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Introduction

The purpose of this short review article is to
draw the attention of geologists to a new
approach to science that has emerged over
the last twenty years. This new way of
approaching science can itself be described
as a new discipline within science, which is
generally given the name “‘non-linear
dynamics”. The new discipline cuts across
old disciplinary lines, and is in a period of
explosive (exponential) growth (Figure 1).
Though the first papers in the field are gener-
ally considered to be those published in the
1960s (Lorenz, 1963; Hénon and Heiles,
1964; Smale, 1967), and the field did not
become popular until the 1970s (Ruelle and
Takens, 1971; Yorke and Li, 1975; Hénon,
1976; May, 1976; Swinney and Gollub, 1978),
the number of papers published now totals
in the thousands, and several systematic
expositions, symposia, and reprint volumes
on the subject have been published (Bergé et
al., 1986; Schuster, 1984, 1988; Thompson
and Stewart, 1986; Devaney, 1986: see other
works listed in the bibliography). Pioneer
works in the field are cited tens of times per
year: for example, the paper by Hénon and
Heiles (1964) was recently featured as a
“citation classic” in Current Contents and
has been cited over 500 times. Series of

review articles have appeared in Science
(Pool, 1989) and in The New Scientist (Per-
cival, 1989). There has even been an excel-
lent popular book-length account (Gleick,
1987), parts of which were originally pub-
lished in The New Yorker. The topic, which
originated in mathematics and physics, has
been quickly shown to have significant
applications in engineering, chemistry and
biology, but the number of articles published
about geological applications is still very
small. There are indications that this situa-
tion is about to change, that there are many
possible applications of non-linear dynamics
in the earth sciences, as in the other sci-
ences, and that descriptions of them are
about to appear in geological journals.

The term “non-linear dynamics” is used to
describe any system that can be described by
a non-linear differential equation. Almost all
the theoretical work so far has been on non-
linear ordinary differential equations, though
chaotic phenomena are known to be
exhibited by physical systems (e.g., convect-
ing fluids) which are governed by non-linear
partial differential equations. It is more diffi-
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cult to define exactly what constitutes
chaos: many authors consider that a chaotic
system is one which is fully deterministic,
but which evolves with time in a way that is
very sensitive to the specified initial condi-
tions. As the initial conditions of natural sys-
tems can never be specified exactly, this
means that, for practical purposes, the
future behaviour of the system cannot be
predicted accurately for far into the future.

It is convenient to introduce the subject by
considering first some of the simplest pos-
sible examples of differential and difference
equations.

Differential and Difference Equations
A very simple differential equation, and one
that is certainly familiar to geologists, is that
which describes exponential growth or
decay:

dx/dt = rx (1)
The equation states that the rate of growth
(or decay) of the variable x is proportional to

the value of x itself, and that r is the coeffi-
cient of proportionality. Growth takes place if

100

T T TTT1TT

10

1970 1972 1974

¥ pata

197
Year

1978 1980 1982

— Regression

Figure 1 Exponential growth in number of publications on chaos. Hao (1984) gives a bibliography of 841
references, from which these data were obtained. They show that the number of papers published on chaos
has doubled almost every two years since the mid 1970s. If this rate has continued to the present, there are

now about 1000 papers on chaos appearing each year.



r is greater than zero, and decay if r is less
than zero. Note that the equation is linear,
since the rate of change of x depends only
on x, not on some power of x. The solution
{or integral) of this equation is well known:

X = xe" 2

In this case, it is easy to integrate equation
(1), and obtain the “analytical” solution given
by equation (2). Many differential equations
are not so easily integrated, however, and in
these cases an approximate solution can be
obtained by considering the correspending
difference equation, which gives the value of x
after (n + 1) increments of time, in terms of its
value after n increments. For equation (2} this
would be written:

xr|+1 = X“ + rxn (3)
or

Xne1 = R X,

where R = r+1. In these equations, x,
means the value of x att,, and might also be
written x(t,). Difference equations need not
necessarily be considered only as approxi-
mations to differential equations. They may
be used as mathematical models for phe-
nomena which are naturally divided into a
series of equal, discrete steps. For example,
Equation (3) may be considerad to represent
the growth of a biological population, in
which reproduction takes place once a year,
and the size of the population next year is
proportional to its size this year. For negative
r, the value of x decays with time towards
zoro. For positive r, x increases exponen-
tially without limit — a situation that is inher-
ently unlikely in most practical applications.
A more generally applicable equation is
developed in the next section.

x (1)

The Logistic Equation

Though Figure 1 demonstrates that the num-
ber of papers appearing on chaos was for a
while doubling svery two years, we know that
this cannot continue far into the future.
Instead we expect that the number appearing
each year will begin to level off, perhaps
approaching some limiting value x,,,. If we
use this value to scale x (so that the range of
values of the scaled x is from 0 to 1), we can
write a differential equation describing this
type of limited growth {or decay):

dx/dt = rx(1-x) 1G]

This is the well-known flogistic equation,
which has been applied in economics, and
particularly in biology. May (1976} applied it
to population dynamics and was one of the
first to emphasize its extraordinary charac-
ter. It is often seen in its alternative forms:

dx/idt = 4bx(1-x) (4a)
or
dyfdt = 1 - py? (4b)

These equations are non-linear — in fact,
they are just about the simplest example that
can be given of a non-linear differential
equation. Many non-linear differential equa-
tions have no known analytical solution, but
the logistic equation is an exception. Equa-
tion (4) has the solution:

x(t) = X5 &)
X, + (1x,)e~ "

This is shown graphically in Figure 2. Note
that it is a family of regular, smooth curves,
and that future values of x are completely
predictable, if the initial value x, and the
growth coefficient r are known.

In just the same way that we wrote a
difference equation corresponding to expo-
nential growth or decay, we can also write
one corresponding to logistic growth or
decay. The equation is:

Xne1 = FXp{1%0) (6)

It might be thought that this equation
would yield values closely approximating
those given by Equation (5), but in fact it
does not. Instead it shows an astonishingly
complex range of sequences of x, for some
values of r.

Equation {6) is variously known to mathe-
maticians as the difference form of the logis-
tic equation, the “logistic map”, or even the
“iterated map on the interval” (Collet and
Eckmann, 1980). Its properties have been
fully explored only in recent years. It has
become one of the paradigms of the new
science of non-linear dynamics. Though
computed sequences of x converge rapidly
on one or more values for some values of r,
for other values of r the computed values of x
display an apparently random variation. This
can be clearly seen by plotting computed
values of x against r, where equation {6} is
iterated many times for each value of r, and
points are plotted only after a number of
iterations, to allow convergence to take
place (Figure 3).

Among the fascinating aspects of Figure 3
are the following:

(i} parts of the map show regular, and
other parts highly irregular, behaviour. A
saquence of x values generated in one of
the “chaotic” regions of the map would
appear 10 an observer to be a random
sequence of x values — even il the
observer applied some of the well-known
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Figure 2 Graph of the Logistic equation. The different curves correspond to different choices for the parameter r. No matter what the starting value of s and f, x always
converges on the value x = 1. For x, larger than 1, the curves show exponential decay, for x,, close to zero, the curves show an early period of exponential growth, then

Hattan out and approach the limit of 1 asymplotically.
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statistical tests for “randomness” of a
time series. Yet the sequence is strictly
determined by the initial values chosen,
and so it is a fully deterministic and pre-
dictable sequence.

{i)) though it appears from Figure 3 that
chaotic behaviour is observed for values of
r between about 3.57 and 4, chaoftic
behaviour is exhibited only for certain
values of r in that range. Close examina-
tion of the chactic “region” of the map,
shows that there are very many values of r
in the range of 3.57 to 4.0 which show non-
chaotic behaviour. Enlargement of parts of
the map reveals teatures very similar to
those of the complete map — in other
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words, the map shows aspects of self-
similarity strongly reminiscent of fractals
(Figure 4). In fact, it can be shown that the
logistic map is fractal in the chaotic
region.

{iii} transition from regufar to chaotic
bahaviour is preceded by a series of
“bifurcations” —thatis, by achange (asr
is increased) from convergence on a sin-
gle value of x (for a given 1) ta con-
vergence on two alternating values of x,
to four aiternating values of x, and so on.
When the logistic map is plotted with a
geometric scale for r, it can be seen that
the bifurcation points occur at nearly reg-
ular, geometrically decreasing values of 1.
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Figure 3 The Logistic Map. The map is shown for the range x = 0to 1.0, andr = 3.5 to 4.0. The first

bifurcation takes piace at r = 3.0, and the second at r = 3.45. The chaotic region begin atr = 3.57

3-84 I

3-86
0-4

X

0-6

It is beyond the scope of this article to
explore the logistic map further. The com-
plex behaviour exhibited by this very simple
difference equation was the subject of early
investigations by May (1976), Feigenbaum
{1980) and others, and has been given sys-
tematic book-length exposition by Collet and
Eckmann (1980) and Devaney (1986). The
invesligations raised important questions
about the stability of differential equations
and the dynamic systems that they repre-
sant, and about the definition of “chaotic” as
opposed to “regular” behaviour of these
systems.

In this case, chaotic behaviour is shown
only by the difference form of the logistic
equation, not by the differential form. Cha-
otic solutions cannot be avcided, however,
by choosing a different finite difference
approximation: other common approxima-
tions show similar {though not identical)
maps (Prifer, 1985). It is not true, however,
that only finite difference equations show
chaos. Many sets of first-order ordinary dif-
ferential equations involving at least three
dynamic variables (or higher-order differen-
tial equations that can be reduced to this
form) are known to yield chaotic solutions.
The study of such systems is now generally
called “non-linear dynamics”. Though the
laws of ¢lassical dynamics naturally give rise
to chaoctic systems, the term “non-linear
dynamics” is now used to apply generally to
the study of systems of non-linear differen-
tial equaticns, and is not restricted to
mechanical systems.

Stability of Dynamic Systems
Elementary texts on the theory of ordinary
ditferential equations generally include some
discussion of the question of stability. The
simplest system, discussed in both freshman
physics and calculus courses, is the classical
oscillator or pendulum. The equation of
maotion for the simple pendulum is

d2o/dtz = -(g/l) sin @ n

where | is the length of the pendulum, gis the
acceleration due to gravity, and O is the
angle that the pendulum makes {0 the verti-
cal. If we remember that for small angles
(measured in radians) sin © = O, we can
state simply that the angular acceleration of
the pendulum is proportional to the angle of
deflection from the vertical. Equation (7)
then becomes a (second-order) linear
aquation.

It is useful 10 express second-order equa-
tions, such as those that generally arise in
dynamics (because of the emphasis on ac-
celerations), as an equivalent system of two
first-order equations. We do this by sub-
stituting d&/dt = vy, which leads 1o the
system:

dordt = y @)

Figure 4 Asmat part of the logistic map, eniarged. The region shownis from x = 0.4t0x = 0.6, andfrom = dyidt = <{gfl) sin ©

3.841tor = 3.86. Figure 2 and 3 were proguced using & screen dump on a rather primitive personal computer

The motion of the pendulum can then be
(the T! Pro}. Migher resolution plots can be found in Coflet and Eckmarn (1980). pe a

conveniently represented by plotting the



angular velocity (dO/dt) against the angle of
deflection (©). The space defined by these
two co-ordinates is called a state space or
phase space, and discussions of phase
spaces (of two or more dimensions) loom
large in most papers on non-linear dyna-
mics. In such a space, the locus of points
describing the motion resulting from some
initial condition (i.e., some initial angular
deflection and velocity) is a “trajectory” in
the phase space. Though the locus changes
with time (as both angular velocity and angle
of deflection change with time), time is not
represented explicitly on the graph. For the
example given, the trajectory in phase
space will be an ellipse (almost circular for
small deflections), whose dimensions are
fully determined by the coefficient {g/l) and
the initial conditions.

The simple pendulum is, by definition, fric-
tionless, so there is no progressive change in
the trajectory with time. If we introduce fric-
tion, however, the trajectories are no longer
ellipses, but become spirats approaching the
origin (no deflection, no velocity) at large
times (Figure 5a). Such a point is called an
attractor because the trajectories seem to be
attracted to it. Aftractors are characteristic

They need not be points, as can be seen
from the example of a pendulum which is
periodically “kicked” (the motion of a child in
a swing that is periodically pushed is a similar
phenomenon). So long as the periodic push-
ing continues, the swing {or pendulum) never
comes to rest, but after an initial period of
adjustment it usually settles into a stable tra-
jectory, which will be represented by a par-
ticular closed loop in phase space. If the initial
condition is characterised by smaller (or
larger) deflections and velocities than those
found on this loop, the deflections and
velocities gradually increase (or decrease)
until the stable condition is achieved. This
corresponds to trajectories which spiral out-
ward or inward towards the stable ioop, which
is called a fimit cycle (Figure 5b, 5¢). Limit
cycles are just another kind of attractor. We
can designate point attractors as having
dimension zero, line attractors (loops) as hav-
ing dimension one, efc. Many dynamic sys-
tems display attractors which are tori
(doughnut-shaped) surfaces — therefore of
dimension two {Figure 5d).

Notice that if we plot a series of points in
phase space, measured at closely spaced
times, they will first approach the atiractor

speaking, they approach the attractor asym-
ptotically}). Eventually they may begin to
repeat themselves. If the particular phase
space of interest were three dimensional (as
it would have to be to produce a two-dimen-
sional attractor} we could obtain a simplified
picture of what was happening by consider-
ing the intersections of the trajectory with a
single well-chosen plane. For example, if the
attractor is a torus and the plane intersects it
in a small circle, the trajectory will intersect
the ptane at a point on the circle each tima it
returns. Such planes of intersection are
called Poinicaré sections of the phase space.
Scientists interested in sets of differential
equations have long taken an interest in the
geometry of phase spaces, bacause it is
possible to represent conditions for system
stability or instability in such spaces. For
two-dimensional linear systems the condi-
tions are well known (e.g., Boyce and
DePrima, 1986, chapter 9).
A system of such equations can be writlen
dx/dt = ax, + bx
¥ 1 2 (9)

dxp/dt = cx; + dx,

or in matrix notation

of dissipatlive (non-conservative) systems. and then fall along the attractor (strictly dx/dt = Ax
-Pi Theta +Pi -Pi Theta !
+3 : B
a
[T VORI SR i 4
-3
-Pi
+3
C
PRyl ORI | SN
-3

Figure 5 Attractors shown by oscillators. The point attractor (a) is shown by a simple, damped oscillator. The limit cycle (b and c) is shown by a forced oscillator. The
same limit cycle is approached asymptotically both from inside (b) and from cutside (¢) the cycle. The torus (d} corresponds to a fimit cycle in a three dimensional phase

space.
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The solution is obtained from the charac-
teristic equation

det |[A-pl| = Q (10)

where | is the unit matrix. This determinant is
simply a polynomial in p: the values of p are
called the characteristic roots or sigen-
values of the system. In the case of two
variables, the equation is a quadratic

p2-(a+d)p + (ad-bc) = 0 (11)

with two roots given by the familiar formula

p = [(a+d) +4/ ((a+d)?- 4ad-bc)}i/2(12)

We notice that both of these roots might be
complex, i.e., involve the square root of a
negative number.

When wa speak of the stability of a sys-
tem, we are generally concerned with the
stability in the neighbourhood of equilibrium
points (or steady states) of the system.
These are points for which the derivatives
are all equal to zero. In phase space trajecto-
ries will either converge toward such a point
(this will be a stable equilibrium point) or
diverge from the point {an unstable equi-
librium point), or there will be some trajecto-
ries converging on the point and some diver-
ging from it (alse an unstable equilibrium
point). The stability of an equilibrium point,
x*, is determined by considering the way
that x varies with time in the immediate
vicinity of x*, that is by the equations:

dx/dt = A{x-x") {13)

where A is now a matrix of partial deriva-
tives, evalyated at x* {at the point itself,
dx*/dt = 0). Such a matrix is called a Jaco-
bian. The set of equations (13) is mathe-
matically analogous 1o the set (9), and the
solution is again obtained by computing the
sigenvalues. The eigenvalues can be used
to classify the type of equilibrium point: (i) if
the eigenvalues are complex conjugates
{(with both real and imaginary parts), then
the point is a focus and trajectories in phase
space spiral in or out from it; (i)} if both
gigenvalues are real and have the same
sign, the point is a node and trajectories
converge on or diverge from it; and {iii) if both
eigenvalues are real but have opposite
signs, the point is a saddle point. Foci and
nodes may be either stable or unstable,
depending on whether trajectories converge
on or diverge from the point, but saddle
points are always unstable.

Though this analysis assumes linearity, it
may be used to examine the stability of
equilibrium points in non-linear systems,
since it is nearly always possibie o make a
linear approximation to the non-linear equa-
tions in the immediate vicinity of the equi-
librium points.
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Bifurcations and Chaos

Linear sets of differential egquations can
always be solved analytically, but this is not
always the case for sets of non-linear equa-
tions. Generally, however, it is possible to
determine a great deal about the behaviour
of nordinear systems from studying the equi-
librium points and their stability. Non-linear
equations may also be solved (approximately)
using numerical techniques.

The number and stability of equilibrium
points of a set of differential equations can
be observed to change as the coefficients of
the equation change. Such changes repre-
sent fundamental, and sometimes abrupt,
changes in the behaviour of the system: they
are called bifurcations. The type of change
represented by a bifurcation may be classi-
fied by examining the eigenvalues of the
relevant Jacobian before and after the bifur-
cation. Many bifurcations have been named
(e.g., Hopf bifurcation, pitchfork bifurcation)
and a great deal of study has been devoted
fo them. A concise summary is given by
Bargé et al. (1988, Appendix A).

One possible result of certain types of
bifurcations is replacemeant of a single stable
equilibrium point by two such points. Then,
for example, a dynamic system osciilating
with a stable period, T, might be replaced by
one alternating between two modes of oscil-
lation, so that the period of a complete cycle
changes from T 1o 2T. ltis found that thisis a
feature common to several different sys-
tems, and that the period doubfing may be
repeated several times as the controlling
parameter is changed. The magnitude of the
parameter change needed 10 produce a
period doubling decreases in a way that
approaches a regular geometric series. This
was first discovered for the logistic map {it is
illustrated in a crude way by Figure 4). The
ratic between successive changes is found
to approach a limit which is a fundamental
constant, characteristic of not only of the
logistic map, but of many different systems
{Feigenbaum’s constant).

After a series of such period doubling, a
further change of the control parameter
often causes the system to begin to display a
wildly erratic type of behaviour, which is
generally called chaos.

Chaos is not displayed by all systems which
display instability. For example, the simple
damped pendulum has an unstable equi-
librium point, when the pendulum points
straight up (with the bob on a rigid rod ver-
tically above the support). If displaced slightly
from this point, the pendulum swings down
and begins to oscillate above its other equi-
librium point (with the bob vertically befow the
support) and eventually comes to rest at this
point. Instability in this case gives rise to
perfectly regular, predictable oscillations
about a stable equilibrium point. The pen-
dulum doas not normally display chaos even
when it is “periodically kicked”: it setties
down into the regular orbit characterized by

the limit cycle in phase space. But a pen-
dulum that is "pumped” (for example, by
verlically oscillating the supporf) can display
amazingly complex motions, which have
only recently been investigated (Greene,
1986).

What is particularly interesting about sys-
tems that do display chaos is that extremely
complex behaviour may be shown by rela-
tively simple systems {systems of only three
differential equations, for example). The
behaviour of these systems, though very
complex, is perfectly predictable, in the
sonse that it is easily reproducible from one
numerical experiment to the next. Buta time
series of measurements on such a system,
made by an observer who did not know the
controlling equations, would appear 10 be
varying in a random and unpredictable
manner.

This does not mean that such systems are
necessarity completely unstable. Dissipative
systems that show chaotic behaviour show
convergence on attractors, just as non-cha-
ofic dissipative systems do. Bul the attractors
are not simple stable points, limit cycles, or
surfaces. Instead, they have very complex
geometries, and are described as strange
attractors. Trajectories in phase space con-
verge toward such attractors, but two trajecto-
ries starting from two points initially very
close together diverge rapidly (in fact, at an
exponential rate, which may be measured by
a coefficient called the Lyapunov exponent).
Since the attractor has only a finite size in the
phase space, however, the trajeclories may
eventually come close to each other again.

How is it possible for trajectories to
diverge exponentially, yet remain on an
attractor which occupies only a part of phase
space? The answer is given by the “horse-
shoe" model first proposed by Smale (1967):
diverging trajectories are stretched out in
space (like a straight piece of hot iron), then
folded back on themselves, and the process
is rapeated, essentially for ever. As a result,
strange attractors display very complex
geometry: many can be demonsirated to
show fractal properties (self similarity at dif-
terent scales), and their fractal dimension
can be deduced mathematically, or deter-
mined empirically from time series gener-
ated by the system. It should be emphasized
that computer generated pictures of strange
attractors {(such as Figure 6) show only a few
trajectories lying close to the attractor. The
complex nature of the surface is shown by
enlarging a part of the attractor to larger
scales, and computing a much larger num-
ber of trajectories.

The classic example of a system with a
strange attractor is that first described by
Lorenz (1963). Lorenz, a meteorologist work-
ing at the Massachusetts Institute of Tech-
nology, was led to this system by seeking the
simplest representation possible of the very
much more complex system of partial differ-
ential equations which represents motion in



a thermally convecting atmosphere, Subse-
quent workers have suggested two physical
systemns which correspond more directly to
the Lorenz equations:
{i) a water wheel with leaky buckets (Lorenz,
1979; Gleick, 1987, p. 27); and
(i) thermal convection of a viscous fuid
under gravity in an upright closed circular
tube (Tritton, 1988, chapter 17).

The Lorenz system (in non-dimensicnal

form) is:
dx/dt = o (y-x}

dy/dt = rx -y -xz (14)
dz/dt = xy -bz

The equations appear quite simple,
though they contain the non-linear terms xz
and xy (o and r are numerical coefficients).
They cannot be solved analytically, and
therefore Lorenz began to study their
behaviour using a numerical approximation
method on a primitive electronic computer.
The story of how this led him to discover their
chaotic behaviour, and the “first” strange
attractor is well told in Gleick’s book (1987,
p. 11-31).

The behavicour of this dynamic system de-
pends upcn the control parameter r. As 1 is
increased above unity, the equilibrium
points undergo a series of bifurcations.
When r = 28, the behaviour of any of the
variables x, y, or z is chaotic. Lorenz dis-
covered by accident that if he used two initial
conditions (x,y,z) which differed only in the
fourth significant figure, the numerical solu-
tions, though similar for short times (small
numbers of numerical iterations) rapidly
diverged and became totally dissimilar at
large times. This “sensitivity 1o initial condi-
tions" has subsequently become accepted
as the most important defining characteris-
tic of chaotic systems. It has, of course,
immediate relevance to problems such as
long range weather-forecasting. If the gov-
erning equations of weather systemns are
indeed systems similar to the Lorenz equa-
tions (though more complex), then it will
naver be possible to predict the weather
accurately far into the future, because the
initial conditions can only be known to a
limited degree of approximation.

The Lorenz attractor is shown in Figure &:
the Lorenz system has become the para-
digm of a simple three-dimensional system
with a strange attractor (rivalled in popula-
rity only by the system described by Rassler,
1976) and has been given monographic
treatment by Sparrow (1982). For a short
article by Sparrow on this system, and for
illustration of many other attractors, see the
book edited by Holden (1986).

Why Is Non-linear Dynamics Popular?
The discussion given above may strike
some readers as rather absiract: why is it
that such seemingly obscure properties of
differential equations have suddenly
become a major field of investigation in the
physical sciences?

One answer is that almost all of the physical
sciences abound with examples of complex,
irregular patterns of behaviour. Perhaps the
most commonplace example is that of tur-
bulence in fluid flows. Yet science has pre-
viously either ignored these phenomena, or
treated them as being “stochastic”, thatis, as
ariging from a large number of unknown (per-
haps even unknowable) causes, whose net
effect can be described only by the addition,
to the otherwise deterministic variables, of a
non-deterministic "random variable”. The
findings of non-linear dynamics came as a
shock 10 many classically trained scientists,
first because most of us had not been at all
aware of the strange behaviour that can be
exhibited by sets of non-linear equations (yet
we know that nature is fuil of non-linearity),
and second, because we did not realize that
extremely complex, apparently “random’
hehaviour might arise from very simple sets
of deterministic governing equations (Ford,
1983).

For most scientists, this shock is at once
dismaying and exhilarating. it is dismaying
hecause it suggests even closer limits on the
power of classical methods than we had pre-
viously realized; and it is exhilarating because
it suggests theoretical and experimental
approaches to phenomena which had pre-
viously defied rational investigation. The best
example of a new line of investigation
spawned by non-linear dynamics is probably

the studies that have been (and are being})
carried out in the generation of fluid tur-
bulence. It has been shown that the way that
instabilities arise and multiply in some fiuid
systems (Taylor vortices in the annulus
between rotating cylinders, and vortices
arising from Rayleigh-Bénard convection)
do in fact display exactly those properties
(bifurcation, period doubling, efc.) that might
be expected if the early stages of turbulence
are generated by relatively simple non-linear
dynamic equations (for a review see Swin-
ney and Gollub, 1978; or the book by Bergé
ot al., 1986).

The present phase of investigations by
physical scientists (as opposed to investiga-
tions by mathematicians and theoreticians)
sgems to be dominated by the attempt to
discover examples of chaotic systems in
natural phenomena. There are basically two
ways o do this: ene can either start with the
mathematical model, and show that it accu-
rately describes the behavicur of some
physical system of interast (e.g., the Lorenz
equations have been found to describe ther-
mal convection in an upright circular tube) or
one can start with the phenomenon, and
show that it displays features typical of non-
linear dynamics, rather than those expected
from a purely stochastic process. it is also
true that itis very difficult to make generaliz-
ations about different systems of non-linear
differential equations. Such systems must

Figure 6 The Lorenz strange attractor. (From Moon, 1987).
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generally be studied using a combination of
mathematics tools and numerical experi-
mentation. A few such systems (the logistic
map, the Loranz equations) have now been
investigated in detail, and such studies pro-
vide paradigms for the investigation ot an
essentially limitless number of other sys-
tems. The necessary numerical experimen-
tation involved was hardly possible before
the development of the digital computer, but
it is now well within the scope of even simple
personal computers (in fact, the ready
access to “real time” graphic display
favours the personal over mainframe com-
puters). Chaos is therefore an intellectually
exciting new field, and one that is readily
open to those whose budgets and intellec-
tual powers are both not unlimited.

Finaily, one must add a further, purely
aesthetic incentive. The images of non-
linear dynamics, so readily generaled on a
personal computer (Kogak, 1989), have a
strange visual enchantment, an enchant-
ment that is felt even by those who under-
stand nothing of the underlying theory. Non-
linear dynamics shares this with the science
of fractals, which is also a very popular topic,
for much the same reasons. There are, in
fact, close theoretical ties between the two
topics, since strange attractors are typically
fractal {Devaney and Keen, 1989).

Possible Applications in the Earth
Sciences

The classic investigations of Lorenz on ther-
mal convection in the atmosphere may them-
selves be considered 1o have been within the
broader field of the earth sciences. Thermal
convection within the mantle may also show
chaotic behaviour (Stewart and Turcotte,
1989). It is generally believed that magnetic
reversals (which show an apparently random
time sequence) are ultimately related to con-
vection in the core of the earth, so it is not
surprising that the concepts of non-linear
dynamics were early applied to this phe-
nomenon. The simplified disk dynamo model
(Chillingworth and Holmes, 1980; Tritton,
1989) gives rise to a set of three equations
which are almost identical with the Lorenz
equalions. Sun spots are also a phenomenon
related to thermal convection in the outer
layers of the sun, and Tai (1987) has found
some evidence that the historical record of
sun-spot cycles shows evidence for dynamic
chaos, as well as regular rhythms.

There have long been questions asked
about the long term stability of the solar sys-
tem (e.g., Moser, 1978). Wisdom (1987) has
recently demonstrated chaotic behaviour
shown by Hyperion, one of the moons of
Saturn, and Sussman and Wisdom {1388)
have used a special purpose “supercompu-
ter” (which he calls a “numerical orrery”) to
predict that the motion of Pluto will become
chaotic within 20 million years or so. The
orbits of meteorites and other bolides that
strike the earth, are also probable examples
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of wild {chaotic) behaviour exhibited by solar
system non-linear dynamics. It has also
been argued (Laskar, 1989) that sensitive
dependence on initial conditions in solar
system dynamics makes it impossible to de-
termine the nature and duration of Milan-
kovic cycles far back in geological time: if
true, this greatly weakens the case of those
who claim to identify such cycles in Meso-
zoic or Paleozoic rocks by analogy with
Pleistocene cycles (a popular account has
been given by York, 1989).

It is known that certain chemical systems
are governed by non-linear equations that
show complex periodic and chaotic behav-
iour. The ability of such systems to produce
reguiar patterns, as well as patterns with
fractal properties, has been studied for
some time, and under the leadership of Pri-
gogine ithas become a special subdiscipline
of “Self-Organization” studies. Prigogine
has himself written technical (Nicolis and
Prigogine, 1977), semi-technical (Prigogine,
1980) and non-technical (Prigogine and
Stengers, 1984) books on this topic, and
there have been three symposia devoted at
least in part to geologica) applications (Nic-
olis and Baras, 1984; Nicolis and Nicolis,
1987; the last is not yet published, but was
reported by Fowler, 1988). See also the col-
laction of papers recently published in the
Journal of Chemical Education (Soltzberg,
1989).

The possibility that volcanic eruptions and
the seismic tremors associated with them
are governed by non-linear dynamics has
been discussed by Shaw (1988). A model for
earthquakes as chaotic phencmena seems
to have been first proposed by lto (1980):
recent studies are reported by Scholz
{1989).

River meanders are an exampie of a phe-
nomenon that clearly shows both surprising
regularity and complex, irregular behaviour
{they are discussed, rather inconclusively,
by Gleick, 1987, p. 197:198). Furbish (1988)
has pointed out that local rates of meander
migration are controlled by non-linear pro-
cesses, and has suggested that the irregular
behaviour of meanders i an example of
dynamic chaos.

Sediment ripples, when first formed on a
flat bed, have a very regular geometry, with
straight crests and a short wave length. As
the ripples further adjust to the flow (without
changing the discharge}, the geometry of
the ripples slowly changes and becomes
strongly three dimensional. The phe-
nomenon was carefully studied, using spec-
tral analysis of depth profiles measured
across the ripples, by Jain and Kennedy
(1974). They interpreted the results in terms
of a stochastic model of ripple generation,
but it now seems likaly that the data can be
re-interpreted as an example of chaotic phe-
nomena generated by non-linear dynamics.

Identifying Chaos in Observations

One possible conclusion from Lorenz’ origi-
nal studies is that the irregular fluctuations in
the weather, or climate, observed at any
point on the earth’s surface are not strictly
random, but are chaotic fluctuations gener-
ated by a relatively simple set of non-linear
governing equations. This example, and the
examples of magnetic reversals, sun spots,
river meanders, and ripple profiles cited
above all have something in common. They
all pose the question: given a time series
{which may, in fact, be a series of mea-
surements made along a spatial, rather than
a time dimension), is there any way that we
can determine whether its apparently ran-
dom element has in fact been generated by
the non-linearity of a small set of governing
equations, rather than by a “truly” random
process? If the former is the case, there may
be a low-dimensional attractor associated
with the system, and it should be possible to
estimate its dimension.

Several different methods for the analysis
of time series have been proposed as pos-
sible answers to this question. It is these
methods which seem to have the most im-
mediate application in the sarth sciences.
The most commanly used method was pro-
posed by Grassberger and Procaccia (1983).
It is described by Grassberger in Holden
(1986) and by Bergé et al. (1986, chapter 6).
The basic idea is as follows.

The original time series consists of mea-
surements x, of some physical variable, sep-
arated by equal intervals of time (or space)
&, and numbered i = 1, 2, 3...N. This series
can be displayed in a space consisting of the
variables x(t), x(t+&t), x(t+251)... up to an
“embedding dimension” of m.

For a given choice of m, we now defing a
“spatiai correlation” C{r):

lim n,
Cin =

N-roo N{N-1)/2

where n, is the number of pairs of vectors
(XX, 4 ) @Nd (X, %, m1} Whose distance
apart (in the m dimensional space) is less
than r. From a sufficiently long time series,
C(r) can be determined and and log C(r)
plotted against log r. On the assumption that
the system has a low-dimensional attractor
of {fractal) dimension D, C(r} is expectad to
vary as r2 at sufficiently small r. For a time
series consisting of “white noise”, itis found
thal the slope of the log C(r} - log r plot
depends upon the “embedding dimension”.
increasing in step with m as mincreases. For
a time series consisting of points which lie
on the surface of a strange attractor, how-
ever, the slope increases only up to the
dimension, D, of the strange attractor. This
dimension can therefore be determined by
plotting the slope against m.
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The method has thecretical justification,
and has been found to work quite well for long
time series (tens of thousands of data points)
generated by known non-linear systems. The
computations involved are rather simple,
given a computer and a suitable time series.
The interpretation is nol always so simple, as
can be seen by examining the following pub-
lished examples. Nicolis and Nicolis (1984)
used the method to examine a climatic time
series based on isotopic measurements
made on a deep sea core of Holocene/Pleis-
tocene sediments. They concluded that the
record showed evidence of a climatic attrac-
tor. Grassberger (1386) criticized their meth-
odology, and advanced an analysis of data
indicating no sign of a climatic attractor.
Essex et al. (1987) analysed a time series of
meteorological observations covering a
much shorter period of time, but consisting of
about 100,000 measurements. They con-
cluded that this record did show evidence for
a strange attractor. For a review of the tech-
niques see Henderson and Wells (1988).

Conclusion

Suppose that we do succeed in showing,
either from a known system of governing
equations, or from an analysis of a time
series of observations, that the behaviour of
a natural system is consisten with that pre-
dicted by non-linear dynamics — are we any
further ahead?

Even if the governing equations have
been identified, we are still unable to use the
equalions to make predictions far into the
future, for those parts of phase space which
display chactic phenomena. Perhaps it is
the case that, even with full understanding of
their mechanics, we will never be able to
predict the next major earthquake, or the
next magnetic field reversal. If the governing
equations are known, however, there now
exists a variety of established techniques
which permit us to understand the system as
well as is humanly possible, and certainly
better than we could understand it by resort-
ing only to linear approximations.

If all that we have achieved is 1o identify
the system as chaotic, with a strange attrac-
tor of dimension D — then our sum total of
knowledge is still rather meagre. This infor-
mation can be used as a guide to further
studies, and al least we now know that there
is some possibility of achieving further
understanding. We know at least that the
system is not entirely the product of com-
pletely random, and therefore completely
unknowable, processes. The dimension of
the attractor further suggests the minimum
number of dynamic variables required to
model the system.

Scientists are used o believing that com-
plete understanding of a physical system
implies complete control and predictive abil-
ity. We now know that that is generally not
the case. That in itself is worth knowing.
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Note
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