The Abloviak shear zone and the NW Torngat Orogen, eastern Ungava Bay, Québec Normand Goulet Département des Sciences de la Terre Université du Québec à Montréal C.P. 8888 Montréal, Québec H3C 3P8 André Ciesielski Continental Geoscience Division Geological Survey of Canada-588 Booth Street Ottawa, Ontario K1A 0E4 ### Summary The NW-trending Torngat Orogen in eastern Ungava Bay, which contains Early Proterozoic sedimentary rocks and Archean orthogneiss, is subdivided into the Burwell terrane, Tasiuyak gneiss, Lake Harbour Group and the George River segment. The Burwell terrane, a granulite-facies migmatitic complex, grades to the southwest into the Tasiuyak gneiss composed of plagioclasegarnet-quartz-sillimanite and graphite. Further to the southwest, the Tasiuvak gneiss passes gradationally into amphibolite-facies pelitic gneiss, quartzite and marble of the Lake Harbour Group, which is associated with granodioritic Archean orthogneiss of the George River segment. The 15 km wide Abloviak shear zone, a high strain zone within the eastern Torngat Orogen, overprints and subvertically transposes the Tasiuyak gneiss, part of the Lake Harbour Group and its Archean basement. D₁ deformation is interpreted to have resulted in development of early foliation, and west- to southwestverging thrusts that interleaved Lake Harbour Group rocks and George River segment gneiss. D2 was a transpressional deformation event responsible for refolding in the Lake Harbour Group and development of mylonitic fabrics in the Abloviak shear zone. The latter comprises medium- to highly strained rocks (mylonites) formed in a major transcurrent sinistral shear environment. The Lake Harbour Group is deformed into kmscale NNW-trending dome-and-basin structures, involving Archean basement, that were vertically transposed in a northwestward direction toward the Abloviak shear zone. #### Résumé L'orogène Torngat est orientée NO à l'est de la baie d'Ungava et contient des roches sédimentaires protérozoïques et des orthogneiss archéens. Le complexe de Burwell, un terrane migmatitique au facies granulite passe graduellement vers le SO dans les gneiss de Tasluyak composés de plagioclase-grenat-quartz-sillimanite et graphite. Au SO, les gneiss de Tasiuyak sont intercalés avec des métasédiments du groupe de Lake Harbour. Plus à l'ouest, le groupe de Lake Harbour formé de quartzite, de marbre et de paragnelss au facies amphibolite supérieur est associé à des gneiss granodioritiques archéens du Segment de Kuujjuaq. On infère qu'une phase D₁ est la cause d'une foliation primaire et de chevauchements à vergence SO intercalant les roches du groupe de Lake Harbour et des gneiss du segment de Rivière George, D₂ est une phase en transpression reprenant les plis dans le groupe de Lake Harbour et développant des mylonites sur 15 km dans le cisaillement d'Abloviak. Il s'agit de gneiss transposés et de mylonites définissant un cisaillement majeur, décrochant et senestre. Le Groupe de Lake Harbour est formé de structures en dômes et bassins d'échelle kilométrique à l'interface socle/ couverture: elles sont orientées NNO et sont transposées verticalement en s'approchant du cisaillement d'Abloviak. # Introduction The Torngat Orogen (TO) is a NNW-trending Early Proterozoic high strain belt that extends from the Burwell Peninsula, Québec, in the north to central Labrador in the south (Figure 1). The Orogen separates the Archean Nain Province from a western tectonometamorphic terrane composed of amphibolite- and granulite-facies Archean basement and Early Proterozoic supracrustal rocks that extends west in an unevenly distributed fashion to the Labrador Trough (Taylor 1979; Hoffman 1988) (Figure 1). It is subdivided into the Kuujjuaq segment to the west and George River segment to the east (together equivalent to the Rae Province of Hoffman, 1988), representing an Archean basement infolded with the Early Proterozoic platformal sequence of the Lake Harbour Group. Regional studies in the south by Wardle (1983, 1984), Ryan et al. (1984, 1988) and Ermanovics et al. (1989) show that the TO affects the Nain Province and the unconformably overlying lower Proterozoic Ramah Group and extends to the west to include highly strained amphibolite- to granulite-facies meta-igneous and metasedimentary rocks. The Abloviak shear zone (ASZ) is a major high strain zone affecting rocks along the eastern part of the TO; it affects the Tasiuyak gneiss (Korstgård et al., 1987), but also overprints the western Nain Province (Mengel, 1984; Ermanovics et al., 1989). In the northern part of the TO, the Early Proterozolc metasedimentary rocks of the Lake Harbour Group and the western Burwell terrane are bounded to the west by the George River segment, and to the east by inferred granitic Archean basement (Korstgård et al., 1987). In order to improve our understanding of the Archean/Proterozoic relations and the ASZ within the northern TO, a study of a cross-section of eastern Ungava Bay, from the George River to the Burwell terrane (Figure 2a), was carried out in the summers of 1988–1990. ## Geological setting From SW to NE, the section of northern TO shows: (1) Archean meta-igneous basement of the George River segment, (2) the Early Proterozoic metasedimentary rocks of the Lake Harbour Group, (3) the Tasluyak gneiss, and (4) metasediments and diatexites of the Burwell terrane (Figure 2). Archeen besement. The rocks of both the Kuujjuaq and the George River segments (Figure 1) comprise medium-grained migmatitic granodiorite to granite gneiss with minor inclusions of amphibolitic, ultramafic and metasedimentary rocks. West of George River in the Kuujjuaq segment (Figure 1), U/Pb dating of a migmatitic granitic gneiss yielded discordia ages between 2779 Ma and 2688 Ma and concordia ages of 2922 Ma on zircon and 1808 Ma on monazite (Machado et al., 1989). Lake Harbour Group (LHG). The LHG is dominantly a metasedimentary assemblage defined by Davison (1959) on southern Baffin Island and introduced as a group and extended to northeast Québec by Jackson and Taylor (1972). It consists of marble, quartzite, rusty pyritic and graphitic gneiss. hornblende-pyroxene-biotite gneiss, biotitegarnet-cordierite-sillimanite gneiss and minor amounts of conglomerate and amphibofite. A formal stratigraphy of the LHG cannot be established due to the intensity of metamorphism and deformation, and the lack of detailed mapping. Marbles are the lowest in the apparent stratigraphy and the first lithology found in tectonic contact with the basement gneiss in the western part of the LHG. Tasluyak gnelss. The Tasiuyak gneiss, defined by Wardle (1983), consists of an homogeneous leucocratic garnetiferous quartz-plagioclase gneiss with minor sillimanite, graphite and rutile (±pyrite). It forms an elongate NNW-trending belt (15 km wide in the study area) located in the eastern TO and extends 500 km from central Labrador to Ungava Bay (Taylor, 1979; Ermanovics et al., 1989). **Burwell terrane.** The Burwell terrane occupies the entire Burwell Peninsula east of Ungava Bay. It is bounded to the south and southwest by the ASZ and the Tasiuyak gneiss and to the east by the Komaktorvik shear zone (KSZ), a mylonitic zone consisting of reworked Archean gneiss and highly strained anorthosite (Korstgård et al., 1987). The eastern part of the Burwell terrane is inferred to be a granitic Archean basement. The western part comprises biotite-garnet and biotite-orthopyroxene-bearing paragneiss showing metatexitic textures and containing garnet-hornblende-clinopyroxene amphibolite and ultramafite. Orthopyroxene-bearing diatexite is found to the northeast of this rock package, together with minor intercalations of Tasiuyak gneiss and LHG-type metasedimentary rocks (Taylor, 1979). ## Stratigraphic relations The western part of the LHG metasedimentary assemblage containing marble and quartzite is believed to represent a thin platformal sequence overlying an Archean basement. Toward the NE, the LHG apparently thickens and is represented by predominantly pelitic gneiss that passes gradationally into a finer grained granulite-facies equivalent. This passes further northeast into a homogeneous, fine-grained orthopyroxene-bearing metasedimentary rock containing thin layers of garnetiferous Tasiuyak gneiss. The garnetiferous interlayers thicken to the NE and pass gradationally into the Tasiuyak gneiss sensu stricto. The NE contact of the Tasiuyak gneiss with the Burwell metasedimentary and migmatitic rock package is gradational and is marked by thick layers of garnet-poor Tasiuyak gneiss intercalated with biotite-orthopyroxene-bearing metasedimentary rocks. The western part of the Burwell terrane is dominated by metasedimentary rocks and related migmatite. Intercalations of Tasiuyak gneiss, minor amphibolite, possibly of volcanic origin, and ultramafic rocks have been identified near the NE limit of the migmatitic and diatexitic part of the Burwell terrane. #### Structure and metamorphism The Archean component of the George River segment is dominated by granitic orthogneiss showing NW-trending steeply dipping foliation and minor subhorizontal foliation. The rocks display a pervasive southeast-plunging lineation (L2, Figure 2a) and are characterized by internal folding and brecciation related to a well-developed migmatization. Most of the Archean structures were transposed and refolded during two coaxial Early Proterozoic deformations (D₁ and D₂). Rocks show upper-amphiboliteto granulite-facies metamorphism with clinopyroxene-hornblende, hornblende-biotite and orthopyroxene-hornblende-biotite ± magnetite assemblages. The Lake Harbour Group forms domeand-basin structures that become subver- tically transposed to the northwest toward the ASZ. The open structures are characterized by an S₁ schistosity, subsequently affected by large folds showing a well-developed, NW-trending S2 schistosity, which is locally axial planar; Archean basement windows are exposed in the cores of the domal structures (Figure 2a). Stretching L₂ lineations are well developed, and plunge moderately to the SE and to the NW (Figure 2a). The dome-and-basin structures are progressively replaced toward the NE by transposed, large-scale, NW-trending intercalations of basement and Proterozoic metasedimentary gneiss packages. Stretched, large scale F2 fold hinges within the metasedimentary rocks are preserved in the transposition zone. Metamorphic mineral assemblages in the LHG pelitic gneiss, amphibolite and marble consist of blotite-garnet symplectites, biotite-garnet-cordierite sillimanite-magnetite, calcite-olivine-spinel-diopside, scapolite-diopside-plagio-clase-quartz, hornblende-clinopyroxene and orthopyroxene-hornblende-magnetite-biotite. Cordierite, biotite and garnet are syn-S1; fibrolitic sillimanite and biotite occur locally in garnet cores, but are mainly found in S2 foliation planes. The transposition zone passes gradually into the *Abloviak shear zone* and the proportion of mylonites increases significantly. From SW to NE, the ASZ comprises: Figure 1 Major tectonic elements of the eastern Churchill Province. (1) interlayered LHG and basement gneiss, (2) LHG metasedimentary gneiss, minor pegmatites and a local basement gneisspegmatite-anorthosite association, and (3) the southwest portion of the Tasiuvak aneiss (Figure 2a). Interleaving of basement gneiss and LHG rocks is interpreted as a syn- or late D. thrust phase. The following D₂ deformation involved the main NW-trending phase of transcurrent subvertical shearing, the development of subhorizontal mineral lineation, and F2 folding (Figure 2a). D2 shearing is unevenly distributed and mylonites laterally co-exist with zones of less strained transposed gneiss. Kinematic indicators show a general sinistral sense of shear. Pegmatites are variously affected by shearing and in mylonite zones show local sheath folding. Metamorphic assemblages in the ASZ metasedimentary rocks and amphibolites comprise biotite-garnet, biotite-garnet-sillimanite, biotite-sillimanite, clinopyroxene-hornblende and orthopyroxene-hornblende-biotite. Garnet preserves remnants of S. foliation and sillimanite prisms and fibrolite grew syn- to late-S2. Figure 2 (a) (right, with legend below) Schematic geological map of eastern Ungava Bay with stereographic projection of the main linear and planar structural features. (b) (bottom of page) Schematic cross-section A–B of the northern Tornget Orogen. ## **PROTEROZOIC** LAKE HARBOUR GROUP Metasediments Marble, pyrite paragneiss, garnet-sillimanite gneiss, quartzite TASIUYAK GNEISS Garnet-quartz-plagioclase gneiss ARCHEAN and/or PROTEROZOIC ARCHEAN BIOTOT PHOTEHOZOIC BURWELL TERRANE Orthopyroxene diatexite, granulitic gneiss **AMPHIBOLITE** **ARCHEAN** BASEMENT Quartzo-feldspathic gneiss A brittle deformation, D_3 , has affected the ASZ to produce late NW-trending faults associated with thick (2m+) pseudotachylyte veins. Slickensides developed on pseudotachylytes are the result of late normal and reverse faulting. The trend of brittle deformation features is slightly oblique to the NW-trending D_2 transposition fabric that affects the LHG and the Tasiuyak gneiss. The D₂ transposition fabric dies out northeast of the ASZ and the Tasiuyak gneiss assumes an overall NE dip. In Abloviak Flord (Figure 2a), a pre-D₂ subhorizontal compositional layering showing a parallel mylonitic fabric is believed to represent the hinges of km-scale, shallow-plunging F₂ folds. The subhorizontal fabric is overprinted by a NW-trending, vertical, S₂ foliation containing a subhorizontal L₂ stretching lineation defined by quartz. Toward the Burwell terrane boundary, the NE dip remains constant and the Tasiuyak gneiss contains strongly recrystalized ribbon quartz, S₁ garnet, syn- to late-S₂ prismatic sillimanite and fine-grained biotite. The Burwell terrane is characterized by small-scale F₂ dome- and-basin style folding (Taylor, 1979); NW-trending foliations dip to the NE and folds are overturned to the SW. The rocks show a low strain state and orthopyroxene-biotite-garnet-magnetite is the main metamorphic assemblage. ## Discussion and summary The Abloviak shear zone is a NW-trending high strain zone that affects the central part of the NW Torngat Orogen. From SW to NE, it comprises: (1) LHG metamorphic rocks that originated from a carbonate-quartzite platformal sequence, likely to have been deposited unconformably upon Archean basement gneiss, (2) deeper water sediments (LHG and Tasiuyak gneiss), and (3) distal greywackes and minor volcanic and ultramafic rocks of the Burwell terrane now represented by biotite paragneiss, amphibolite and ultrabasite (Taylor, 1979). It has been established that these various metasedimentary packages are apparently gradational into one another across the NW Torngat Orogen and it is suggested that this corresponds to continuous sedimentation in a craton-margin environment. The Lake Harbour Group sedimentary sequence may be correlative with similar rocks (including marbles) of the Laporte Group on the eastern margin of the Labrador Trough. It is hypothesized that these Early Proterozoic sediments formed symmetrically in a central shallow water basin deepening to the east and west between the Labrador Trough and the basement of the eastern Burwell terrane. The possibility exists that the Kuujjuaq and George River segments and the eastern Burwell terrane are part of the same Archean basement, (which may be an eastern extension of the Superior craton), suggesting that the deposition of the Torngat Orogen metasedimentary protolith took place upon a basement of rifted Archean continental crust. D₁ was a compressional phase evident across the whole of the NW Torngat Orogen. In the SW, it resulted in development of S₁ foliation, F1 folds and the west- to southwestverging thrusts responsible for interleaving of Lake Harbour Group rocks and Archean basement. In the NE, it produced the NEdipping foliation and SW-vergent folds of the Tasiuyak gneiss and Burwell terrane. Do was a large-scale sinistral transpressional phase responsible for the superposition of S2 foliation, the development of NW-trending domeand-basin structures in the Lake Harbour Group, and the subsequent subvertical my-Ionitic fabric and subhorizontal lineation of the Abloviak shear zone. ## **Acknowledgements** Improvements of the original manuscript are due to R.J. Wardle, B. Ryan and an anonymous reviewer. #### References - Davison, W.L., 1959, Lake Harbour, Baffin Island, District of Franklin (map with marginal notes): Geological Survey of Canada, Map 29-1958. - Ermanovics, I.F., Van Kranendonk, M., Corriveau, L., Mengel, F., Bridgwater, F.D. and Sherlock, R., 1989, The Boundary Zone of the Nain-Churchill provinces in the North River–Nutak map areas, Labrador: Geological Survey of Canada, Paper 89-1C, p. 385-394. - Hoffman, P.F., 1988, United plates of North America, the birth of a craton: Early Proterozolc assembly and growth of Laurentia: Annual Reviews of Earth and Planetary Sciences, v. 16, p. 543-603. - Jackson, G.D. and Taylor, F.C., 1972, Correlation of Major Aphebian Rock Units in the Northeastern Canadian Shield: Canadian Journal of Earth Sciences, v. 9, p. 1650-169. - Korstgård, J., Ryan, B. and Wardle, R., 1987, The boundary between Proterozoic and Archean crustal blocks in central West Greenland and northern Labrador, in Park, R.G. and Tarney, J., eds., Evolution of the Lewisian and Comparable Precambrian High Grade Terrains: Geological Society of London, Special Publication No. 27, p. 247-259. - Machado, N., Goulet, N. and Gariepy, C., 1989, U-Pb geochronology of reactivated Archean basement and of Hudsonian metamorphism in the northern Labrador Trough: Canadian Journal of Earth Sciences, v. 26, p. 1-15. - Mengel, F., 1984, Preliminary results of mapping in the Ramah Group and adjacent gneisses south of Saglek Fiord, northern Labrador, in Current Research: Newfoundland Department of Mines and Energy, Mineral Development Division, Report 84-1, p. 21-29. - Ryan, B., Martineau, Y., Korstgård, J. and Lee, D., 1984, The Archean-Proterozoic boundary in northern Labrador: Report 2: Geological Survey of Canada, Paper 84-1A, p. 545-551. - Ryan, B., Lee, D. and Dunphy, D., 1988, The discovery of probable Archean rocks within the Labrador Arm of the Trans-Hudson Orogen near the Labrador-Québec border (NTS 14D/3,4,5 and 24A/1,8), in Current Research: Newfoundland Department of Mines, Mineral Development Division, Report 88-1, p. 1-14. - Taylor, F.C., 1979, Reconnaissance geology of a part of the Precambrian Shield, northeastern Québec, northern Labrador and Northwest Territories: Geological Survey of Canada, Memoir 393, 99 p. - Wardle, R.J., 1983, Nain-Churchill Province crosssection, Nachvak Fiord, northern Labrador, in Current Research: Newfoundland Department of Mines and Energy, Mineral Development Division, Report 83-1, 68-90. - Wardle, R.J., 1984, Nain-Churchill Province crosssection, Rivière Baudancourt – Nachvak Lake, in Current Research: Newfoundland Department of Mines and Energy, Mineral Development Division, Report 84-1, p. 1-11.