successfully to coal measures in Atlantic Canada (Yeo et al., 1988; Hyde et al., 1991). Sedimentary environments may significantly affect spore assemblages. A good example is the "Neves effect" (Chatoner 1958; Chatoner and Muir, 1968, fig. 4; Traverse, 1988, fig. 17.15) in which saccate pollen (Florinates) of Cordaites trees is carried by both wind and water from upland areas into swamp and marine environments, whereas microspores of Lepidodendron (Lycop- spora) are produced in, and for the most part confined to, swamps. Thus, Lycospora, produced locally in coal swamps, overwhelms the few Florinates derived from elsewhere. In the non-marine, but non-swamp facies, there are more Florinates, but not proportionately as many as those occurring offshore. This phe-
nomenon occurs in Upper Carboniferous coal measures of Atlantic Canada, although no representative of the marine offshore facies has yet been found.

Paleoenvironments can also be determined by assessing the relative proportions of different organic matter types, the quality of preservation of palynomorphs and organic matter, palynomorph composition, and the relative proportions of non-marine and marine palynomorphs (e.g., acritarchs and saccocordonts). A number of classifications categorizing palynofacies exist; for example, Batten (1982) and Masran and Pocock (1981). In addition to determining environments, such data are of importance in assessing the hydrocarbon source rock potential. For example, the high proportion of the alga Botryococcus sp. (Fig. 16) is the probable source of the oil of the Lower Carboniferous lacustrine-fluvialite Albert Formation of New Brunswick (Kalkreuth and Macauley, 1984; Utting, 1987b).

TRILOBITES

Trilobites, like other biostratigraphically important taxa, are characterized by high evolutionary turnover rates and, consequently, short stratigraphic ranges (Stanley, 1979; Foote, 1988) that enable fine subdivisions of strata to be made. As a typical example, the Upper Cambrian Sunwaptaan Stage of southern Alberta has a duration of approximately five million years and has been divided into 11 trilobite zones and subzones (Westrop, 1986). Trilobites provide a primary basis for well-developed zonal schemes through much of the Cambrian and Lower Ordovician (see, for example, Fritz, 1972; Longacre, 1970; Stitt, 1977; Palmer, 1977; Palmer and Hallay, 1979; Ross, 1951; Hintze, 1953; Ross, 1984; Fortey and Owens, 1987) and remain important in the remainder of the Ordovician and Silurian (Ludvigsen, 1979; Chatterton and Perry, 1983). In younger Paleozoic strata, trilobites are minor components of marine faunas and are of reduced biostratigraphic utility. Nonetheless, they have proved to be important for regional correlation in, for example, the Devonian of the Canadian Arctic (Ormiston, 1967). Trilobites also provide an excellent example of the influence of environmental and biogeographic factors, such as biofacies differentiation along environmental gradients or provincialism, on biostratigraphic analysis. These factors will be emphasized in the following section.

Trilobite Biofacies and Their Biostratigraphic Implications

During the last 15 years, a variety of studies have shown that trilobites, like other benthic organisms, were segregated along environmental gradients into biofacies or "communities" (e.g., Cambrian: Ludvigsen and Westrop, 1983; Westrop, 1986; Ordovician: Fortey, 1975; Ludvigsen, 1978; Tremblay and Westrop, 1991; Owen et al., 1991; Silurian: Thomas, 1979; Mikulic and Watkins, 1981; Chlupač, 1987; Tetreault, in press; Devonian: Chlupač, 1983; Carboniferous: Brezinski, 1986). Biofacies are usually identified in terms of patterns of shifting abundance of taxa along the gradient: genera or higher taxa that are dominant in one biofacies are relatively rare or absent in other biofacies. In many cases, there is a strong relationship between lithofacies and biofacies distribution (e.g., Ludvigsen and Westrop, 1983; Thomas, 1979), and biofacies are often arrayed along an apparent depth gradient (e.g., Ludvigsen, 1978). Zones established in one biofacies may be difficult or even impossible to apply to other biofacies because key taxa are very rare or absent. In their "dual" approach, Ludvigsen et al. (1986), using trilobites as examples, argued strongly that zonal schemes must be established in the context of biofacies. This is well demonstrated in the ensuing discussion and examples.

Middle Ordovician trilobite faunas of the District of Mackenzie (Chatterton and Ludvigsen, 1976; Ludvigsen, 1978, 1980, 1981; Tremblay and Westrop, 1991) provide an excellent example of "dual biostratigraphy". Trilobite genera and families vary in abundance across the shelf, so that zonations in different facies must be based on different taxa (Fig. 17). For example, the genus Bathurus is dominant in nearshore habitats,
but is rare or absent in open shelf and upper slope settings. Bathurus persisted through most of the Middle Ordovician, but, when examined in detail, the genus consists of aplexus of relatively short-ranging species (Fig. 18) which reflect a history of background extinction and speciation. The succession of species over time offers the basis for a zonal scheme for Middle Ordovician nearshore facies (Fig. 19; see also Tremblay and Westrop, 1991) that rivals those established for conodonts (e.g., Sweet, 1984). In open shelf environments, at least two biofacies are present (Biofacies II and III of Ludvigsen, 1978), which share genera such as Cerainella, whose species have been used in zonal biostratigraphy (Figs. 17, 19; see also Ludvigsen, 1979). Relatively rare occurrences of some of the same species of Cerainella in nearshore carbonates (Fig. 17) enable correlations to be made between nearshore and open shelf zonations. In moving from shelf to slope environments, a sharp shift in facies from carbonates to shales is matched by an equally abrupt change in the composition of the trilobite faunas.

Slope biofacies are completely different from coeval shelf biofacies, and zones must be based upon species of raphiophorid and nileid trilobites (Figs. 17, 19; Ludvigsen, 1980, 1981); approximate correlation between shelf and slope must rely upon other groups, such as conodonts (Ludvigsen, 1980, p. 97-98). The slope faunas are important however because, like other Cambrian and Ordovician deep cool-water biofacies (Fortey, 1975; Taylor, 1977; Ludvigsen, 1978), they include pandemic genera that occur outside of North America (e.g., the raphiophorid Cnemidopyge is also known from Britain and Scandinavia; Ludvigsen, 1980) and that can be used in interprovincial correlation.

Well-developed biofacies also occur in parts of the Cambrian of North America, with similar biostratigraphic results. For example, in the late Sunwapatan (Late Cambrian) of North America, strong biofacies differentiation occurs both within and between shelf carbonate and siliciclastic facies (Fig. 20), so that at least six parallel zonations will be required for a complete biostratigraphy (Fig. 21). Correlation between different zonations is achieved through the use of a relatively small number of shared species. For example, species of Euphyllopsis reach peak abundances in shallow, subtidal, “level-bottom” carbonates, but some also occur as very minor components of biofacies from shallow, subtidal reef mounds (Westrop, 1986), as well as from deep, subtidal to upper slope carbonates (Ludvigsen, 1982; Westrop, in press). Similarly, some species of Stenopus occur in both shallow, subtidal, “level-bottom” carbonates and bank-edge carbonates and reef mounds (Ludvigsen et al., 1989).

Times of reduced biofacies differentiation often correspond to major paleogeographic changes, such as sea level fluctuations, and/or intervals of mass extinction. For example, the early Sunwapatan of North America includes a trilobite extinction event (Westrop and Ludvigsen, 1987). In the aftermath of this extinction, low-diversity biofacies were spread widely over the North American shelf and their distributions cut sharply across lithostratigraphic...
LATE SUNWAPTAN BIOFACIES, NORTH AMERICA
Illaenurus Zone and correlatives

Illaenurus-Cassidula
Illaenurus-Resettia
Euptychaspis-Eureka
Tatanspis
Pi-Ca
Loganellid

Loganellus
Richardsonella
Catillicephali

Neustia
Tatanspis

Euptychaspis

Clelandia
Saukella/Saukla
illaenurus
Resettia

Osceola

Figure 20 Schematic transect across the late Sunwaptan (Late Cambrian) shelf of North America showing high levels of biofacies differentiation (modified from Westrop, 1990; data for deep shelf carbonates from Westrop (in press)). Spindles depict abundances and distributions of selected taxa. Open rectangles at the top of the figure indicate biofacies ranges. Six major biofacies-lithofacies belts may be recognized and each will require a separate zonation based upon different taxa (Fig. 21). Pi-Ca: Plethoptilid-catillicephali Biofacies.

Figure 21 Late Sunwaptan zonations for each of the six biofacies-lithofacies belts illustrated in Figure 20. Outer shelf shales and bioclastic storm deposits from Grant (1965) and Westrop (1986); inner shelf shales and silts from Reasch (1951); shallow, subtidal, “level-bottom” carbonate sequence is a composite from Longacre (1970) and Stitt (1977); shallow, subtidal, reef mounds sequence is a composite from Stitt (1977) and Westrop (1986); deep subtidal carbonates from Westrop (in press); bank-edge carbonates and reef mounds from Ludvigsen et al. (1989).

arys (Fig. 22; see also Westrop, 1990). Key species of Taenicephalus and Orygmaspis (Paraboloinoides) occur abundantly in several lithofacies, including inner shelf sands and silts, outer shelf shales and bioclastic storm deposits, and shallow subtidal carbonates, so that correlations can be readily made (see Westrop, 1988 for further discussion). Compared to the late Sunwaptan, the number of zonal schemes resulting is cut in half (Fig. 23).

Influence of Environmental and Biogeographic Factors on Global Correlation

In general, global correlation using trilobites is difficult because of strong provincialism (e.g., Palmer, 1977; Shergold, 1988). As noted above, cool-water faunas tend to be pandemic, occurring in deep water at high latitudes and extending into shallow water at high latitudes (Taylor, 1977), and they enable comparisons to be made between faunal provinces. However, these often have to be made at the genus, or even family, level, so that correlations are relatively imprecise. In recent years, Cambrian agnostid trilobites have shown great promise for high-resolution, species-level correlation between successions on different continents (Robinson, 1982, 1984; Rowell et al., 1982; see also Palmer, 1962). Many species are widely distributed, occurring on several continents (Fig. 24), and several authors have suggested that this reflects a pelagic life-style (Robinson, 1972; Jago, 1973; Müller and Wallorske, 1987; but see Fortey and Barnes (1977, p. 306) and Chatterton and Speyer (1990, p. 131) for alternative interpretations). Agnostids are minor components of Ordovician faunas, but pelagic telephindid trilobites such as Carolinites are equally widespread (Fig. 25; see also Fortey, 1985) and have a comparable biostratigraphic potential.

The advances in agnostid biostratigraphy have been a significant recent development in Cambrian global correlation and, in some parts (e.g., mid-Cambrian), offer a level of resolution comparable to that provided by Ordovician and Silurian graptolites. However, it is important to realize that there remain strong facies controls on agnostid distribution that constrain their use. Work in the Great Basin of Nevada and Utah by Robison (1976) has shown that agnostids are confined largely to outer
shelf shales and limestones (Fig. 26), presumably reflecting water mass-specific or depth-specific distributions similar to those inferred for some graptolites (e.g., Finney, 1986; Cooper et al., 1991; see also the graptolite section above). Consequently, accurate correlation between continents is restricted to a limited range of facies. Indeed, comparison of agnostid zones with polymerid (i.e., non-agnostid) trilobite zones established for mid- to inner shelf carbonate and siliciclastic litho- and biofacies is difficult even within the Great Basin (see Robison, 1976, p. 106-107). Given these problems, it is likely that biostratigraphic nomenclatures, including suprizonal units (stages and series), will remain provincial in nature for the foreseeable future (Ludvigsen and Westrop, 1986; see also Palmer, 1977, p. 16; Ludvigsen et al., 1986, p. 148).

A CORRELATION PUZZLE

The preceding has shown the need for correlation between geographic regions and between biostratigraphic schemes based on different fossil groups, and how dependent these schemes are on paleoecologic factors, both locally (e.g., biofacies) and regionally (e.g., provinces and realms). A final example is the Lower Ordovician didymagnostid controversy. In brief, the Didymograptus (Didymograptellus) bifidus Zone of Early Ordovician in North America was interpreted by some workers as being either wholly or, at least partly, coeval to the zone of the same name in Britain, but by others as being much older.

The species Didymograptus (Didymograptellus) bifidus was established by Hall (1865) on material from Levis, Quebec, and was subsequently reported from a number of localities in North America and Europe. Berry (1962) studied Hall's fossil material and concluded that many specimens later assigned to this species had been incorrectly identified. Cooper and Fortey (1982) further explained the differences between the true D. bifidus and those misidentified from the Llanvirn of Britain by, for example, Elles and Wood (1901) (see Williams and Stevens (1988) for additional remarks on the species).

Trilobite-brachiopod faunas occurring in this part of the Lower Ordovician were markedly different between North America and Europe and, thus, of little use in resolving the Didymograptus (D. dymograptellus) bifidus correlation conflict. But by using co-occurrences of graptolites, shelly fossils, and particularly, conodonts, Bergström and Cooper (1973) solved this interprovincial (and intercontinental) problem. Their evidence and solution to this argument are summarized here because it illustrates

EARLY SUNWAPTAN BIOFACIES, NORTH AMERICA

Taenicephalus Zone and correlatives

<table>
<thead>
<tr>
<th>Taenicephalus</th>
<th>Dokimocephalid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loganellids</td>
<td></td>
</tr>
<tr>
<td>Dokimocephalid</td>
<td></td>
</tr>
<tr>
<td>Orygmaspis (Orygmaspis)</td>
<td></td>
</tr>
<tr>
<td>Kendallina</td>
<td></td>
</tr>
<tr>
<td>Taenicephalus</td>
<td></td>
</tr>
</tbody>
</table>

Parabolinoideis

<table>
<thead>
<tr>
<th>Orygmaspis (Parabolinoideis)</th>
<th>Roksaspis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO DATA</td>
</tr>
</tbody>
</table>

Figure 22 Schematic transect across the Early Sunwaptan (Late Cambrian) shelf of North America showing low levels of biofacies differentiation (modified from Westrop, 1990). Spindles depict abundances and distributions of selected taxa; open rectangles at the top of the figure indicate biofacies ranges. In the Parabolinoideis Subzone and correlatives (lower set of spindles), only a single biofacies has been identified in shelf environments. In the Taenicephalus submardi Subzone and correlatives (upper set of spindles), at least two biofacies are present. Fewer sets of zones (Fig. 23) are required to characterize the biostratigraphy than in the Late Sunwaptan (Figs. 20, 21).

EARLY SUNWAPTAN ZONES, NORTH AMERICA

<table>
<thead>
<tr>
<th></th>
<th>T. shumardi</th>
<th>T. shumardi</th>
<th>T. shumardi</th>
<th>Noelaspis sp. nov.</th>
<th>Roksaspis turbinella</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. shumardi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orygmaspis (Parabolinoideis) contractus</td>
<td>Orygmaspis (Parabolinoideis) contractus</td>
<td>Orygmaspis (Parabolinoideis) contractus</td>
<td>Noelaspis sp. nov.</td>
<td>Roksaspis turbinella</td>
<td></td>
</tr>
<tr>
<td>Irvingella major</td>
<td>Irvingella major</td>
<td>Irvingella major</td>
<td>Irvingella major</td>
<td>Irvingella major</td>
<td></td>
</tr>
</tbody>
</table>

Figure 23 Early Sunwaptan zones of North America, based in data in Westrop (1986), Ludvigsen et al. (1989) and Westrop (in press). Note that a single set of zones and subzones may be used in three different lithofacies (inner shelf sands and silts; outer shelf shales and bioclastic storm deposits; shallow, subtidal carbonates; cf. Fig. 21), reflecting low levels of biofacies differentiation (Fig. 22).
how and why biostratigraphic schemes are continually refined.

Some of the North American Didymograptus (Didymograptellus) bifidus faunas occurred with shelly fossils indicative of trilobite biozones L and M of Ross (1951) (Fig. 11), permitting a correlation between the graptolite and trilobite zones. Conodont collections from the D. bifidus Zone and zone M in Oklahoma probably correlate to the upper part of the D. hirundo to D. "bifidus" (=D. artus) zones of Britain (Bergström and Cooper, 1973), whereas conodonts from the true D. bifidus Zone in west Texas and western Newfoundland are older. Bergström and Cooper (1973) identified these conodonts as representing the Prioniodus evae conodont zone, which in Baltoscandia generally corresponds to the older British D. nitidus Zone rather than the younger D. artus (the correct name for the so-called D. bifidus of Britain) Zone. This possibly confusing correlation is clarified in Figure 11, which shows that strata in North America assigned to the true D. bifidus Zone range in age from the British D. nitidus to lower Glyptograptus dentatus (formerly D. "bifidus") zones.

In a diplomatic solution to the Didymograptus (Didymograptellus) bifidus argument, Bergström and Cooper (1973) suggested that, depending on the locality, both interpretations are correct. Their conclusions were that the presence of D. bifidus through a range of strata may have been, in part, ecologically controlled, and that the D. bifidus Zone is of little use for precise local or regional correlation.

At first glance, pelagic organisms such as graptolites, and nektobenthics such as conodonts seem ideal for global biostratigraphic correlations, but the foregoing demonstrates that successful biostratigraphy, no matter what an organism’s mode of life, must consider what influence paleoecologic factors can have on the stratigraphic (i.e., temporal) and paleogeographic distribution of species. In spite of this complication, workable biostratigraphic schemes for a particular fossil group can be constructed, and used both globally and to improve correlations based on other groups.

ACKNOWLEDGEMENTS

The contribution of each author was read and commented upon by all other contributors. The financial support by
the Natural Sciences and Engineering Research Council to several, and of the Royal Tyrrell Museum of Palaeontology to one, of the contributors is acknowledged. T.E. Bolton and B.S. Norford (Geological Survey of Canada), and P. Copper (Sudbury) are thanked for the loan of brachiopods illustrated in this paper. G. Dolby (Calgary) provided helpful comments concerning the zonation presented in Figure 15. S. Piasecki (Copenhagen), contributed to Figures 16 and 17, and B. Davies (Geological Survey of Canada) produced the original draft of Figure 15. R. Ludvigsen (Victoria) read a preliminary version of the trilobite section and provided unpublished data on Ordovician slope faunas from the District of Mackenzie.

The writers are particularly grateful to M. Lozon, Department of Geological Sciences, Brock University, who generously redrafted all non-photographic text-figures for the graptolite, brachiopod, conodont and palynomorph sections.

The paper was reviewed by C.R. Barnes (Victoria) and B.S. Norford (Calgary), both of whom made positive suggestions for improvement of the manuscript.

The illustrated fossils are in the type collections of invertebrate and plants fossils at the Geological Survey of Canada, Ottawa.

REFERENCES

Aldridge, R.J., 1972, Llandovery conodonts from the Welsh Borderland: Bulletin of the British Museum (Natural History), Geology, v. 22 (2), 231 p., 9 pls.

Figure 25 Distributions of pandemic species of the telephinid trilobite Carolinites plotted on an Early Ordovician continental reconstruction (Scotese et al., 1979). Modified from Fortey (1985) with additional data from Fortey (1980).

Figure 26 Schematic transect across the mid-Cambrian shelf, Great Basin of Nevada and Utah (modified from Robison, 1976). Spindles show abundances and distributions of trilobite taxa. Differences in shading of spindles for polymeric in "open shelf" and "restricted shelf" biofacies reflect the fact different genera dominate in these two settings (see Robison, 1976 for further discussion). Pandemic agnostids, important for intercontinental correlation, are restricted to the outer edge of the carbonate belt and to outer shelf carbonates and fine siliciclastics ("open shelf" biofacies). Landward lithofacies are dominated by endemic polymeric ('restricted shelf' biofacies). Zonations in each of these biofacies belts are based on species of different taxa and correlation between them is often difficult.

Barrande, J., 1850, Graptolites de Bohême: The author, Prague, 74 p.

Berry, W.B.N., 1980, Graptolite faunas of the Marathon region, west Texas, University of Texas, Publication 6005, 179 p.

Berry, W.B.N., 1972, Early Ordovician bathyal province lithofacies, biofacies, and correlations — their relationship to a proto-Atlantic Ocean; Lethaia, v. 5, p. 69-83.

Johnson, J.G., 1977, Lower and Middle Devonian faunal intervals in central Nevada based on brachiopods, in Murphy, M.A., Berry, W.B. and Sandberg, C.A., eds., Western North America: Devonian University of California, Riverside Campus Museum, Contribution 4, p. 16-32.

Kapper, G., 1977, Lower and Middle Devonian conodont sequence in central Nevada, in Murphy, M.A., Berry, W.B. and Sandberg, C.A., eds., Western North America: Devonian University of California, Riverside Campus Museum, Contribution 4, p. 33-54.

Lenz, A.C., 1982, A.R.C., 1979, Un Pay gratitude to the students, condont conodonts, and the people who have helped me in the past.

Paskievičius, J., 1979, Biostratigraphy of Silurian Litvy: Vilnius "Mokšas".

Riva, J., 1969, Middle and Upper Ordovician graptolite faunas of the St. Lawrence Lowlands of Quebec and of Anticosti Island: American Association of Petroleum Geologists, Memoir 12, p. 513-556.

Sheehan, P.M., 1988, Late Ordovician events and terminal Ordovician extinction: New Mexico Bureau of Mines and Resources, Memoir 44, p. 405-415.

Utting, J., 1987b, Palynostratigraphic investigation of the Albert Formation (Lower Carboniferous) of New Brunswick, Canada: Palynology, v. 11, p. 75-98.

Accepted, as revised, 22 February 1993.