The eastern Churchill Province, Torngat and New Québec orogens: An overview

Richard J. Wardle and Bruce Ryan
Geological Survey Branch
Newfoundland Department of Mines and Energy
P.O. Box 8700
St. John's, Newfoundland A1B 4J6

Ingo Ermanovics
Continental Geoscience Division
Geological Survey of Canada
568 Booth Street
Ottawa, Ontario K1A 0E4

Summary
The eastern Churchill Province, which separates the Archean cratons of the Superior and Nain provinces in the eastern Canadian Shield, is a rare example of a two-sided Early Proterozoic orogenic belt. The interior of the eastern Churchill Province is composed largely of reworked Archean rocks, which appear to form an extension of the Rae Province, sutured against the adjoining Superior and Nain provinces by the New Québec and Torngat orogens. Both orogens contain continental margin sequences that record the transition from initial rift to foredeep environments. Deformation was predominantly of transpressional character and was controlled by oblique convergence of the Superior and Nain cratons on the Rae Province. The New Québec and Torngat orogens have a mirror-image symmetry defined by outward-verging fold and thrust belts associated with dextral (west) and sinistral (east) transcurrent shear on their interior margins. The dominant feature of the New Québec Orogen is its broad fold and thrust belt which is developed in low- to medium-grade rocks and is analogous to the foreland zones of Phanerozoic orogens. The Torngat Orogen, however, is dominated by an extensive sinistral shear system, developed in granulite-facies crust, that provides an excellent lower crustal analogue for modern crustal-scale transcurrent fault systems.

Introduction
The papers presented in this issue result from a two-day conference entitled "Recent Advances in the Geology of the Eastern Churchill Province (New Québec and Torngat Orogens)" which was held in Wakefield, Québec, in March 1990, and was attended by 25 active researchers.

The 2.4–1.8 Ga Churchill Province (Figure 1) has been referred to as "the glue that binds the Canadian Shield", a statement that underlines its monumental importance in the assembly of the North American Shield as a whole. Despite such fundamental significance, it is only comparatively recently that we have begun to understand this enormous and complex orogenic system. Our understanding to date is built principally on detailed work in the western parts of the Province and in the Cape Smith Belt, which has led to a series of regional syntheses, summarized in the Trans-Hudson Orogen Symposium volume (Lewry and Stauffer, 1990), and the landmark compilations of Hoffman (1988, 1990). Although models for the western part of the Churchill Province and Cape Smith Belt are now relatively well constrained, our knowledge of the rest of the remote northern and eastern regions of the Province remains woefully inadequate.

The first regional syntheses of what is referred to here as the eastern Churchill Province were presented at the Geological Association of Canada — Mineralogical Association of Canada — Saskatchewan ‘87 Annual Meeting Trans-Hudson Symposium (van der Leeden et al., 1990; Wardle et al., 1990; Hoffman, 1990). Much work has been done since that time, and plans are under way for an enhanced research program in the area. These plans have been given added impetus by the recent approval of the Phase III LITHOPROBE ECSOOTT (Eastern Canadian Shield Onshore – Offshore Transect) project which plans to conduct reflection seismic and allied onshore geoscience studies along the Labrador coast and across the strike of the Churchill Province in Ungava Bay (LITHOPROBE, 1990). Planning for this transect formed a major component of the Wakefield meeting.

It has been recognized for some time that the eastern Churchill Province has a fundamental tripartite division, consisting of a western low-grade volcano-sedimentary package (Labrador Trough), a central region of reworked Archean gneisses and Proterozoic cover (Rae Province; Hoffman, 1988) and an eastern region comprising reworked Archean rocks of the Nain Province. Hoffman (1990) has integrated this scheme into his overall synthesis of the Churchill Province and proposed the existence of two orogenic sutures: in the east the Torngat Orogen, which forms the Nain/Rae province boundary, and in the west the New Québec Orogen, which similarly links the Rae and Superior provinces (Figure 2, inset A: Hoffman). This terminology has been adopted by the majority of conference participants, though the full extent of the two orogens has yet to be firmly defined. We retain the term eastern Churchill Province for the area affected by lower Proterozoic (Hudsonian) orogenesis as a whole.

The following is a review of the principal aspects of the eastern Churchill Province with emphasis on the contributions of the Wakefield papers. This review also draws extensively on previous work, in particular the results of regional mapping programs by the provincial geological surveys of Québec and Newfoundland (see references in Dimroth [1972], van der Leeden et al. [1990], and Wardle et al. [1990]). Much of the northern part of the eastern Churchill Province is, however, known only from the reconnaissance work of Taylor (1979). References to articles appearing in this issue are shown in bold and are keyed alphabetically to Figure 2.

Nain and Superior Provinces
The recognition of the predominantly Archean character of the Rae Province has stressed the need for comparisons with the
Figure 1 Major subdivisions of the Churchill Province showing location of eastern Churchill Province. Boxed area refers to Figure 2. NQO, New Québec Orogen; TO, Torngat Orogen; CSB, Cape Smith Belt; NMB, Nagssugtoqidian Mobile Belt; HP, Nain Province; KMB, Kettleidian Mobile Belt; LO, Labrador Orogen.

Figure 2 (opposite page) The eastern Churchill Province of Labrador and northeastern Québec showing tectonic subdivisions. The Torngat Orogen, New Québec Orogen and Rae Province are shown in the inset. Shear zones indicated as follows: KSZ, Komatorkiv; ASZ, Ablovik; FSZ, Falcoz; MBSZ, Moonbase; MRZ, Mistassin River; RGSZ, Rivière George; LTSZ, Lac Tudor. Outlined areas refer to papers presented in this issue and are keyed alphabetically to the bold references in the text.

(A) Hoffman: Dynamics of the tectonic assembly of northeast Laurentia in geon 18 (19–16 Ga)
(B) Schiøtte et al.: U-Pb mineral ages from northern Labrador: Possible evidence for interlayering of Early and Middle Archean tectonic slices
(C) Van Kranendonk and Helmstaedt: Late Archean geologic history of the Nain Province, North River–Nukat map area, Labrador, and its tectonic significance
(D) Wares and Goulte: Deformational style in the foreland of the northern New Québec Orogen
(E) Perrault and Hynes: Tectonic evolution of the Kuujjuaq terrane, New Québec Orogen
(F) Moorhead and Hynes: Nappes in the internal zone of the northern Labrador Trough: Evidence for major early NW-vergent basement transport
(G) Mareschal et al.: Gravity profile and crustal structure across the northern New Québec Orogen
(H) Ryan: Does the Labrador–Québec border area of the Rae (Churchill) Province preserve vestiges of an Archean history?
(I) Nunn et al.: U-Pb geochronological evidence for Archean crust in the continuation of the Rae Province (eastern Churchill Province), Grenville Front Tectonic Zone, Labrador
(J) Girard: Evidence d’un magmatisme d’Arc protérozoïque Inférieur (2.3 Ga) sur le plateau de la rivière George
(K) Goulet and Cieslewski: The Ablovik shear zone and the NW Torngat Orogen, eastern Ungava Bay, Québec
(L) Seguin and Goulet: Gravitmetric transect of eastern Ungava Bay, northern Torngat Orogen
(M) Ryan: Basement-cover relationships and metamorphic patterns in the foreland of the Torngat Orogen in the Saglek–Hebron area, Labrador
(N) Ermanovits and Van Kranendonk: The Torngat Orogen in the North River–Nukat transect area of Nain and Churchill provinces
(O) Van Kranendonk and Ermanovits: Structural evolution of the Hudsonian Torngat Orogen in the North River map area, Labrador: Evidence for east-west transpressive collision of Nain and Rae continental blocks
(P) Mengel and Rivers: The symmetamorphic P-T path of granite-facies gneisses from the Torngat Orogen, and its bearing on their tectonic history
(Q) Ermanovits and Rivers: Early Proterozoic orogenic activity adjacent to the Hopedale block of southern Nain Province
(R) Bertrand et al.: Structural and metamorphic geochronology of the Torngat Orogen in the North River–Nukat transect area, Labrador: Preliminary results of U-Pb dating
(S) Girard: Les cisaillements latéraux dans l’arrière-pays des orogènes du Nouveau-Québec et de Torngat: une revue
(Not shown) Bridgwater et al.: The Proterozoic Nagssugtoqidian mobile belt of southeast Greenland: a link between the eastern Canadian and Baltic Shields
stable cratons of the Nain and Superior provinces. Relatively little is known about the Superior Province adjacent to the New Québec Orogen, but dating by Mortensen and Percival (1987) and Machado et al. (1989) indicates a comparatively short crustal history between 2.8 and 2.6 Ga. Schéttet al. (Figure 2, inset B) review the chronology of the better known Nain Province and describe a fundamental difference between the Sagéki (northern Nain) block, which is characterized by 3.86–3.7 Ga crust, and the Hopedale (southern Nain) block, which is dominated by 3.2–3.1 Ga crust. Both share a common Late Archean (post-2.7 Ga) history. Schéttet al. (B) suggest that the interleaving of Early and Middle Archean crust in southern Sagéki block is the result of Middle to Late Archean terrane amalgamation. Van Kranendonk and Helmstaedt (C) describe tectonic relationships between Archean supracrustal sequences and older ca. 3.7 Ga orthogneiss crust in the Sagéki block and conclude that these are fundamentally different from those seen in higher level granite-greenstone belts.

New Québec Orogen

This Orogen consists predominantly of the low-grade sedimentary and mafic volcanic rocks of the Labrador Trough (Figure 2) disposed in a west-verging fold and thrust belt. The western part of the belt (Chiaouk–Schefferville zones) comprises sedimentary rocks inferred to have formed in a setting that evolved from an initial rifted margin to a subsequent foredeep, the latter in response to encroachment of thrust sheets from the east. The Baby and Howse zones and Doublet terrane consist primarily of turbidites, basalt flows and voluminous gabbro sills (including ultramafic sills in the Doublet terrane) interpreted by most workers (e.g., Wares and Goulier, D) to have formed during rifting of the Superior continent and the formation of oceanic crust. Initial rifting of the Superior margin appears to have commenced ca. 2.1 Ga; paradoxically, the few available U–Pb dates indicate that gabbro sill intrusion culminated at 1.87 Ga, the approximate time of foredeep formation according to Hoffman (1987). A potential resolution of this dilemma is offered by Hoffman's (A) model for ocean opening in a dextral pull-apart basin which formed along the eastern edge of the Superior craton during its northward indentation into the Churchill hinterland.

The hinterland of the New Québec Orogen is represented by: (i) the Rachel zone–Laporte terrane, a tract of metasedimentary schist correlatives, in part at least, with rocks of the western zones, and (ii) the Kuujjuak terrane, a metasedimentary sequence underlain by Archean basement and intruded by the 1.84–1.83 Ga Kuujjuak batholith (Perreault and Hynes, E). The calc-alkaline nature of the batholith suggests an origin as a magmatic arc, but it is uncertain whether this was developed on the Superior margin, or accreted against it.

Wares and Goulier (D) analyze the deformational history of the northern New Québec Orogen in the Baby and Chioak zones and distinguish an early episode of low-angle, in-sequence thrusting from a latter period of major high-angle, out-of-sequence thrusting. Out-of-sequence thrusting is thought to be responsible for the bulk of crustal thickening in this part of the New Québec Orogen and may have developed in response to syntectonic erosion of the orogenic wedge and attempts by the wedge to maintain critical taper. Moorhead and Hynes (F) review the structural development of the Rachel zone and describe large, west-verging, basement-cored nappes that developed through early décollement at the basement-cover interface and were re-folded during later northwest- and southwest-directed thrust-fold phases. Gravity modelling by Marschal et al. (G) confirms that significant crustal thickening has occurred under the Chioak and Baby zones, presumably in response to southwest-directed overthrusting. An eastward rise in the gravity gradient from the Rachel zone into the Rae Province is proposed to result from crustal thickening and uplift of dense lower crustal material in response to collision and overthrusting of the Rae Province on the Superior margin.

Initial thrusting and collision in the New Québec Orogen is proposed by Hoffman (A), on the basis of comparisons with the Cape Smith Belt, to have commenced no later than 1.88 Ga. An initial metamorphic peak in the hinterland ca. 1.84 Ga is separated from a second peak ca. 1.83 Ga (Machado, 1990; Perreault and Hynes, E) by intrusion of the Kuujjuak batholith. Penetrative deformation in the foreland (Chioak and Baby zones) appears to have ceased by 1.63 Ga; however, pegmatite intrusion and migmatite-grade metamorphism persisted until 1.77 Ga (Machado, 1990; Perreault and Hynes, E).

Rae Province

The location of the suture(s) that separates the New Québec Orogen and its Superior Province basement from the Rae Province is still uncertain, but must lie somewhere between the Rachel zone–Laporte terrane and De Pas domain. The Lac Tudor shear zone is a possible candidate, but so are the shear zones that bound the eastern margin of the Rachel zone–Laporte terrane. The Rae Province has long been suspected to consist predominantly of reworked Archean crust, a suspicion that is now being confirmed in several areas. Machado et al. (1989) have reported ages of ca. 2.9–2.8 Ga from the central Rae Province near Ungava Bay. Ryan (H) describes a large area of Archean granitized gneiss and anorthosite cut by early Proterozoic (?) dykes that bear a remarkable resemblance to rocks of the Nain Province; rocks from the same general area have also yielded preliminary Archean zircon ages. Finally, Nunn et al. (I) report the discovery of a well-preserved Archean (2.7–2.6 Ga) tonalite-mafic volcanic assemblage in the Orma domain of the southern Rae Province.

An intriguing ca. 2.3 Ga magmatic event is described by Girard (J) from the Rivière George domain. This event, which may be arc-related, probably predates deposition of other Early Proterozoic platformal sequences such as the Lake Harbour Group in the interior Rae Province, and also appears to predate rifting of the Superior Province ca. 2.1 Ga (Wardle et al., 1990); its regional significance, however, remains uncertain. A later stage of crustal development in the Rae Province is marked by the ca. 1.84–1.81 Ga De Pas batholith, which has been variably interpreted as an Andean-type magmatic arc by van der Leeden et al. (1990) and Girard (J), and as a syn- to post-collisional batholith by Wardle et al. (1990). As the result of Early Proterozoic deformation, the Rae Province was subjected to dextral shearing along the Lac Tudor and Rivière George shear zones and sinistral shearing along the Missatin, Moonbase and Falcoz shears. The relative timing of these opposed shear events has not been established, but is clearly important. Penetrative deformation apparently ceased by 1.8 Ga, the age of the youngest De Pas plutonism.

The Torngat Orogen

The axis of the Torngat Orogen is the Tesuyak domain, which together with the Abikviam shear zone forms the postulated suture zone between the Nain and Rae provinces. The effects of the Torngat deformation on the Nain Province were eastward through the Komarkovik zone, where they are intense, to the Foredland zone where they die out. In northernmost Labrador, the Tesuyak domain and Abikviam shear zone diverge from the Nain Province to enclose the transcurrent Burwell terrane, the age and origin of which are so far unknown. Hoffman (A) suggests that the Burwell terrane may represent an independent province that has been sutured along the Abikviam and Komarkovik shear zones. Goulet and Ciesieliski (K), however, propose a correlation between metasedimentary gneisses of the eastern Burwell terrane with the Tesuyak domain and Lake Harbour Group, implying pre-tectonic continuity across the Burwell terrane–Rae Province boundary and a possible link with the Superior Province. A gravity transect across this boundary (Seguin and Goulet, L) indicates a pronounced high over the western Burwell terrane which is attributed to its higher density.

The fundamental components of the Nain–Rae Province boundary south of the Burwell terrane are the Tesuyak domain, the Lac Lorier complex (part of the North River domain) and reworked Archean rocks of the Nain craton, which are reviewed by Ryan (M).
Ermanovics and Van Kranendonk (N), and Van Kranendonk and Ermanovics (O). The Tasiuyuk domain is composed predominantly of the distinctive garnetiferous Tasiuyuk paragneiss, derived by granulite-facies metamorphism of a pelitic-psammitic protolith, and elongate bodies of linedated charnockite. A gravity profile across the Tasiuyuk gneiss by T. Feininger (summarized in Ermanovics and Van Kranendonk, N) indicates an eastward thickening prism which reaches a maximum thickness of 13 km adjacent to the Nain Province. The Lac Lomier complex (Ermanovics and Van Kranendonk, N) consists of Archean orthogneiss intermixed with lower Proterozoic (?) mafesedimentary gneiss and charnockite plutons. The latter form a magmatic belt that may represent the roots of a magmatic arc (Van Kranendonk and Ermanovics, O) along the western side of the Tasiuyuk domain. All authors are agreed that the Torngat Orogen developed principally through transpressional deformation and sinistral transcurrent shear. Van Kranendonk and Ermanovics (N) propose that early transpression was dominated by thrusting, crustal thickening and attainment of peak (granulite-facies) metamorphic conditions, possibly in relation to the attempted subduction of Nain crust under the Rae Province. Subsequent deformation in the interior of the Torngat Orogen was dominated by sinistral shear, possibly coeval with continued thrusting on the margins of the Orogen, which was localized in the Ablovik shear zone. Sinistral shear propagated into the interior of the Rae Province along the subsidiary Falcov and Moonbase shear zones, interpreted by Van Kranendonk and Ermanovics (N) as crust-scale extensional shear. The Ablovik shear zone is contained largely within the Tasiuyuk gneiss, but also affects adjacent rocks of the Nain and Rae provinces. PT-f fabric results by Mengel and Rivers (P) indicate that sinistral shearing took place in an already thickened (possibly doubled) crust, thus lending support to the concept of early thrust-dominated transpression. Although shearing is most intense within the discrete shear zones shown in Figure 2, it is important to point out that all rocks for a distance of about 70 km west of the Ablovik Zone are affected by a pervasive shear fabric and subhorizontal extensional lineation. Wardie (1964), working at latitude 59°N, has described a fan of structural attitudes across this broad shear belt, the eastern side of which is marked by west-dipping structures and the western side, by east-dipping shear fabrics. The east-dipping fabrics, which are probably related to west-directed thrusts, may characterize the western boundary of the Torngat Orogen in this area. A narrow belt of dip-lineated ultramylonites, extending along the eastern edge of the Ablovik shear zone and into the Kamtovik shear zone, is interpreted by Van Kranendonk and Ermanovics (N) to mark a late shortening stage during which the Torngat Orogen was exhuma from deeper crustal levels. In the southern part of the Rae/Nain Province boundary is reviewed by Ermanovics and Ryan (O), who conclude that it is probable a suture marked by a zone of low-grade, west-dipping reverse faults. The Rae/Nain boundary at this latitude lacks the transcurrent shear that is so dominant farther north, but it is not clear whether this is simply the result of exposure at different crustal levels, or has some other cause. Ermanovics and Ryan (O) also review the effects of deformation in the Early Proterozoic Makkovikian Orogen, the trans-Labrador Sea extension of the Ketilidian Mobile Belt of Greenland (Figure 1), along the southern margin of the Hopedale block. The relative chronology of the Makkovikian and Torngat orogenies is crucial to regional tectonic interpretations, but insufficient data exist for detailed comparisons. Deformation in the Makkovik Orogen terminated ca. 181 Ga; however, the age(s) of initial (high-grade) tectonism is unknown. The chronology of events in the Torngat Orogen has until now been vague; however, U-Pb dates reported by Bartrand et al. (R) and additional new constraints. Intrusion of the Lac Lomier charnockites probably occurred syntectonically ca. 186 Ga and was followed by a prolonged period of granulite-facies metamorphism, associated with transcurrent shearing in the Ablovik zone, that lasted until ca. 182 Ga. Late, east-directed thrusting, accompanied by formation of the dip-lineated ultramylonite and injection of granite and pegmatite, persisted until 1805 Ga and was followed by the closure of monazite ca. 178 Ga, and hornblende (Mengel and Rivers, P) ca. 175 Ga (Ar-Ar). It is significant that there is little evidence of Archean inheritance in the Tasiuyuk gneiss or the charnockites, hinting that these may represent juvenile crustal elements. Models and Challenges The early stages of development in the New Quebec and Torngat orogens are at present only dimly perceived. Girard's (J) description of 2.3 Ga magmatism is intriguing and indicates a previously unsuspected evidence that may or be of considerable importance, particularly if it is arc-related. Development of the Rae/Nain province boundary likely involved early westward subduction of the Nain under the Rae Province to produce the Lac Lomier (arc?) complex. The Kujjuq (and De Pãs?) bapolith may similarly record the early emergence of the Superior and Rae provinces. The Late Devonian rise of the eastern Churchill Province is more complex; its's widespread and was clearly dominated by oblique convergence and collision in an overall transpressional environment. Hoffman (A) and Girard (S) emphasize the mirror-image symmetry of the two orogens in which the west-directed thrusting and dextral shearing of the New Quebec Orogen are reflected in the east-directed thrusts and sinistral shear pattern of the Torngat Orogen. The sigmoidal shear-lozenge pattern that dominates the Torngat Orogen and the eastern Rae Province is one of the most obvious effects of this transpression. Hoffman (A), using an analogy with the India/Asia collision, has modeled the development of the eastern Churchill Province as the result of northward indentation of the Superior Province into a northern Churchill hinterland, followed by oblique collision and accretion of the Burwell and Nain provinces. This model provides testable predictions that will challenge geologists working in the eastern Shield for years to come. In the final contribution, Bridgewater et al. summarize the eastern Nagssugtoqidian Mobile Belt of Greenland; a trans-Labrador Sea analogue of the eastern Churchill Province that provides a connection with the Baltic Shield. It was obvious from the animated discussions at the Wakefield meeting that work in the eastern Churchill Province has reached an exciting and crucial stage. Sufficient data are now available to support general working models; however, much remains to be done before these can be verified, and many surprises are undoubtedly in store. The most important requirement is obviously for more regional mapping in the area south and east of Ungava Bay. The Burwell terrane/province is a key element in the reconstruction of the Churchill Province in this region and must be investigated in more detail. In the Torngat Orogen, the Ablovik shear zone provides what may be the type example of a transform plate boundary exposed at lower crustal depth. The coincidence of the Tasiuyuk gneiss and Ablovik shear zone in this context has to be explained; for example, is the gneiss the root of an accretionary complex? The dramatic north to south change in character of the Torngat Orogen also requires further investigation: is this transition simply an apparent one due to the exposure of higher crustal levels to the south, or is there a fundamental change in tectonic environment? In the New Quebec Orogen, priority needs to be given to establishing the location of the suture with the Rae Province, and to delineating the full extent of the Kujjuq bapolith. With regard to the Rae Province, it is essential to establish its parentage, is it a rifted fragment of the Nain or Superior provinces, or an independent plate? In this respect, the detailed crustal-age model provided by Schlee et al. (E) will provide a powerful tool for assessing potential comparisons with the Nain Province. Finally, it is obvious that throughout the eastern Churchill Province there is an urgent need for greatly expanded geochronological studies.
The eastern Churchill Province is a unique and superb example of a two-sided, Early Proterozoic orogen that is exposed in complete coastal cross-section. With sufficient commitment, there is, therefore, no reason why these challenges cannot be overcome in the years ahead.

Acknowledgements
We are indebted to the participants of the Wakefield conference for their hard work and enthusiasm, and to the authors who have contributed their ideas and support to this special issue. Normand Goulet is thanked for editing the French-language articles; our thanks as a group are extended to the editorial staff of Geoscience Canada for their offer to publish the proceedings of the Wakefield conference. Todd Leawood, Joanne Matthes, Ken Byrne and Tony Tanavanage of the Newfoundland Geological Survey Branch provided invaluable assistance in the initial preparation and editing of this issue. Finally, we acknowledge our debt to Fred Taylor, whose pioneering mapping stimulated many of our ideas and continues to provide the background for much of our work. Newfoundland Geological Survey Branch Contribution No. 90-01.

References
[Note: bold references in the text are listed in the caption to Figure 2.]

Machado, N., 1990, Timing of major tectonic events in the Ungava segment of the Trans-Hudson Orogen, in Recent Advances in the geology of the eastern Churchill Province (New Québec and Torgat orogens), Abstracts, Wakefield Conference, Québec, p. 11.

Accepted, as received, 11 December 1990.

Dynamics of the tectonic assembly of northeast Laurentia in geon 18 (1.9-1.8 Ga)

Paul F. Hoffman
Continental Geoscience Division
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario K1A 0E8

Summary
A tectonic model is proposed, based on the Cenozoic evolution of Southeast Asia, in which the southeast arm of the Rae Province rotated clockwise in response to collisional indentation of the Superior Province. A dextral pull-apart basin characterized by mafic sill-sediment complexes formed along the leading edge of the rotating block. Relics of this basin, analogous to the Andaman Sea basin of Southeast Asia, were subsequently thrust onto the Superior Province margin where they occur as allochthons in the Labrador Trough. A wedge-shaped ancestral Baffin basin, analogous to the South China Sea, opened simultaneously in the wake of the rotating block. The margins of this basin are delineated by the Foxe–Rinkian and Dorset fold belts; their convergence and disappearance westward reflect the primary shape of the basin. North-west-dipping subduction beneath the mouth of the basin accommodated convergence of the Burwell and Nain provinces from the southeast and gave rise to the Cumberland batholith. Docking of the Burwell and Nain provinces caused compressional collapse of the ancestral Baffin basin and sinistral transpression of the Torgat Orogen, respectively. The model is well constrained by existing U-Pb geochronological data and makes predictions which can be tested by additional data.

Introduction
Key to the tectonic assembly of northeast Laurentia in geon 18 (1.9-1.8 Ga, Hofmann, 1990) is the tangle of orogenic belts that welds the Superior, Rae, Burwell and Nain provinces (Figure 1). The Trans-Hudson Orogen has long been viewed as a collision zone between the Superior and Churchill (Hearne, Rae and Burwell) provinces (Wilson, 1968), and the other orogenic belts may also repre-