Skarns and Skarn Deposits

Lawrence D. Meinert
Department of Geology
Washington State University
Pullman, Washington 99164-2812 USA

SUMMARY
Skarn deposits occur throughout the world and have been mined for a variety of elements. This paper describes the basic stages of skarn formation and the main causes of variation from the general evolutionary model. Seven major classes of skarn deposits (Fe, W, Au, Cu, Zn, Mo and Sn) are briefly described, and relevant geological and geochemical features of important examples are summarized in a comprehensive table. The important geological and physical parameters of skarn deposits are discussed, followed by a summary of important petrologic and tectonic constraints on skarn formation. Finally, exploration models are presented for several major skarn types, with a plea for field mapping as a fundamental basis for future studies.

INTRODUCTION
Skarn deposits have been mined for a variety of elements, including Fe, W, Cu, Pb, Zn, Mo, Ag, Au, U, REE, F, B and Sn. Skarns occur on all continents and in rocks of almost all ages. Although the majority are found in lithologies containing at least some limestone, they can form in almost any rock type, including shale, sandstone, granite, basalt and komatite. Skarns can form during regional or contact metamorphism and from a variety of metasomatic processes involving fluids of magmatic, metamorphic, meteoric and/or marine origin. They are found adjacent to plutons, along faults and major shear zones, in shallow geothermal systems, on the bottom of the sea floor, and at lower crustal depths in deeply buried metamorphic terranes. What links these diverse environments, and what defines a rock as skarn, is the mineralogy, which includes a wide variety of calc-silicate and associated minerals, but is usually dominated by garnet and pyroxene. Thus, the presence of skarn does not necessarily indicate a particular geologic setting or a particular protolith composition. Rather, its development indicates that the combination of temperature, pressure, fluid and host rock composition was within the stability range of the identified skarn minerals.

Just as mineralogy is the key to recognizing and defining skarns, it is also critical in understanding their origin and in distinguishing economically important deposits from interesting but uneconomic mineral localities. Skarn mineralogy is mappable in the field and serves as the broader "alteration envelope" around a potential ore body. Because most skarn deposits are zoned, recognition of distal alteration features can be critically important in early exploration stages. Details of skarn mineralogy and zonation can be used to construct deposit-specific exploration models, as well as more general models useful in developing grassroots exploration programs or regional syntheses.

Economic skarn deposits can be subdivided into several main types, based upon the dominant contained metal (e.g., W, Fe, Cu, etc.). This is similar to the classification of porphyry deposits into porphyry copper,

![Diagram of skarn formation](image)
Figure 1 Types of skarn formation: (A) Isochemical metamorphism involves recrystallization and changes in mineral stability without significant mass transfer; (B) Reaction skarn results from metamorphism of interlayered lithologies, such as shale and limestone, with mass transfer between layers on a small scale (bimetasomatism); (C) Skarnoid results from metamorphism of impure lithologies with some mass transfer by small-scale fluid movement; (D) Fluid-controlled metasomatic skarn typically is coarse grained and does not closely reflect the composition or texture of the protolith.)
porphyry molybdenum, and porphyry tin types, these deposits share many alteration and geochemical features, but are, nevertheless, easily distinguishable. In order to explore for economically viable skarn deposits, it is necessary to understand the typical characteristics of each skarn group and the differences among them. The purpose of this paper is to develop a useful exploration model based upon the typical characteristics of skarns in general, and the various deposit types in particular. There have been numerous general review papers on skarn deposits in the past few decades (e.g., Watanabe, 1960; Phan, 1969; Zharikov, 1970; Smirnov, 1976; Burt, 1977; Einudi et al., 1981; Meinert, 1983; Ray and Webster, 1991) and the reader is referred to these sources for more detailed considerations of skarn terminology and genesis.

DEFINITIONS AND TERMINOLOGY

Skarn deposits have been described in the scientific literature since at least the 19th century (e.g., Cotta, 1864). The term "skarn" originated in Sweden as a mining term used to describe the relatively coarse-grained, calc-silicate gneiss associated with some iron ores (Genier and Magnusson, 1952). Burt (1982) provides an interesting historical account of the subsequent evolution of skarn terminology and wisely notes that most attempts to include genetic concepts in formal definitions have created additional problems and confusion. Most modern authors have adopted Einudi et al.'s (1981) suggestion to use skarn and skarn deposit as descriptive terms based upon their contained mineralogy, free of genetic implications.

Not all skarns have economic mineralization, those which do are called skarn deposits. In most large skarn deposits, skarn and ore minerals result from the same hydrothermal system, even though there may be significant differences in the time/space distribution of these minerals on a local scale. Although rare, it is also possible to form skarn by metamorphism of pre-existing ore deposits, as has been suggested for Aguilar in Argentina (Gemmell et al., 1992), Franklin Furnace in the United States (Johnson et al., 1990), and Broken Hill in Australia (Hodgson, 1975).

Skarns can be subdivided according to several criteria. Exoskarn and endoskarn are common terms used to indicate a sedimentary and igneous protolith, respectively. Magnesian and calcic skarn can be used to describe the dominant composition of the protolith and resulting skarn minerals. Such terms can be combined, as in the case of a magnesian exoskarn, which contains forsterite-diopside skarn formed from dolomite. Calc-silicate homelites is a descriptive term often used for the relatively fine-grained, calc-silicate rocks that result from metamorphism of impure carbonate units such as silty limestone or calcareous shale (Fig. 1A). Reaction skarns (Fig. 1B) can form from isochronal metamorphism of thin interlayered shale and carbonate units, where metasomatic transfer of components between adjacent lithologies may occur on a small scale (perhaps centimetres) (e.g., Vidale, 1969; Zarayskiy et al., 1987). Skarnoid (Fig. 1C) is a descriptive term for calc-silicate rocks which are relatively fine-grained, iron poor, and which reflect, at least in part, the compositional control of the protolith (Korzikov, 1948; Zharikov, 1970). Genetically, skarnoid is intermediate between a purely metamorphic hornfels and a purely metasomatic, coarse-grained skarn (sometimes termed infiltration skarn). For all of the preceding terms, the composition and texture of the protolith tend to control the composition and texture of the resulting skarn. In contrast, most economically important skarn deposits result from large-scale metasomatic transfer, where fluid composition controls the resulting skarn and ore mineralogy (Fig. 1D). Even though many of these terms are fairly specific, there is a continuum, both conceptually and in the field, between purely metamorphic and purely metasomatic processes (e.g., Hietanen, 1962; Newberry, 1991).

EVALUATION OF SKARN DEPOSITS

As was recognized by early skarn researchers (e.g., Lindgren 1902; Barrell, 1997; Goldschmidt, 1911; Upleby, 1913; Knopf, 1918), formation of a skarn deposit is a dynamic process. In most large skarn deposits, there is a transition from early/diastal metasomatism resulting in hornfels, reaction skarn, and skarnoid, to later/proximal metasomatism resulting in relatively coarse-grained, ore-bearing skarn. Due to the strong temperature gradients and large fluid circulation cells caused by intrusion of a magma (Norton, 1982; Salemkir and Schuiling, 1987; Bowers et al., 1990), contact metasomatism can be considerably more complex than the simple model of isochronal recrystallization typically invoked for regional metasomatism. Figure 2 illustrates the effects of circulating diverse fluids through a fracture in a relatively simple carbonate protolith. The resulting vein-controlled skarn mineralogy in Figures 2B and 2C could easily be mistaken for the product of prograde metasomatism, even though it involves pure water, and the fluid in Figure 2C is actually cooler than the surrounding rock. Circulation of such fluids by the steep thermal gradients common in most plutonic environments results in complex metamorphic aureoles, complete with small-scale metasomatic transfer (Fig. 1B). More complex metasomatic fluids, with the possible addition of magmatic components such as Fe, Si, and Cu (Fig. 2D), produce a continuum between purely metamorphic and purely metasomatic processes. This early metamorphism and continued metasomatism at relatively high tempera-

![Figure 2](https://example.com/image2.png)

Figure 2 Illustration of metamorphic phase equilibria for selected reactions in the system Ca-Mg-Al-Si-H$_2$O-CO$_2$. Modified from Greenwood (1967) and Kerrick (1974). Examples of four fracture-controlled alteration events are illustrated: (A) Fluid in fracture is same temperature and composition as surrounding rocks at high XCO$_2$ (B) Fluid in fracture is same temperature as surrounding rocks but has flushed some CO$_2$ out of the system. (C) Fluid in fracture is cooler than surrounding rocks and has flushed some CO$_2$ out of the system. (D) Fluid in fracture is a concentrated metasomatic fluid with magmatic components including Fe, Cu and S. Ca = calcite, Ta = talc; other abbreviations as in Table 1.
tures (Wallmach and Hatton (1989) describe temperatures >1200°C) are followed by retrograde alteration as temperatures decline. A link between space and time is a common theme in ore deposits and requires careful interpretation of features which may appear to occur only in a particular place (e.g., Barton et al., 1991). For skarns related to plutons, there is a parallel relationship between the sequence of emplacement, crystallization, alteration and cooling of the pluton and the corresponding metamorphism, metasomatism and retrograde alteration in the surrounding rocks.

Figure 3 illustrates the general sequence of skarn development for such pluton-related systems. The degree to which a particular stage is developed in a specific skarn will depend on the local geologic environment of formation. For example, metamorphism will likely be more extensive and of higher grade around a skarn formed at relatively great crustal depth than one formed under shallower conditions (Fig. 3C). Conversely, retrograde alteration during cooling, and possible interaction with meteoric water, will be more intense in a skarn formed at relatively shallow depths in the earth's crust compared with one formed at greater depths (Fig. 3D). In the deeper skarns, carbonate rocks may deform in a ductile manner rather than through brittle fracture, with bedding parallel to the intrusive contact; in shallower systems the reverse may be true. These differences in structural style will, in turn, affect the size and morphology of skarn. Thus, host rock composition, depth of formation, and structural setting will all cause variations from the idealized pluton-associated skarn model of Figure 3. The nature of these variations with respect to individual skarn deposits is considered in more detail in later sections.

SKARN MINERALOGY

The identification and classification of skarn deposits is based on their mineralogy. Although many skarn minerals are typical rock-forming minerals, some are less abundant and most have compositional variations that can yield significant information about the environment of formation. Table 1 lists many of the common skarn minerals and their end-member compositions. Some minerals, such as quartz and calcite, are present in almost all skarns. Others, such as humite, periclasite, phlogopite, tait, serpentinite and brucite, are typical of magnesian skarns, but are absent from most other skarn types. Additionally, there are many tin, beryllium and fluorine-bearing minerals which have very restricted, but locally important, parageneses.

Modern analytical techniques, particularly the electron microprobe, make it relatively easy to determine accurate mineral compositions and, consequently, to use precise mineralological names. However, mineralogical names should be used correctly, so as not to imply more than is known about the mineral composition. For example, the sequence pyroxene-clinozoisite-calcic clinozoisite-diopside pyroxene-diopside comprises increasingly more specific terms. Unfortunately, it is all too common in the geologic literature for specific end-member terms, such as diopside, to be used when all that is known about the mineral in question is that it might be pyroxene.

Zharkov (1970) was perhaps the first to attempt systematic variations in skarn mineralogy among the major skarn classes. He used phase equilibria, mineral compatibilities, and compositional variations in solid solution to describe and predict characteristic mineral assemblages for different skarn types. His observations have been extended by Burt (1972) and Einaudi et al. (1981) to include a wide variety of deposit types and the mineralogical variations between types. The minerals which are most useful for both classification and exploration are those, such as garnet, pyroxene and amphibole, which are present in all skarn types and which show marked compositional variability. For example, the magnesian pyroxene, johannsenite, is found almost exclusively in zinc skarns. Its presence, without much further supporting information, is definitive of this skarn type. When compositional information is available, it is possible to denote a mineral's composition in terms of mole % of the end members. For example, a pyroxene which contains 70 mole % hedenbergite, 28 mole % diopside, and 2 mole % johannsenite could be referred to as

![Figure 3](image-url)
Figure 3 Evolutionary stages of pluton-associated skarn deposits: (A) Initial intrusion causes metamorphism of sedimentary rocks. (B) Metamorphic recrystallization and phase changes reflect protolith compositions, with local metasomatism and fluid circulation forming diverse calc-silicate minerals (reaction skarns and skarnoid) in impure lithologies and along fluid boundaries. Note that metamorphism is more extensive and higher in temperature at depth than adjacent to the small cupola near the top of the system. (C) Crystallization and release of a separate aqueous phase result in fluid-controlled metasomatic skarn. Note that skarn at depth is small relative to the size of the metamorphic aureole. It is also vertically oriented compared to the laterally extensive skarn which locally extends beyond the metamorphic aureole near the top of the system. (D) Cooling of the pluton and the possible circulation of cooler, oxygenated meteoric waters cause retrograde alteration of metasomatic calc-silicate assemblages. Note that retrograde alteration is more extensive in shallow zones.
In many skarn systems, variation in iron content is the most important parameter and, thus, many minerals are described simply by their iron end member, e.g., Hishi or Ad90 (Table 1).

Large amounts of compositional information can be summarized graphically. Triangular plots commonly are used to express variations in compositionally complex minerals such as garnet and pyroxene (Fig. 4). Amphiboles are more difficult to portray graphically because they have structural as well as compositional variations. The main differences between amphiboles in different skarn types are variations in the amounts of Fe, Mg, Mn, Ca, Al, Na and K. Amphiboles in Au, W and Sn skarns are progressively more aluminous (actinolite-hastingsite-hornblende); amphiboles in Cu, Mo and Fe skarns are progressively more iron rich in the tremolite-actinolite series; and amphiboles in zinc skarns are both Mn rich and Ca deficient, ranging from actinolite to dunnemorite. For a specific skarn deposit or group of skarns, compositional variations in less common mineral phases, such as vesuvianite, bastnaite and olivine, may provide insight into zonation patterns or regional petrogenesis (e.g., Gierke, 1986; Agrell and Charney, 1987; Silva and Siriwardena, 1988; Benkerrou and Fontelles, 1989).

The spatial and temporal arrangement of minerals in skarn deposits has long been a focus of study. As noted by Burt (1977), European researchers typically have emphasized spatial mineral zoning, whereas North American researchers have emphasized temporal mineral zoning in skarn deposits. Both types of zoning occur in skarns, and their superposition creates the characteristically complex patterns illustrated in Figure 3. In most skarns, there is a general zonation pattern of proximal garnet, distal pyroxene, and vesuvianite (or a pyroxenoid such as wollastonite, bastnaite or rhodonite) at the contact between skarn and marble. In addition, individual skarn minerals may display systematic colour or compositional variations within the larger zonation pattern. For example, garnet is commonly dark red-brown in proximal occurrences, becomes lighter brown in more distal occurrences, and is pale green near the marble front (e.g., Atkinson and Einaudi, 1978). The change in pyroxene colour is less pronounced, but typically reflects a progressive increase in iron and/or manganese toward the marble front (e.g., Harris and Einaudi, 1982). For some skarn systems, these zonation patterns can be "stretched out" for several kilometres and can provide a significant exploration guide (e.g., Meine, 1987).

Retrograde skarn mineralogy, in the form of epidote, amphibole, chlorite and other hydrous phases, is typically structurally controlled and overprints the prograde zonation sequence. Thus, there is often a zone of abundant hydrous minerals along fault, stratigraphic or intrusive contacts. This suggests that the skarn mineral assemblages evolved by retrograde reactions in response to the escape of fluids from the intrusion.

<table>
<thead>
<tr>
<th>General Group</th>
<th>End Members</th>
<th>Abbreviation</th>
<th>Composition</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnet</td>
<td>grossularite, andradite, spessartine, almandine, pyrope</td>
<td>Gr</td>
<td>Ca3Al2(SiO5)3</td>
<td>granite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ad</td>
<td>Ca3Fe5(SiO5)3</td>
<td>sub-calcic garnet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sp</td>
<td>Mn3Al(SiO5)3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al</td>
<td>Fe3Al2(SiO5)3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Py</td>
<td>Mg3Al2(SiO5)3</td>
<td></td>
</tr>
<tr>
<td>Pyroxene</td>
<td>diopside, hedenbergite, johannsenite, fassaitite</td>
<td>Di</td>
<td>CaMgSi2O6</td>
<td>salite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hd</td>
<td>CaFeSi2O6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jo</td>
<td>CaMnSi2O6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fas</td>
<td>Ca(Mg,Fe,Al)(Si,Al)2O6</td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>larnite, forsterite, fayalite, tephroite</td>
<td>Ln</td>
<td>Ca2SiO4</td>
<td>montecellite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fo</td>
<td>Mg2SiO4</td>
<td>kenoite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa</td>
<td>Fe2SiO4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tp</td>
<td>Mn2SiO4</td>
<td></td>
</tr>
<tr>
<td>Pyroxenoid</td>
<td>ferrosilite, rhodonite, wollastonite</td>
<td>Fs</td>
<td>Fe2SiO3</td>
<td>pyroxemangite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rd</td>
<td>Mn2SiO4</td>
<td>bustnaitite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo</td>
<td>CaSiO3</td>
<td></td>
</tr>
<tr>
<td>Amphibole</td>
<td>tremolite, ferroactinolite, manganese actinolite, hornblende, pargasite, cummingtonite, dannelsite, grunerite</td>
<td>Tr</td>
<td>Ca3Mg5Si2O22(CHOH)2</td>
<td>actinolite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ft</td>
<td>Ca3Fe5Si2O22(CHOH)2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma</td>
<td>Ca3Mn5Si2O22(CHOH)2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hb</td>
<td>Ca3(Mg,Fe)5Si2O22(CHOH)2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pg</td>
<td>NaCa3(Mg,Fe)5Si5O22(CHOH)2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cm</td>
<td>Mg3(Mg,Fe)5Si5O22(CHOH)2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dm</td>
<td>Mn3(Mg,Fe)5Si5O22(CHOH)2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gru</td>
<td>Fe3(Fe, Mg)5Si5O22(CHOH)2</td>
<td>sub-calcic amphibole</td>
</tr>
<tr>
<td>Epidote</td>
<td>piemontite, allanite, epidote, clinoczoisite</td>
<td>Prm</td>
<td>Ca3(Mg,Fe)5Si5O22(CHOH)2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All</td>
<td>(Ca,REE)3(Fe,Al)3(SiO4)3(CHOH)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ep</td>
<td>Ca3(Fe,Al)5(SiO4)3(CHOH)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cz</td>
<td>Ca3Al5(SiO4)3(CHOH)</td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>anorthite</td>
<td>An</td>
<td>CaAl2SiO8</td>
<td></td>
</tr>
<tr>
<td>Scapolite</td>
<td>marialite, meionite</td>
<td>Mt</td>
<td>Na2AlSi3O10Cl,CO3,OH,SO3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Me</td>
<td>Ca2Al5Si3O10CO3,Cl,OH,SO3</td>
<td></td>
</tr>
<tr>
<td>Axinite</td>
<td>vesuvianite (idocrase)</td>
<td>Ax</td>
<td>Ca[Mn,Fe,Mg]5Al5Si5O14(CHOH)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>prehnite</td>
<td>Vs</td>
<td>Ca12Si5O34(CHOH,Cl,F)4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pr</td>
<td>Ca2Al2SiO10(CHOH)</td>
<td></td>
</tr>
</tbody>
</table>
perposition of later phases can be difficult to discriminate from a spatial zoning sequence due to progressive reaction of a metasomatic fluid. It is important to realize that hydrous minerals do not necessarily represent retrograde alteration (e.g., Dick and Hodgson, 1982). For example, the typically high-fluorine activities in tin skarns can stabilize many hydrous minerals at high temperatures during early skarn alteration stages (e.g., Lost River in Alaska; Dobson, 1982). In general, retrograde alteration is more intense and more pervasive in shallower skarn systems. In some shallow, porphyry-related skarn systems, extensive retrograde alteration almost obliterates the prograde garnet and pyroxene (Einaudi, 1982a, 1982b).

DEPTH OF FORMATION

One of the more fundamental controls on skarn size, geometry and style of alteration is the depth of formation. Quantitative geobarometric studies typically use mineral equilibria (Anovitz and Essene, 1990), fluid inclusions (Guy et al., 1988), or a combination of these methods (Hames et al., 1989) to estimate the depth of metamorphism. Qualitative methods include stratigraphic and other geologic reconstructions and interpretation of igneous textures. Simple observations of chilled margins, grain size of porphyry groundmass, pluton morphology, and presence of brecciation and brittle fracture allow field distinctions between relatively shallow and deeper environments. The effect of depth on metamorphism is largely a function of the ambient wall rock temperature prior to, during and after intrusion. Assuming an average geothermal gradient for an orogenic zone of approximately 35°C per kilometre (Blackwell et al., 1990), the ambient wall rock temperature prior to intrusion at 2 km would be 90°C whereas at 12 km it would be 420°C. Thus, with the added heat flux provided by local igneous activity, the volume of rock affected by temperatures in the 400-700°C range would be considerably larger and the effects longer lived, surrounding a deeper skarn than a shallower one. In addition, higher ambient temperatures could affect the crystallization history of a pluton and minimize the amount of retrograde alteration of skarn minerals. At a depth of 12 km, with ambient temperatures of approximately 400°C, skarn may not cool below garnet and pyroxene stability without subsequent uplift or other tectonic changes.

The greater extent and intensity of metamorphism at depth can affect the permeability of host rocks and reduce the amount of carbonate available for reaction with metasomatic fluids. An extreme case is described by Dick and Hodgson (1982) at CanTung in Canada, where the "Swiss cheese limestone" was almost entirely converted to a heterogeneous, calc-silicate hornfels during metamorphism prior to skarn formation. The skarn formed from the few remaining patches of limestone has some of the highest known grades of tungsten skarn ore in the world (Mathieson and Clark, 1984).

The depth of skarn formation also will affect the mechanical properties of the host rocks. In a deep skarn environment, rocks will tend to deform in a ductile manner, rather than fail. Intrusive contacts with sedimentary rocks at depth tend to be sub-parallel to bedding; either the pluton intrudes along bedding planes or the sedimentary rocks fold or flow until they are aligned with the intrusive contact. Examples of skarns for which depth estimates exceed 5-10 km include Pine Creek in California (Brown et al., 1985) and Osgood Mountains in Nevada (Taylor, 1976). In occurrences such as these, where intrusive contacts are sub-parallel to bedding planes, skarn is usually confined to a narrow, but vertically extensive, zone. At Pine Creek, skarn is typically <10 m wide, but locally exceeds 1 km in length and vertical extent (Newberry, 1982). Thus, skarn formed at greater depths (Fig. 3C) can be seen as a narrow ring of small size relative to the associated pluton and its metamorphic aureole.

In contrast, host rocks at shallow depths will tend to deform by fracturing and faulting rather than folding. In most of the 13 relatively shallow skarn deposits reviewed by Einaudi (1982a), intrusive contacts are sharply discordant to bedding, and skarn cuts across bedding and massively replaces favourable beds, equalising or exceeding the (exposed) size of the associated pluton. The strong hydrofracturing associated with shallow intrusions greatly increases the permeability of the host rocks, not only for igneous-related metasomatic fluids, but also for later, possibly cooler, meteoric fluids (Shelton, 1983). The influx of meteoric water and the consequent destruction of skarn minerals during retrograde alteration is one of the distinctive features of skarn formation in a shallow environment.

The shallowest (and youngest) known skarns are presently forming in active geothermal systems (McDowell and Elders, 1980; Cavarretta et al., 1982; Bird et al., 1984; Cavarretta and Puxeddu, 1990) and hot spring vents on the sea floor (Zierenberg and Shank, 1983). These skarns represent the distal expression of magmatic activity; exposed igneous rocks (in drill core) are dominantly thin dykes and sills with chilled margins and a very fine-grained to aphanitic groundmass.

Figure 4 Ternary plots of garnet and pyroxene compositions from major skarn types. End members are: Ad = andradite, Gr = grossularite, Al = almandine, Sp = spessartine, Hs = hedenbergite, Di = diopside, Jo = johannsenite. Data from Einaudi et al. (1981) and Meinert (1983, 1989).
GENERIC CHARACTERISTICS OF IMPORTANT SKARN DEPOSIT TYPES

Groupings of skarn deposits can be based on descriptive features such as protolith composition, rock type, and dominant economic metal(s), as well as genetic features such as mechanism of fluid movement, temperature of formation, and extent of magmatic involvement. The general trend of modern authors is to adopt a descriptive skarn classification based upon the dominant economic metals, and then to modify individual categories based upon compositional, tectonic or genetic variations. Seven major skarn types (Fe, Au, W, Cu, Zn, Mo and Sn) have received significant modern study, and several others (including F, C, Ba, Pt, U and REE) are locally important. Table 2 summarizes the general characteristics of selected examples of the major skarn deposit types. More detailed descriptions and maps of individual skarn deposits are presented in the references cited and will not be repeated here.

Iron Skarns

The largest skarn deposits are the iron skarns. Major reviews of this deposit type include Gangler (1969), Sokolov and Grigorev (1977), and Einaudi et al. (1981). Iron skarns are mined for their magnetite content and, although minor amounts of Cu, Co, Ni and Au may be present, iron is typically the only commodity recovered (Grigorev et al., 1990). Many deposits are very large (~500 million tons, with >300 million tons contained Fe) and consist dominantly of magnetite, with only minor silicate gangue. Some deposits contain significant amounts of copper and are transitional to more typical copper skarns (e.g., Kesler, 1968; Vidal et al., 1990). Calcic iron skarns in oceanic island arcs are associated with iron-rich plutons intruded into limestone and volcanic wall rocks. In some deposits, the amount of endoskarn may exceed exoskarn. Skarn minerals consist dominantly of garnet and pyroxene, with lesser epidote, ilvaite and actinolite; all are iron rich (Purkov et al., 1989). Alteration of igneous rocks is common, with widespread albite, orthoclase and scapolite veins and replacements, in addition to endoskarn. In contrast, magmatic iron skarns are associated with diverse plutons in a variety of tectonic settings; the unifying feature is that they all form from dolomitic wall rocks. In magmaskarns, the main skarn minerals, such as forsterite, diopside, peridote, talc and serpentine, do not contain much iron. Thus, the available iron in solution tends to form magnetite rather than andradite or hedenbergite (e.g., Hale et al., 1988). Overprinting of calcic skarn upon magmaskarn is reported from many Russian deposits (Sokolov and Grigorev, 1977, Akbuk and Zharkov, 1988). In addition, many other skarn types contain pockets of massive magnetite which may be mined for iron on a local scale (e.g., Fiero area in New Mexico; Hermon and Jones, 1968). Most of these occurrences form from dolomitic strata or from zones that have experienced prior magmatic mesomatism (e.g., Imai and Yamazaki, 1967).

Gold Skarns

Although gold skarns had been mined since the late 1800s (Hedley district in British Columbia; Billingsley and Hume, 1941), there was so little published about them until recently that they were not included in the major world review of skarn deposits by Einaudi et al. (1981). In the past decade, multiple gold skarn discoveries have prompted new scientific studies and several overview papers, the most recent and comprehensive of which is Theodore et al. (1991).

The highest-grade (5-15 g/t Au) gold skarn deposits (e.g., Hedley district; Ettinger, 1990; Ettinger et al., 1992, Fortitude in Nevada; Myers and Meinert, 1991) are relatively reduced, are mined solely for their precious metal content, and lack economic concentrations of base metals. Other gold skarns (e.g., McCoy in Nevada; Brooks et al., 1991) are more oxidized, have lower gold grades (5-5 g/t Au) and contain subeconomic amounts of other metals such as Cu, Pb and Zn. Several other skarn types, particularly Cu skarns, contain enough gold (0.01-1 g/t Au) for it to be a by-product. A few skarn deposits, although having economic base metal grades, are being mined solely for their gold content (e.g., Versely Mine in the Commonwealth of Independent States, Ettinger and Meinert, 1991). Most high-grade gold skarns are associated with reduced (ilmenite-bearing, Fe^3+Fe^2+ < 0.75), diotegranoaldoiritic plutons and dike/sill complex. Such skarns are dominated by iron-rich pyroxene (typically >Hd_80); proximal zones can contain abundant intermediate granite garnet. Other common minerals include potassium feldspar, scapolite, vesuvianite, apatite and high-chlorine aluminous amphibole. Distal/early zones contain biotite ± potassium feldspar hornblende which can extend for hundreds of metres beyond massive skarn. Due to the clastic, carbonate, carbonaceous nature of the sedimentary rocks in these deposits, most skarn is relatively fine grained. Some gold skarns contain unusual late prehnite or wollastonite retrograde alteration (Ettinger, 1990). Arsenopyrite and pyrrhotite are the dominant sulphide minerals at Hedley and Fortitude, respectively. Most gold is present as electrum and is strongly associated with various bismuth and telluride minerals, including native bismuth, hedleyite, witzenite and malonite. The Fortitude deposit is part of a large zoned skarn system in which the proximal, garnet-rich part was mined for copper (Theodore and Blake, 1978). Similarly, the Crown Jewel gold skarn in Washington is the pyroxene-rich, distal portion of a large skarn system in which the proximal part is garnet rich and was mined on a small scale for iron and copper (Hickey, 1990). Such zoned skarn systems suggest that other skarn types may have undiscovered precious metal potential if the entire skarn system has not been explored (e.g., Soler et al., 1990).

Tungsten Skarns

Tungsten skarns are found on most continents, in association with calc-alkalic plutons in major orogenic belts. Major reviews of tungsten skarns include Newberry and Einaudi (1981), Newberry and Swanson (1986), and Kwak (1987). As a group, tungsten skarns are associated with coarse-grained, equigranular batholiths (with pegmatite and aplite dykes) surrounded by large, high-temperature, metamorphic aureoles. These features are collectively indicative of a deep environment. Plutons are typically fresh, with only minor myrmekite and plagioclase-pyroxene endoskarn zones near contacts. The high-temperature metamorphic aureoles common in the tungsten skarn environment contain abundant calc-silicate hornfels and skarnoid formed from mixed carbonate-pelite sequences (e.g., Figs. 1A-C and 2C). Such metamorphic calc-silicate minerals reflect the composition and texture of the protolith and can be distinguished from ore-grade metamorphic skarn in the field and in the laboratory.

Newberry and Einaudi (1981) divided tungsten skarns into reduced and oxidized types, based on host rock composition (carbonaceous versus hematitic), skarn mineralogy (ferrous versus ferric iron), and relative depth (metamorphic temperature and involvement of oxygenated ground water). Early skarn assemblages in reduced tungsten skarns are dominated by hedenbergitic pyroxene and lesser granite garnet, with associated disseminated, fine-grained, molybdenum-rich scheelite (powellite). Later garnets are subcalcic (Newberry, 1983) with significant amounts (up to 80 mole %) of spessartine and almandine. This subcalcic garnet is associated with leaching of early disseminated scheelite and its redeposition as coarse-grained, often vein-controlled, low-molybdenum scheelite. It is also associated with the introduction of sulphides, such as pyrrhotite, molybdenite, chalcopyrite, sphalerite and arsenopyrite, and hydrous minerals such as biotite, hornblende and epidote. In oxidized tungsten skarns, andraditic garnet is more abundant than pyroxene, scheelite is molybdenum poor, and ferric iron phases are more common than ferrous phases. For example, at the Springer deposit in Nevada, garnet is abundant and has andraditic rims, pyroxene is diopsidic (<Hd_40), epidote is the dominant hydrous mineral, pyrite is more common than pyrrhotite, and subcalcic garnet is rare to absent (Johnson and Keith, 1991). In general, oxidized tungsten skarns tend to be smaller than reduced tungsten skarns, although the
highest grades in both systems typically are associated with hydrous minerals and retrograde alteration.

Copper Skarns
Copper skarns are perhaps the world’s most abundant skarn type. They are particularly common in orogenic zones related to subduction, both in oceanic and continental settings. Major reviews of copper skarns include Einaudi et al. (1981) and Einaudi (1982a, 1982b). Most copper skarns are associated with f-type, magnesite series, calc-alkaline, porphyritic plutons, many of which have cogenetic volcanic rocks, stockwork veining, brittle fracturing and brecciation, and intense hydrothermal alteration. These are all features indicative of a relatively shallow environment of formation.

Most copper skarns form in close proximity to the contacts of stocks, with a relatively oxidized skarn mineralogy dominated by anhydritic garnet. Other phases include diopсидic pyroxene, vesuvianite, wollastonite, actinolite and epidote. Hematite and magnetite are common in most deposits, and the presence of dolomitic wall rocks is coincident with massive magnetite lodes, which may be mined on a local scale for iron. As noted by Einaudi et al. (1981), copper skarns commonly are zoned, with massive garnetite near the pluton, increasing pyroxene away from the contact, and, finally, vesuvianite and wollastonite occurring near the marble contact. In addition, garnet may be coloured from dark reddish-brown proximal to the pluton, to green and yellow varieties in distal occurrences. Sulphide mineralogy and metal ratios may also be systematically zoned relative to the causative pluton. In general, pyrite and chalcopyrite are most abundant near the pluton, with chalcopyrite increasing away from the pluton, and bornite finally occurring in wollastonite zones near the marble contact. In copper skarns containing monticellite (e.g., Aintsberg, Iran Jaya in Indonesia; Kyle et al., 1997; and M job, Lel Ef in British Columbia; Meinert, unpublished data), bornite-chalcopyrite are the dominant Cu-Fe sulphides, rather than pyrite-chalcopyrite.

The largest copper skarns are associated with mineralized porphyry copper plutons. These deposits can exceed 1 billion tons of combined porphyry and skarn ore, with more than 5 million tons of copper recoverable from skarn. The mineralized plutons exhibit characteristic potassium silicate and sericitic alteration, which can be correlated with prograde garnet-pyroxene and retrograde epidote-actinolite, respectively, in the skarn. Intense retrograde alteration is common in copper skarns and may destroy most of the prograde garnet and pyroxene in some porphyry-related deposits (e.g., El in Nevada; James, 1976). Endoskarn alteration of mineralized plutons is rare. In contrast, barren stocks associated with copper skarns contain abundant epidote-actinolite-chlorite en-doskarn and less intense retrograde alteration of skarn. Some copper deposits have coarse-grained actinolite-chalcopyrite-pyrite-magnetite ores, but contain only sparse prograde garnet-pyroxene skarn (e.g., Monterosato and Ruil-Condable deposits in Peru (Ripley and Ohmoto, 1977; Siddler, 1984; Vidal et al., 1990); Record mine in Oregon (Caffrey, 1982); and Cerro de Mercado in Mexico (Lyons, 1988)). These deposits provide a link between some copper and iron skarns and deposits with volcanicogenic and orthomagmatic affinities.

Zinc skarns
Most zinc skarns occur in continental settings associated with either subduction or rifting. They are mined for ores of zinc, lead and silver, although zinc is usually dominant. They are also high grade (10-20% Zn + Pb, 30-300 g/t Ag). Related igneous rocks span a wide range of compositions, from dikelite through high-silica granite. They also span diverse geological environments, from deep-seated batholiths to shallow dyke-sill complexes to surface volcanic extrusions. The common thread linking most zinc skarn ores is their occurrence distal to associated igneous rocks. Major reviews of zinc skarn deposits include Einaudi et al. (1981) and Megaw et al. (1989).

Zinc skarns can be subdivided according to several criteria, including distance from magmatic source, temperature of formation, relative proportion of skarn and sulphide minerals, and geometric shape of the ore body. None of these criteria is entirely satisfactory: a magmatic source cannot be identified for some deposits, most skarns develop over a range of temperatures, and most large skarn deposits contain both skarn-rich and skarn-poor ores in a variety of geometric settings, including mantos and chimneys. Megaw et al. (1986) make the important point that many zinc skarn districts, "grade outward from intrusion-associated mineralization to intrusion-free ores, which suggests that those districts lacking known intrusion relationships may not have been traced to their ends". Similarly, most zinc skarn districts grade outward from skarn-rich mineralization to skarn-poor ores, veins and massive sulphide bodies, which may contain few, if any, skarn minerals. Incompletely explored districts may have only some of these zones exposed. As previously noted, however, the presence within the system of skarn minerals, such as garnet and pyroxene, is important because it indicates a restricted geochemical environment which is entirely distinct from other ore types, such as Mississippi Valley-type deposits, which also contain Zn-Pb-Ag ores, but which absolutely lack skarn minerals. Besides these Zn-Pb-Ag metal content, zinc skarns can be distinguished from other skarn types by their distinctive magnesium- and iron-rich mineralogy, by their occurrence along structural and lithologic contacts, and by the absence of significant metamorphic aureoles centered on the skarn. Almost all skarn minerals in these deposits can be enriched in manganese, including garnet, pyroxene, olivine, ilvaite, pyroxenoid, amphibole, chlorite and serpentine. In some deposits, the pyroxene: garnet ratio and the manganese content of pyroxene increase systematically along the fluid flow path (e.g., Groundhog in New Mexico; Meinert, 1987). This feature has been used to identify proximal and distal skarns and proximal and distal zones within individual skarn deposits. The occurrence of zinc skarns in distal portions of major magmatic/hydrothermal systems may make even small deposits potentially useful as exploration guides in poorly exposed districts. Thus, reports of manganese-rich mineral occurrences may provide clues to districts that have not yet received significant exploration activity.

Molybdenum Skarns
Most molybdenum skarns are associated with leucocratic granites, and range from high-grade, relatively small deposits (Aze-gour in Morocco; Perrin, 1957) to low-grade, bulk tonnage deposits (Little Boulder Creek in Idaho; Cavanaugh, 1978). Numerous small occurrences are also found in Pro cambrian, stable cratons associated with pegmatite, aplite and other leucocratic rocks (Vokes, 1963). Most molybdenum skarns contain a variety of metals, including W, Cu, Zn, Pb, Bi, Sn and U, and some are truly polymetallic, in that several metals need to be recovered together in order for the deposits to be mined economically. Mo-W-Cu is the most common association, and some tungsten skarns and copper skarns contain zones of recoverable molybdenum. Most molybdenum skarns occur in silty carbonate or calcareous clastic rocks. Canavan Gulch in Montana (Darling, 1990) is a notable exception in that it occurs in dolomite. Hedenbergitic pyroxene is the most common silicate mineral reported from molybdenum skarns, with lesser garnetite garnet (with minor pyrsalspite component), wollastonite, amphibole and fluorite. This skarn mineralogy indicates a reducing environment with high fluorine activities. These deposits have not received significant study outside of the former Soviet Union and there has not been a modern review since the brief summary by Einaudi et al. (1981).

Tin Skarns
Tin skarns are almost exclusively associated with high-silica granites generated by partial melting of continental crust, usually caused by rifted events. Major reviews of tin skarn deposits include Einaudi et al. (1981) and Kwak (1987). Tin skarns can be subdivided according to several criteria, including proximal versus distal, calcic versus magnesian, skarn-rich versus skarn-poor, oxide-rich ver-
<table>
<thead>
<tr>
<th>Skarn Type</th>
<th>Name and Location</th>
<th>Tectonic Setting</th>
<th>Plate and Alteration</th>
<th>Protolith</th>
<th>Skarn Mineralogy</th>
<th>Ore Mineralogy</th>
<th>Geochronology</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium Iron</td>
<td>Mojave Desert, Eagle Mountains, California, USA</td>
<td>Continental subduction</td>
<td>165 Ma (intra-feldspar granite stock with silicate alteration and granite dyke with ep. endoskarn)</td>
<td>Plagioclase + amphibolite, staurolite, cordierite</td>
<td>Magnetite (hematite), pyrite, chalcopyrite</td>
<td>Magnetite, pyrite, chalcopyrite</td>
<td>0.8 Ga, Tera 550-700°C, CaCl 15-50% w/w</td>
<td>Lamery, 1948; Labbe and Blumenbach, 1968; Hall et al., 1998</td>
</tr>
<tr>
<td>Calci Iron</td>
<td>Victoria Island, Lake 77 Mt. , -50% Fe</td>
<td>Oceanic island arc</td>
<td>Jurassic phillipsite-granodiorite, exhalative assemblage</td>
<td>Late Triassic basalt and limestone, Jurassic rhyolite, breccia, and greenstone</td>
<td>Magnetite, pyrite, chalcopyrite</td>
<td>Magnetite, pyrite, chalcopyrite</td>
<td>330-600°C, CaCl 3-5% w/w</td>
<td>Sangster, 1990; Meiners, 1994; Bloemers, 1965; Ray and Webster, 1991</td>
</tr>
<tr>
<td>Calci Iron</td>
<td>Sarbai, Targai Province, West Siberia, USSR</td>
<td>Oceanic island arc</td>
<td>Hercynian diorite</td>
<td>Carbonaceous assemblage, talc, montmorillonite, magnetite</td>
<td>Magnetite, pyrite, chalcopyrite</td>
<td>Magnetite, pyrite, chalcopyrite</td>
<td>250-650°C, avg 368°C</td>
<td>Soloshonok and Gregoren, 1977</td>
</tr>
<tr>
<td>Gold</td>
<td>Nickel Plate Mine, Hylton District, British Columbia, Canada</td>
<td>Continental back arc basin</td>
<td>Jurassic phyllitic rock and dyke stock and volcanics, skarn; early biotite assemblage</td>
<td>Upper Triassic siliciclastics, tuff, shale, limestone</td>
<td>Magnetite, pyrite, chalcopyrite</td>
<td>Magnetite, pyrite, chalcopyrite</td>
<td>350-500°C, avg NaCl 15% w/w</td>
<td>Ray et al., 1988; Balachander, 1977; Worrall et al., 1988; Myers and Meiners, 1991; Theodore et al., 1991</td>
</tr>
<tr>
<td>Gold</td>
<td>Fortitude Mine, Copper Canyon District, Nevada, USA</td>
<td>Continental back arc basin</td>
<td>Mesozoic (Triassic)–imbricated calc-silicate rocks and dykes, biotite, alkali</td>
<td>Upper Paleozoic, biotite + chlorite + carbonate + adularia + amphibole</td>
<td>Magnetite, pyrite, chalcopyrite</td>
<td>Magnetite, pyrite, chalcopyrite</td>
<td>455-550°C, U 335-450°C</td>
<td>Hickey, 1990</td>
</tr>
<tr>
<td>Tungsten</td>
<td>MacMillan Pass, Yukon-Northwest Territories, Canada</td>
<td>Continental collision/subduction</td>
<td>90 Ma granitic</td>
<td>Cambrian to Silurian intercalated limestones, shales, and sandstones</td>
<td>Scheelite + lead, chalcopyrite</td>
<td>Sphalerite, pyrite, chalcopyrite</td>
<td>0.8 Ga, Tera 23-65°C</td>
<td>Dick and Hodgson, 1982; Cadigan et al., 1994</td>
</tr>
<tr>
<td>Tungsten</td>
<td>Pine Creek, California, USA</td>
<td>Continental collision/subduction</td>
<td>92 Ma granitic, pyroclastic rocks</td>
<td>Upper Paleozoic, biotite, chlorite, muscovite + amphibole</td>
<td>Scheelite + lead, chalcopyrite</td>
<td>Sphalerite, pyrite, chalcopyrite</td>
<td>330-450°C, CaCl 2-5% w/w</td>
<td>Hickey, 1990</td>
</tr>
<tr>
<td>Tungsten</td>
<td>King Island, Tasmania, Australia</td>
<td>Continental collision/subduction</td>
<td>345 Ma granodiorite, granite aplite & pegmatite, dykes</td>
<td>Upper Proterozoic to Cambrian marl, rhyolite, conglomerate, sandstone, limestone</td>
<td>Scheelite + lead, chalcopyrite</td>
<td>Sphalerite, pyrite, chalcopyrite</td>
<td>330-450°C, CaCl 2-5% w/w</td>
<td>Hickey, 1990</td>
</tr>
<tr>
<td>Tungsten</td>
<td>Skala, Pyrenees, France</td>
<td>Continental collision/subduction</td>
<td>Hercynian (270-290 Ma) granite-monzonite stock + pyroclastic rock, rhyolite, amphibolite</td>
<td>Silurian-Devonian interbedded graphicite, biotite, muscovite, muscovite, muscovite</td>
<td>Scheelite + pyrite + arsenopyrite</td>
<td>Sphalerite, pyrite, chalcopyrite</td>
<td>2-2.6 Ga, Y 400-600°C, T 200-500°C, CaCl 3-5% w/w</td>
<td>Fontilles et al., 1989; Hickey, 1990</td>
</tr>
<tr>
<td>Skarn Type</td>
<td>Name & Location</td>
<td>Tectonic Setting</td>
<td>Phaner & Aberration</td>
<td>Protolith</td>
<td>Skarn Mineralogy</td>
<td>Ore Mineralogy</td>
<td>Geochemistry</td>
<td>References</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Copper</td>
<td>Moos Deposit Quebec, Canada</td>
<td>Continental subduction</td>
<td>Late Devonian quartz monzonite</td>
<td>Lower Devonian carbonatic limestones</td>
<td>py, po, cp, cla, sil, sch</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Allcock, 1982</td>
</tr>
<tr>
<td>Copper</td>
<td>Santa Rita New Mexico, USA</td>
<td>Subduction</td>
<td>Late Permian peridotite</td>
<td>Carbonatic limestone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Gilmour, 1982</td>
</tr>
<tr>
<td>Copper</td>
<td>Cari Frio Benham District Utah, USA</td>
<td>Continental subduction</td>
<td>Late Permian peridotite</td>
<td>Carbonatic limestone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Shoffner and Rye, 1992</td>
</tr>
<tr>
<td>Zine-lead</td>
<td>Verdiata District Durango, Mexico</td>
<td>Continental subduction</td>
<td>Lower Jurassic quartzite</td>
<td>Carbonatic limestone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Shoffner and Rye, 1992</td>
</tr>
<tr>
<td>Zine-lead</td>
<td>Naica Chihuahua Mexico</td>
<td>Continental subduction</td>
<td>Lower Jurassic quartzite</td>
<td>Carbonatic limestone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Shoffner and Rye, 1992</td>
</tr>
<tr>
<td>Zine-lead</td>
<td>Groundhog Mine Central District New Mexico, USA</td>
<td>Continental subduction</td>
<td>Lower Jurassic quartzite</td>
<td>Carbonatic limestone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Shoffner and Rye, 1992</td>
</tr>
<tr>
<td>Zine-lead</td>
<td>Nukatsu Mine Fukushima Prefecture Japan</td>
<td>Continental subduction</td>
<td>Lower Jurassic quartzite</td>
<td>Carbonatic limestone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Shoffner and Rye, 1992</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Arevour Morocou</td>
<td>Transcretion</td>
<td>Lower Jurassic quartzite</td>
<td>Carbonatic limestone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Shoffner and Rye, 1992</td>
</tr>
<tr>
<td>Molybdenum/</td>
<td>Tyrnysa Republic of Georgia USA</td>
<td>Transcretion</td>
<td>Lower Jurassic quartzite</td>
<td>Carbonatic limestone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Shoffner and Rye, 1992</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Little Boulder Creek Montana, USA</td>
<td>Transcretion</td>
<td>Lower Jurassic quartzite</td>
<td>Carbonatic limestone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Shoffner and Rye, 1992</td>
</tr>
<tr>
<td>Tin</td>
<td>Moos Tasmania Australia</td>
<td>Postoreogenic</td>
<td>Devonian muscovite-biotite granite</td>
<td>Devonian limestones sandstone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Kwak and Atkins, 1981</td>
</tr>
<tr>
<td>Tin</td>
<td>Lost River, Alaska</td>
<td>Postoreogenic</td>
<td>Devonian muscovite-biotite granite</td>
<td>Devonian limestones sandstone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Kwak and Atkins, 1981</td>
</tr>
<tr>
<td>Tin</td>
<td>JC Yakutsk Territory Canada</td>
<td>Postoreogenic</td>
<td>Devonian muscovite-biotite granite</td>
<td>Devonian limestones sandstone</td>
<td>il, po, cp, cla, sil</td>
<td>monozonitic grinding to hedenbergite pyroxene, ilmenite</td>
<td>Cu, Mo, Ni, Pd</td>
<td>Kwak and Atkins, 1981</td>
</tr>
</tbody>
</table>

Abbreviations: act = actinolite, Ad = adularia, Al = alexandrite, am = amphibole, An = anorthite, ap = aperite, asp = asperrimente, as = assite, bio = biotite, bsb = bestmanite, bx = beccoite, cl = chloreite, cm = clinoamphibole, co = coahite, cp = clinothorite, cs = causticite, ep = epidote, fl = fluid inclusion, fl = fllour, gar = garnet, gi = grains, hgc = hornblendite, hds = hedenbergite, tt = tremolite, tds = tremolite, tco = tocophane, tjo = toachemite, w = wollastonite, wns = wessmannite, we = wessmannite, ym = yamakitaite, z = zonolite, zm = zincite, zr = zircon, sd = secondary dolomite, sc = scapolite, ch = chalcedony.
sus sulphide-rich, and greisen versus skarn. Unfortunately, few of these categories are mutually exclusive. Like the zinc skarns, many large tin skarn systems are zoned from skarn rich to skarn poor (or absent). For example, in the Renison Bell area of Tasmania, there is a single large magmatic/hydrothermal system zoned from a proximal, calcic tin skarn, with minor cassiterite disseminated in a sulphide-poor garnet-pyroxene gangue, to a distal, magnesian massive sulphide replacement body, containing abundant cassiterite and a complete absence of calc-silicate minerals. The distal massive sulphide ore body (Renison Bell) is a major ore deposit and the proximal skarn body (Pine Hill) has not been and probably never will be mined. Elinaudi et al. (1981) emphasized that there is a common thread linking the several types of tin skarn deposits: the characteristic suite of trace elements (Sn, F, B, Be, Li, W, Mo and Rb) in the ore and in associated igneous rocks. This suite distinguishes tin skarns from all other skarn types. Kwak (1987) makes a further distinction in that many tin skarn deposits develop a greisen alteration stage which is superimposed upon the intrusion, early skarn, and unaltered carbonate. Greisen alteration is characterized by high-fluorine activities and the presence of minerals like fluorite, topaz, tourmaline, muscovite, grunerite and ilmenite, and abundant quartz. In many cases, this greisen-stage alteration completely destroys earlier alteration stages. Of particular importance, greisen-style alteration is absent from other skarn types. For a more thorough review of tin skarn systems and greisens, see Kwak (1987).

There are several mineralogical features of tin skarns that should be highlighted. From a mining standpoint, the most important is that tin can be incorporated into silicate minerals, such as garnet, titanite and vesuvianite, where it is economically unrecoverable. Dobson (1982) reports garnet containing up to 6% Sn in skarn at Lost River, Alaska. Thus, large deposits such as Monia in Tasmania (Kwak and Askins, 1981) can contain substantial amounts of tin that cannot be recovered with present or foreseeable technology. Extensive retrograde or greisen alteration of early tin-bearing skarn minerals can liberate this tin and cause it to precipitate in oxide or sulphide ore. Thus, the skarn-destructive stages of alteration are particularly important in tin skarn deposits. As noted by Kwak (1987), the most attractive ore bodies occur in the distal portions of large skarn districts, where massive sulphide or oxide replacements occur without significant loss of tin in calc-silicate minerals like garnet.

Other Skarn Types

There are many other types of skarn which historically have been mined or explored for a variety of metals and industrial minerals. Some of the more interesting include rare earth element (REE)-enriched skarns (e.g., Giuliani et al., 1979; Kato, 1989). REEs tend to be enriched in specific mineral phases such as garnet, vesuvianite, epidote and allanite. Vesuvianite and epidote with up to 20% REE (Ce-La>Pr-Nd) have been found in some gold skarns and zinc skarns (Gemmell et al., 1992; Meinert, unpublished data). Some skarns contain economic concentrations of REEs and uranium (Kwak and Abeyesinghe, 1987; Lentz, 1991). The Mary Kathleen skarn deposit in Queensland, Australia, is unusual in that REE and uranium daughter minerals in fluid inclusions suggest that these elements can be strongly concentrated in high-temperature hydrothermal fluids (Kwak and Abeyesinghe, 1987). This suggests that other metamorphic environments should be examined for possible concentrations of REEs and uranium.

The occurrence of platinum group elements (PGE) is reported in some skarns (e.g., Knopf, 1942). These deposits have not been well documented in the literature and most appear to represent metasomatism of ultramafic rocks (e.g., Yu, 1985). It is difficult to evaluate the abundance of PGEs in different skarn types because PGEs have not been routinely analysed until recently. Geochemical considerations suggest that PGEs could be transported under very acidic, oxidized conditions (Wood et al., 1989). In the skarn environment, such conditions might be reached in the greisen alteration stage of tin skarns. This might be a direction for future research and exploration.

Another skarn type that has received recent study is related to metasomatism in regional metamorphic environments (Mueller, 1988; Lloka and Nesbitt, 1989; Pan et al., 1991). In the Yilgarn craton of Western Australia, Archean volcanics are cut by regional skarn zones which host gold-quartz veins with typical carbonate-carbonate alteration in Archean volcanics (Groves et al., 1988). In some of the deeper deposits, mineralized gold-quartz veins have zoned alteration envelopes of calcic pyroxene and garnet (Mueller, 1988). Skarn alteration is locally massive and best developed in iron-rich metabasalt, banded iron formation, and komatiite. Based on detailed underground mapping, mineral equilibria, and structural fabrics, Mueller (1988) interprets the skarn alteration as post-dating peak metamorphism and related to synkinematic granite domes.

In the Archean Slave Province of northern Canada, banded iron formation contains disseminated and vein-controlled gold mineralization associated with arsenopyrite and pyrite at the Lupin Mine. Metamorphism of these rocks has formed hedenbergite pyroxene skarn along with garnetite and garnet. Lloka (1988) noted that hedenbergite skarn is most abundant in the central sheared part of the Lupin Mine, and concluded that metamorphic fluids circulating along the shear zone were responsible for stabilizing the calcic hedenbergite pyroxene in the iron-rich, but calcium-poor, host rocks. However it formed, the arsenopyrite-bearing hedenbergite skarn at Lupin is very similar in composition and texture to some of the Phanerozoic gold skarns described in Table 2.

GEOCHEMISTRY AND GEOPHYSICS

Most geochemical studies of skarn deposits have focussed on mineral phase equilibria, fluid inclusions, isotopic investigations of fluid sources and pathways, and determination of exploration anomaly and background levels. Experimental phase equilibria studies are essential for understanding individual mineral reactions, such as the very simple ones illustrated in Figure 2. Such studies can be extended by using thermodynamic data to include variable compositions (e.g., Bowman and Essene, 1982). Another approach is to use a self-consistent thermodynamic database to model potential skarn-forming solutions (e.g., Flowers and Helgeson, 1963; Johnson and Norton, 1985; Ferry and Baumgartner, 1987). Fractionation of elements between minerals (e.g., Ca,Mg in carbonate; Bowman and Essene, 1982) also can be used to estimate conditions of skarn formation.

Fluid inclusion studies of many ore deposit types focus on minerals, such as quartz, carbonate and fluorite, that contain numerous fluid inclusions, are relatively transparent, and are stable over a broad T-P-X range. This broad T-P-X range can, however, cause problems in interpretation of fluid inclusion data because these minerals may continue to grow and trap fluids from early high-temperature events through later low-temperature events (Rodmer, 1984). In contrast, high-temperature skarn minerals, such as forsterite and diopside, are unlikely to trap later low-temperature fluids (beyond the host minerals stability range) without visible evidence of alteration. Thus, fluid inclusions in skarn minerals provide a relatively unambiguous opportunity to measure temperature, pressure and composition of skarn-forming fluids.

Much of the skarn fluid inclusion literature prior to the mid-1980s, especially studies of Sn and W skarn deposits, has been summarized by Kwak (1986). Such studies have been very useful in documenting the high temperatures (>700°C) and high salinities (>50 wt.% NaCl equivalent and multiple daughter minerals) which occur in many skarns. All the skarn types summarized in Table 2, except for copper and zinc skarns, have fluid inclusions that yield homogenization temperatures up to and exceeding 700°C. Homogenization temperatures in most fluid inclusions in copper and zinc skarn deposits are in the 300-550°C range. This is consistent with the relatively shallow and distal geologic settings inferred, respectively, for these two skarn types. Salinities in most skarn fluid inclusions are high; docu-
mented daughter minerals in skarn minerals include NaCl, KCl, CaCl₂, FeCl₂, CaCO₃, CaF₂, C, NaAlCO₃(OH)₂, Fe₂O₃, Fe₂O₄, AsFeS₃, CuFeS₂ and ZnS (Table 2). Haynes and Kessler (1988) describe systematic variations in NaCl:KCl:CaCl₂ ratios in fluid inclusions from different skarns, reflecting differences in the fluid source and the degree of mixing of magmatic, connate and meteoric fluids. In general, magmatic fluids have KCl:CaCl₂, whereas high-CaCl₂ fluids appear to have interacted more with sedimentary wall rocks.

Fluid inclusions can provide direct evidence for the content of CO₂ (both liquid and gas), CH₄, N₂, H₂S and other gases in hydrothermal fluids. Studies of gas phases and immiscible liquids in fluid inclusions typically show a dominance of CO₂, a critical variable in skarn mineral stability. Although no comparative studies have been done, it appears that CH₄ is slightly more abundant than CO₂ in reduced systems like tungsten skarns (Fontelles et al., 1989; Gerstner et al., 1989), whereas CO₂ is more abundant than CH₄ in more oxidized systems like copper and zinc skarns (Megaw et al., 1988).

Fluid inclusions in specific skarn mineral phases are particularly useful in documenting the temporal and spatial evolution of skarn-forming fluids, and how these changes correlate with compositional, experimental
and thermodynamic data (e.g., Kwak and Tan, 1981; Meinert, 1987). Fluid inclusions also provide direct evidence for the temperature and salinity shifts in most skarn systems between prograde and retrograde skarn events. For example, fluid inclusions in garnet and pyroxene in iron skarns have homogenization temperatures of 370-780°C and 300-690°C, respectively, with salinities up to 50 wt.% NaCl equivalent, whereas inclusions in retrograde epidote and crosscutting quartz veins have homogenization temperatures of 245-250°C and 100-250°C, respectively, with salinities of <25 wt.% NaCl equivalent (data from Table 2). In gold skarns, inclusions in prograde garnet and pyroxene have homogenization temperatures up to 730°C and 695°C, respectively, with salinities up to 33 wt.% NaCl equivalent. In contrast, inclusions in scapolite, epidote and actinolite in these skarns have homogenization temperatures of 320-400°C, 255-320°C, and 320-350°C, respectively. In tungsten skarns, inclusions in prograde garnet and pyroxene have homogenization temperatures up to 600°C and 600°C, respectively, with salinities up to 52 wt.% NaCl equivalent. In contrast, inclusions in amphibole and quartz from these skarns have homogenization temperatures of 250-380°C and 290-380°C, respectively, with salinities of 12.28 wt.% NaCl and 2.5-10.5 wt.% NaCl equivalent. Fluid inclusions in garnet and pyroxene from the MacMillan Pass tungsten deposit (Gerstner et al., 1989) have homogenization temperatures and salinities that are anomalously low and at variance with most other studies of similar deposits, suggesting that further studies at MacMillan Pass might extend the range of presently available data.

Isotopic investigations, particularly the stable isotopes of C, O, H and S, have been critically important in documenting the multiplicity of fluids involved in the formation of most large skarn systems (Shimazaki, 1988). The pioneering study of Taylor and O'Neil (1977) demonstrated the importance of both magmatic and meteoric waters in the evolution of the Osgood Mountain W skarns. Bowman et al. (1985) demonstrated that in high-temperature W skarns even some of the hydrous minerals, such as biotite and amphibole, can form at relatively high temperatures from water with a significant magmatic component (see also Marc de Lumen, 1988). Specifically, garnet, pyroxene and associated quartz from the skarn deposits summarized in Table 2 all have δ18O values in the +4 to +9% range, consistent with derivation from magmatic waters. In contrast, δ18O values for sedimentary calcite, quartz and meteoric waters in these deposits are distinctly different. In most cases, there is a continuous mixing line between original sedimentary δ18O values and calculated δ18O values for magmatic hydrothermal fluids at the temperatures of prograde skarn formation. Similar mixing is indicated by δ13C values in calcite, ranging from typical sedimentary δ13C values in limestone away from skarn to typical magmatic values in calcite interstitial to prograde garnet and pyroxene (Brown et al., 1985). Hydrous minerals such as biotite, amphibole and epidote from different skarn deposits also display δ18O and δD values ranging from magmatic to local sedimentary rocks and meteoric waters (Layne et al., 1991). Again, mixing of multiple fluid sources is indicated.

Sulphur isotopic studies on a variety of sulphide minerals (including pyrite, pyrrhotite, molybdenite, chalcopyrite, sphalerite, bornite, arsenopyrite and galena) from the skarn deposits summarized in Table 2, indicate a very narrow range of δ34S values, consistent with precipitation from magmatic fluids. For some of the more distal zinc skarns, sulphur isotopic studies indicate that the mineralizing fluids acquired some of their sulphur from sedimentary rocks (including evaporites) along the fluid flow path (Megaw et al., 1988). Overall, stable isotopic investigations are consistent with fluid inclusion and mineral equilibria studies which demonstrate that most large skarn deposits formed from diverse fluids, including early, high-temperature, highly saline brines directly related to crystallizing magma systems (e.g., Awerka and Andre, 1988). In many systems, the highest-salinity fluids are coincident with peak sulphide deposition. In addition, at least partial mixing with exchanged connate or meteoric fluids is required for most depos-

Figure 7 General models of skarn zonation: (A) copper skarns (after Atkinson and Einaudi, 1978); (B) zinc skarns (after Meinert, 1987); (Facing page) (C) gold skarns — Hedley District, British Columbia (after Ray and Webster, 1991a), and (B) gold skarns — cross section of the Fortillus deposit, Nevada (Myers and Meinert, 1991).
its, with the latest alteration events forming largely from dilute meteoric waters. Even though skarn metal contents are quite variable, anomalous concentrations of pathfinder elements in distal skarn zones can be an important exploration guide. Geochemical studies of individual deposits have shown that metal dispersion halos can be zoned from proximal Cu-Mo-Fe assemblages to distal precious metal zones and Pb-Zn-Ag veins (e.g., Theodore and Blake, 1975). Anomalies of tens to hundreds of ppm for individual metals can extend for more than 1000 m beyond proximal skarn zones. Comparison of geochemical signatures among different skarn classes suggests that each has a characteristic suite of anomalous elements; background levels for a particular element in one skarn type may be highly anomalous in others. For example, Au, Te, Bi and As contents of 1, 10, 100 and 500 ppm, respectively, are not unusual for rocks and soils at gold skarn properties, but are rare to absent for other skarn types (e.g., Meinert et al., 1990; Myers and Meinert, 1991).

Some skarns have a strong geophysical response (Chapman and Thompson, 1984; Emerson, 1986). Almost all skarns are significantly denser than the surrounding rock, and therefore may form a gravitational anomaly or seismic discontinuity. This is particularly evident in some of the large iron skarns, which may contain more than a billion tons of magnetite (specific gravity = 5.18). In addition, both skarns and associated plutons may form magnetic anomalies (Spector, 1972). Relatively oxidized plutons typically contain enough primary magnetite to form a magnetic high, whereas reduced plutons typically contain ilmenite, rather than magnetite, and may form a magnetic low (Ishihara, 1977). Skarns may form a magnetic high due to large concentrations of magnetite (e.g., Chapman et al., 1986) or other magnetic minerals such as high-temperature pyrrhotite (e.g., Wotrubka et al., 1988). Since metasomatism of dolomitic rocks tends to form abundant magnetite, in magnetic skarn deposits it may be possible to distinguish original protolith, as well as the presence of skarn, from a strong magnetic anomaly (Hallof and Winiiski, 1971; Chernenov, 1988).

Disseminated and massive sulphide minerals may give strong IP, EM or magnetotelluric responses in skarn (Emerson and Welsh, 1988). However, electrical surveys of skarns need to be interpreted carefully because metasomatism of carbonate rock necessarily involves the redistribution of carbon. The presence of carbonaceous matter, especially if in the form of graphite, can strongly effect electrical surveys. Such carbon-induced anomalies may be distant from, or unrelated to, skarn ore bodies.

A few skarns contain sufficient uranium and thorium to be detectable by airborne or ground radiometric surveys (e.g., Mary Kathleen in Australia; Kwak and Abeyasinghe, 1987). Detailed studies of such deposits demonstrate that relatively small skarns can be detected, and that different types of skarns can be distinguished (e.g., Lentz, 1991).

PETROGENESIS AND TECTONIC SETTING

Most major skarn deposits are directly related to igneous activity, and broad correlations between igneous composition and skarn type have been described by several workers (Zharikov, 1970; Shimazaki, 1980; Einaudi et al., 1981; Kwak and White, 1982; Meinert, 1983; Newberry and Swanson, 1986; Newberry, 1987; Newberry et al., 1990). Averages of large amounts of data for each skarn type can be summarized on a variety of compositional diagrams (e.g., Fig. 5) to show distinctions among skarn classes. Tin and molybdenum skarns are typically associated...
with high-silica, strongly differentiated plutons. At the other end of the spectrum, iron skarns are usually associated with low-silica, iron-rich, relatively primitive plutons. Such diagrams are less useful for detailed studies, however, because of the wide range of igneous compositions possible for an individual skarn deposit and the difficulty of isolating the effects of metasomatism and late alteration. Other important characteristics include the oxidation state, size, texture, depth of emplacement, and tectonic setting of individual plutons. For example, tin skarns are almost exclusively associated with reduced, ilmenite-series plutons which can be characterized as S-type or anorogenic. These plutons tend to form in stable settings in which partial melting of crustal material may be instigated by incipient rifting. Many gold skarns are also associated with reduced, ilmenite-series plutons. Gold skarn plutons, however, are typically mafic, low-silica bodies which could not have formed by melting of sedimentary crustal material. In contrast, plutons associated with copper skarns, particularly porphyry copper deposits, are strongly oxidized, magnetite-bearing, I-type and associated with subduction-related magmatic arcs. These plutons tend to be porphyryic and emplaced at shallow levels in the earth's crust. Tungsten skarns, on the other hand, are associated with relatively large, coarsely-grained, equigranular plutons or batholithic complexes indicative of a deeper environment.

Tectonic setting, petrogenesis and skarn deposits are intimately intertwined. Some modern textbooks use tectonic setting to classify igneous provinces (Wilson, 1969) or different kinds of ore deposits (Sawkins, 1984). This approach has been less successful in describing ore deposits, such as skarns, which are the result of processes that can occur in almost any tectonic setting. A useful tectonic classification of skarn deposits should group skarn types which are frequently found together, and distinguish those which are typical of specialized tectonic settings. For example, calcic Fe-Cu skarn deposits are virtually the only skarn type found in oceanic island-arc terranes (Fig. 6A). Many of these skarns are also enriched in Co, Ni, Cr and Au. In addition, some economic gold skarns appear to have formed in back-arc basins associated with oceanic volcanic arcs (Ray et al., 1988). Some of the key features that set these skarns apart from those associated with more evolved magmas and crust are their association with gabbroic and dioritic plutons, abundant endoskarn, widespread sodium metasomatism, and the absence of Sn and Pb. Collectively, these features reflect the primitive, oceanic nature of the crust, wall rocks, and plutons.

The vast majority of skarn deposits are associated with magmatic arcs related to subduction beneath continental crust (Fig. 6B). Plutons range in composition from diorite to granite, although differences among the main base metal skarn types appear to reflect the local geologic environment (depth of formation, structural and fluid pathways) more than fundamental differences of petrogenesis (Nakano et al., 1990). In contrast, gold skarns in this environment are associated with particularly reduced plutons that may represent a restricted petrologic history.

The transition from subduction beneath stable continental crust to post-subduction tectonics is not well understood. Magmatism associated with shallow subduction angles may have more crustal interaction (Takahashi et al., 1980), and fingering of the downward moving slab may result in local rifting. During this stage the magmatic arc may widen or migrate further inland. Plutons are granitic in composition, and associated skarns are rich in Mo or W-Mo, with lesser Zn, Bi, Cu and F (Fig. 6C). Many of these skarns are best described as polymetallic, with locally important Au and As.

Some skarns are not associated with subduction-related magmatism. These skarns may be associated with S-type magmatism, following a major period of subduction, or they may be associated with rifting of previously stable crust. Plutons are granitic in composition, and commonly contain primary muscovite and biotite, dark gray quartz megacrysts, miarolitic cavities, greisen-type alteration, and anomalous radioactivity. Associated skarns are rich in tin or fluorine, although a host of other elements is usually present and may be of economic importance (Fig. 6D). This evolved suite includes W, Be, B, Li, Bi, Zn, Pb, U, F and REE.

MODELS AND CONCLUSIONS

Whether one thinks of skarn as a rock type or as an alteration of previously existing rocks, skarns are mappable in the field, and the basic map unit is defined by skarn mineralogy. A detailed map showing the distribution of skarn mineral phases will yield important information about the overall size, characteristics and genesis of a skarn system. Of course, the skarn mineralogy needs to be interpreted in terms of lithology, structure and timing. A given mineral may develop under different PT-XCO2 conditions in limestone relative to shale, or where fluid flow is enhanced by faulting or precipitation. Comparison of the field characteristics of a given occurrence with the general skarn features outlined in this paper provides a predictive basis for evaluating economic potential and overall genesis. Models of skarn zonation are particularly useful in evaluating incompletely exposed or explored skarn systems. Figure 7 presents general models for copper, zinc and gold skarns which combine skarn and ore mineralogy, metal ratios, and geochemical data. For particularly complex systems, such as tin skarns, a time-evolution model is useful for concurrent alteration in igneous and sedimentary rocks (e.g., Dobson, 1982, fig. 8).

Skarns are one of the more variable classes of ore deposits, and the references cited in this paper and the more detailed review by Einaudi et al. (1981) will lead the reader to many variations upon the general theme. The purpose of the present paper has been to develop the general theme that skarn deposits are understandable, that they are amenable to mapping and simple field observations, and that modern geochemical techniques yield a fairly clear picture of their evolution. Skarns are distinct from many other types of ore deposits. Almost all large skarn deposits are directly related to igneous rocks. One of the fundamental controls of skarn mineralogy and metal content is the genesis and crystallization history of the associated pluton. The late-stage hydrothermal evolution of the pluton is mirrored by alteration and mineralization in the surrounding rocks. The reactivity of sedimentary rocks, particularly carbonate rocks, accounts for the abundance of skarns in most localities where magma is emplaced in the upper crust.

All skarn deposits form over a wide temperature range, but it is the high-temperature part of that range (≤350°C) that distinguishes skarns from other ore types, such as Mississippi Valley-type Pb-Zn deposits, which may contain similar metals and form in similar rocks. The high temperatures and concentrated metasomatic fluids stabilize a variety of skarn minerals, such as garnet and pyroxene, which are the defining characteristic of skarns. The waning stages of hydrothermal activity invariably are cooler, and result in retrograde alteration of the early skarn minerals. This pattern of early metamorphism, followed by prograde and retrograde metasomatism, is common to most skarns. Variations on this general pattern are many, and include depth of formation, oxidation state, petrochemistry and wall rock composition.

In the world of economic geology, where fluctuating commodity prices and world demand can change an obscure skarn occurrence into a producing mine (and vice versa) in a short period of time, skarn deposits remain interesting economic and academic challenges. It is likely that skarn deposits will remain an important source of many metals in the next century. The challenge will be to predict which ones will be mined, and for what commodities.

ACKNOWLEDGEMENTS

This review summarizes data on many skarns written by geologists around the world. I wish to thank all these scientists for their contributions to our collective understanding. In particular, I would like to thank Marco Einaudi and Rainer Newbery, who introduced me to thermodynamics and who continue to tug the leash when I run astray. Students at Washington State University,
past and present, are the sounding board for many of the ideas presented here. Dennis Beaver, Gai Bloomer, Jeff Brooks, Art Ettinger, Mark Hawthorn, Bob Hickey, Greg Myers, Bill Neal, Dean Peterson, John Read and Kurt Wilkie deserve special mention. Finally, I would like to thank Pat Sheahan for her continuing encouragement.

REFERENCES

Lindgren, W., 1902, The character and genesis of certain contact deposits: American Institute of Mining Engineers, Transactions, v. 31, p. 226-244.

Accepted, as revised, 8 July 1992.