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Summary

Morphological and biogeochemical remains
of past algal populations can be recovered
from most sedimentary deposits. The major-
ity of these fossils are diatom valves, but
many algal groups are preserved in some
form. All algal taxa have specific ecological
requirements, and therefore their strati-
graphic distributions in sedimentary profiles
can be used to infer past environmental con-
ditions. This paper briefly reviews some of
the ways that freshwater aigal assemblages
have been used in palececological studies,
with an emphasis on North American
research.

Introduction
The word *“‘algae’” has no real taxonomic
meaning, except to circumscrbe a diverse
grouping of plants that share only a few
characteristics. Asimple, technical definition
is that algae are non-vascular plants that
contain chlorophyll a as their primary photo-
synthetic pigment and have simple
reproductive structures (Trainor, 1978). Even
these criteria are not met by all organisms
generally considered to be algae (e.g.. some
dinoflagellates are not photasynthetic).
Nonetheless, the above is a useful working
definition for a group of organisms whose
classification includes upwards of 15 divi-
sions (phyla) containing over 20,000 species.
One of the first tasks in any algal study is to
outline the classification system one will be
following — there are several (Round, 1973).
Table 1 lists the class system | will be using.
The Rhodophyceae {red algae) and Phaeo-
phyceae (brown algae) are almost exclusively
marine and are not considered here.

Historical Development

The study of algae, namely algology or phy-
cology, was underway, atleastin a minor way,
since the time of Theophrastus (ca. 300B8.C )
— considered by many to be the father of
botany. He divided the plant kingdom into

three groups: trees, shrubs, and herbs. The
latter category included the algae known at
that time. Studies of microscopic forms, which
incidentally include almostall of the freshwater
taxa, only began aftervan Leeuwenhoekintro-
ducedthe seventeenth-century scientificcom-
munity to the microscope, and undoubtedly
some of his “animalcules’’ were actually algae
(Whitford, 1968).

Algae have a long fossil record, dating
back to the first life forms of the Precambrian.
Morphological fossils, which phycologists
would immediately recognize as algae, were
amangst the first living organisms, with blue-
green algal forms recovered from two billion
year oid stromatolites (Schopt, 1975). Other
sedimentary deposits, spanning many geo-
logic time periods, also contain diverse algal
assemblages (Round, 1981). Despite this rich
record, my review is resiricted to the discus-
sion of algae from Quaternary freshwaler
deposits.

The fact that siliceous aigae, such as
diatoms, were well preserved in sedimenis
was observed by the early phycologists. For
example, Christian G. Ehrenberg (1854)
made extensive use of diatomaceous
deposits in his pioneering work with diatom
systematics in Europe and Asia. Ehrenberg
was also the first to write on North American
diatoms, although he never visited this
continent.

Patrick’s {1984) history of diatorn research
inthe United States is germane to this review,
as little work was being done in Canada prior
to the 1960s. The earliest account that | am
aware of is the nineteenth-century study by
Hinde (1877)onthe Scarborough interglacial
beds, where he noted three fossil diatom
taxa, followed by Dawscn’s {1893) report of
diatoms from what he believed were inter-
glacial deposits near Rolling River, Man-
itoba. A few species lists of fossils identified
from diatomaceous deposits in southern
Canada also were compiled (Boyer, 1926).

Interestingly, a re-examination of the same
interglacial beds where Hinde had noted
diatoms and Chara almost a century earlier
rekindled interest in the use of diatoms as
paileoecological markers in Canada.
Terasmae's (1960) palynological study of the
Don Formation included a brief discussion of
20 diatom taxa. Later, Duthie and Mannada
Rani (1967) re-investigated the site, and
recorded over 200 diatom species; they con-
cluded that the beds represented a fresh-
water river estuary.

Lasalle (1866) listed the diatoms he
recorded in his primarily palynological stud-
ies in the St. Lawrence lowlands, and
showed how fossil pollen and diatoms could
be used together to reconstruct the paleo-
environments of the Champlain Sea. Shortly
thereafter, Stockner {1971) assessed the
applicability of diatoms as indicators of water
quality, and Sreenivasa and Duthie {1973)
published the postglacial diatom history of
Sunfish Lake (Ontano). A large number of
Canadian studies were soon 1o follow.

Morphological and Biogeochemical
Fossils
The main requirement for any freshwater
fossil is that it be insoluble inwater, and that it
be relatively resistant to bactenal decay and
chemical solution. Despite these stringent
pre-conditions, a lake’s sediment contains a
surprisingly large suite of indicators, with
virtually every algal group represented
{Table 1). 1 distinguish two main categories of
algal fossils: morphological fossils, which
maintain some morphological integrity in
sedimentary deposits, and biogeochemical
fossils, which are preserved in sedimentary
profiles by chemical markers.
Morphological fossils are those thatcan be
studied visually, although high resolution
microscopy is usually required. These include
the “*hard parts’’ of an alga’s structure, many
of which are taxonomically diagnostic.

Charophyceae
worts, brittle worts

Dinophyceae dinoflagellates

Cryptophyceae cryptophytes
Baciltariophyceae diatoms
Chrysophyceae chrysophytes

Table 1
CLASS COMMON NAME
Cyanophyceae blue-green algae or
blue-green bacteria
Chlorophyceae green algae
Euglenophyceae euglenoids

charophytes, stone

The dominant freshwater algal classes (Lee, 1980)
and their morphological fossils. These algal groups are
also represented by fossil pigments.

MORPHOLOGICAL FOSSIL

vegetative and reproductive cells

vegetative and reproductive cells
vegetative and reproductive cells

vegelative and reproductive cells

vegetative and reproductive cells
none known
valves/frustules

statospores, mallomonadacean scales
and bristles/spines
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By far, the most widely studied are the sili-
ceous valves of diatoms (Figures 1-3).
Diatoms represent one of the most widely
distributed and ecologically diverse group of
algae, whose systematics is based on the
size, shape, and sculpturing of their cell walls
or frustules (one frustule is composed of two
interlocking halves or valves). Because oftheir
siliceous nature, diatom valves are usually
well preserved in sedimentary deposits,
where they can reach concentrations on the
order of 108 per cm?. Barber and Haworth
(1981) provide a useful summary of the termi-
nology used in dialom taxonomy, and Bat-
tarbee (1986) reviews the methodology and
applicability of diatoms to paleoecological
studies.

Chrysophycean algae similarly are repre-
sented in the fossil record by siliceous
remains. All chrysophytes produce siliceous
resting cysts known as statospores (Figures
4 and 5), the morphologies of which are often
species-specific, and, like diatom valves,
appear to have all the necessary characteris-
tics to be useful paleoindicators. However, in
contrast to diatom valves, the taxonomy of
the cysts remains poorly documented, and in
fact only about 5% of cyst morphotypes have
been linked to known chrysophyte taxa. Sev-
eral artificial classification systems have
been proposed (e.g., Nygaard, 1956) and
used {e.g., Carney and Sandgren, 1983},
although rarely can paleclimnologists iden-
tify many fossil cyst morphs. These tax-
onomic shortcomings are being addressed
by the International Statospore Working
Group {(ISWG}, which has proposed a series
of guidelines for describing statospores,
even if their taxonomic identities are
unknown (Cronberg and Sandgren, 1986).

Several common chrysophyle genera
{(such as those in the family Mallo-
monadaceae) are further characterized by
an external armour of overlapping siliceous
scales (Figure 6) and bristles or spines.
Unlike the statospores, these species-
specific scales have been studied exten-
sively with the electron microscope, and
presently the entire systematics of the Mallo-
monadaceae is based on the shape and
sculpturing of the scales (Asmund and Kris-
tiansen, 1986). Chrysophyte scales are usu-
ally well preserved in lake sediments, where
they can be identified and enumerated
alongside diatoms using the same prepara-
tions (Munch, 1980: Smol, 1980). Cronberg
{19863, b) and Smol(1987a) have reviewed the
methodology and applicability of chrysophyte
cysts and scales to paleolimnological
analyses.

Mostother algal groups also preserve mor-
phological remains (Figure 7}, although
research on these has lagged behind the
siliceous fossils. For example, vegetative
remains of green algae, such as intact
desmids or entire colonies of Pediastrum, are
not uncommon in pollen preparations (Cron-
berg, 1986a; Frederick, 1981). Similarly, the

resting stages and vegetative remains of
other Chlorophyceae (Van Gesl at al., 1981,
Livingstone, 1984), blue-green algae (ibid),
dinoflagellates (Norris and McAndrews,
1970), and charophytes (Burne et al., 1980) are
occasionally reported, although these indica-
tors still represent a largely unstudied and
probably underutilized paleoecological tool.
Past algal populations also can be inferred
from biogeochemical fossils, most notably
photosynthetic pigments and their deriva-
tives (Brown, 1969). Chicorophylls have been
useful in this regard, but carotenoids (i.e.,
carotenes and their oxidized derivatives the
xanthophylls) are more 1axonomically spe-
cific, and can be used to trace the wax and
wane of algal and photosynthetic bacterial
groups. Fossil pigments are especially
important in the reconstruction of popula-
tions that do not usually form morphological
tossils. For example, cryptophytes can be
traced by their specitic carotenoid allo-
xanthin, blue-green algal populations by
myxoxanthophyll, and so forth. Certain pig-
ments are restricted to even lower taxonomic
categories, such as oscillaxanthin (Brown
and Colman, 1963), which is only found in
some Oscillatoria and Spirulina species.
From a historical perspective, it is interest-
ing to nole that the pioneering Canadian
research with pigments (Vallentyne, 1355,
1956; Brown, 1962) pre-dated much of the
early work done on morphological fossils.

Field and Laboratory Techniques

Most sedimentary deposits contain at least
some algal fossils. Field collection tech-
niques are identical to those used for other
paleoecological work. In general, sediment
cores from lakes or bogs are retrieved using
either gravily or piston corers (techniques
reviewed by Aaby and Digerfeldt, 1986). The
sediment is then extruded and sectioned at
defined intervals. In some circumstances,
fine resolution sampling is required (e.g., the
algae in asingle varve), The sediment is then
either impregnated with a resin and thin
sectioned (Tippett, 1984), or a thin rind of
sediment is adhered to a length of trans-
parent tape from a longitudinal section of a
frozen core (Simola, 1977). For certain spe-
cialized investigations, such as the study of
sections (Terasmae, 1960), a systematic
sequence of samples can be collected using
a trowel or spatula.

Preparation procedures depend on the
type of palegindicators 1o be studied. Sili-
ceous microfossils must first be separated
from the sediment matrix by treatment with
strong oxidizing acids, which digest any
associated organic matter, followed by sev-
aral nnses in distilled water (Battarbee,
1986). The resulting concentrate is then
maounted on glass slides in a medium of high
refractive index, such as Hyrax or Naphrax.
Analyses can be prepared quantitatively by
using evaparation trays {Battarbee, 1973) or
by introducing a known quantity of exotic
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markers to the sediment, such as glass
microspheres (Battarbee and Kneen, 1982).
For non-siliceous microfossils, most proce-
dures are similar 10 palynological prepara-
tions (Cronberg, 1986a; van Geel, 1986).
Morphological remains are usually identi-
fied and enumerated using high resolution
optics (Figures 1, 4 and 7), although certain
groups may require some scanning (Figures
3 and 5) or transmission (Figure 6) electron
microscopy 1¢ confirm taxonomic identifica-
tions. Aithcugh the morphological taxonomy
of mostalgal groups is based on systems that
originated in the early nineteenth century, the
single most important quality assurance/
quality control problem in morphology-based
palececology is consistent systematics,
Procedures for extracting fossil pigments
and their derivatives are less standardized
and more rigorous, and the validity of certain
techniques continues to be anarea of consid-
erable debate. Isomers and the various pig-
ment degradation products must all be
considered (Brown, 1969). In general, analy-
ses include the use of solvents, such as
acetone and alcohol, to extract the pigments
from the sediments. The extract is than sepa-
rated into its various pigment components
using chromatographic techniques. Spec-
trophotometry is often used to aid in identify-
ing the pigments and their derivatives. In
contrast to morphological microfossils, more
stringent laboratory procedures (e.g., work-
ing under dim lights, storage ot sedimenls
under a nitrogen atmosphera, efc.) are
raquired to minimize degradative processes
and to avoid the introduction of artifacts.

Applications

Many algal taxa have specific ecological
requirements; therefore at least some infor-
mation on past ecclogical conditions can
be gleaned from a careful analysis of the
algal assemblage the environment once
supported.

Because of the large number of environ-
mental factors that can potentially affect the
size and compaosition of an algat community,
the autecologies of many taxa are still poorly
documented — but this shortcomingis being
pursued aggressively and continued pro-
gress should be expected (Davis and Smol,
1986). An especially popular and successful
approach has been the use of *‘calibration
sets”, viz. the study of algal microfossils in
the recent sediments (e.g., top cm, usually
representing the last few years of sediment
accumulation) in well studied lakes, and the
correlation of these assemblages with mod-
ern environmental conditions. A variety of
statistical technigues can then be applied to
the data set, and transfer functions relating
algal compaosition to environmental variables
{such as pH; see papers in Smol et al., 1986)
can be constructed. Other measures of com-
munity structure, such as species diversity,
have been used, bul these approaches
should be used with caution (Smol, 1981).
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Figure 1 Lightmicrographs of fossil diatom valves.
Scale bar = 10 um.

(a) Frustulia rhomboides (Ehr.) DeT. — a common
benthic diatom from shallow, acidic waters.

(b) Gomphonema acuminatum Ehr. — found in
circumneutral, shallow waters.

(¢) Semiorbis hemicyclus (Ehr.) Patr. — a shallow
water, acidobiontic diatom.

(d) Cyclotella comta (Ehr.) Kitz. — a common
planktonic diatom in non-acidic waters.

(e) Pinnularia viridis (Nitz.) Ehr. — a benthic diatom
found in circumneutral waters.

(f) Small Fragilaria species from the sediments of a
small lake from Northern Greenland. These diatoms
are commonly found in the early post-glacial
sediments of temperate lakes.

Figure 2 Transmission electron micrograph of
some of the small Fragilaria diatoms shown in
Figure 1 (f). The detail of the valve striation pattern
can be seen. Scale bar = 2 um.

Figure 3 Scanning electron micrographs of fossil
diatom valves. Scale bar = 2 um. (a) Anomoeoneis
serians (Bréb. ex Kitz.) Cl. — a shallow water
diatom from acidic waters. (b) Cyclotella stelligera
Cl. et Grun. — a common planktonic diatom in many
Canadian waters.

Figured4 Light micrograph of a fossil
chrysophycean statospore. Scale bar = 2 um.

Figure 5 (a-c) Scanning electron microgrphs of
chrysophycean statospores. Scale bar = 2 pm.

Figure 6 Transmission electron micrographs of
chrysophycean scales. Scale bar = 0.5 um.

(a) Synura petersenii Korsh. — a widespread
species common in many water bodies.

(b) Mallomonas hindonii Nicholls — a chrysophyte
characteristic of very acidic waters.

(c) Mallomonas transsylvanica Peterfi et Momeu
— a relatively rare chrysophyte in most North
American waters.

Figure 7 Light micrographs of non-siliceous algal
microfossils. Scale bar = 20 um.

(a) Pediastrum colony — these planktonic algae
have been used to infer past changes in a lake'’s
eutrophication.

(b) dinoflagellate cyst.
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Below, | briefly discuss some of the ways

that algal assemblages have been used to
infer past environmental conditions, Most of
the examples deal with diatoms, but other
algal groups are discussed where data are
available.
Habitat. The life forms of most algae, and
especially diatoms, are sufficiently well
known that taxa can be categorized as hav-
ing optimai growth either in the open water
{phytoplankion) or attached in the littoral
zone {periphyton). Often, the latter can be
characterized further by the type of associ-
ated substrate, namely attached to plants
(epiphytic), rocks (epilithic), sand grains (epi-
psammic), or mud (epipelic). Certaintaxaare
also charactenistic of flowing waters (rheo-
philic; Patrick and Reimer, 1866}, snow and
ica (cryophilic; Lichti-Federovich, 1980}, tree
bark (corticolous; Cox and Hightower, 1972},
and subaerial and aerial habitats, such as
sandstone cliffs (Camburn, 1982) or even the
hanging gardens at national monuments
{Johansen et al., 1383)! The paleocecologist
can use the known life strategies of algae to
reconstruct the relative size and composition
of these different communities (e.g., shallow
water versus deep water forms), from which
other environmental intormation can be
deduced (e.g., water level fluctuations).

Riichie and Koivo (1975} related habitat
preferences of diatoms to water level
changes in the Lake Agassiz basin through-
out postglacial time. They interpreted the
abundance of planktonic diatoms in the early
sediments as representing deposits of alarge
glacial lake. These communities were
replaced by benthic floras as the lake gradu-
ally receded to the shallow pond, still present
today. Bjorck and Keister (1983) also included
diatom analyses to aid their interpretations of
the Emerson Phase of Lake Agassiz. Manny et
al. (1978) recorded fluctuations in the relative
frequencies of planktanic and littoral taxa in a
diatom stratigraphy from Wintergreen Lake
{Michigan). They postulated that water levels
have fluctuated in the past, which altlered the
size of the lake’s littoral zone.

Osborne and Moss (1977) and Moss (1978}
noted changes in the stratigraphic distribu-
tion of epiphytic diatoms in some Norfalk
(UK) ponds. They believed that the decline in
epiphytes indicated the elimination of macro-
phytes by the striking increase in planktonic
forms and the resulting reduction in light
transparency following eutrophication.
Meanwhile, Jones et al. {(1978) and Smol and
Dickman (1981) attributed the decline in shal-
low water taxa to increased turbidity in their
study lakes' littoral zones following road
construction; the latter example was trom a
twentieth-century highway built in Algonquin
Park (Ontario), the former was from a Welsh
road built by the Romans in A.D. 74!

Hickman and Klarer (1981) recorded a
dechne in plankionic diatoms and a compen-
satory increase in epipelic forms about 6,600
years agoin Lake Isle (Alberta}. This coincided
with deposition of Mt. Mazama ash onthe lake.

Florin and Wright {1869) identified a diatom
assemblage characteristic of terrestrial hab-
itats, along with wood debris and fungal
spores, in the basal sediments of Kirchner
Marsh (Minnesota). These data were inter-
preted as evidence for the persistence of
stagnant glacial ice. The earliest sediments
probably reflect the floor of a forest thatonce
grew on the stranded ice block. Subse-
quently, the ice melted and a kettle lake
formed, and planktonic diatoms began to
dominate the assemblage. Haworth {1976)
also found terrestrial diatoms in the late-gla-
cial sediments of two Scottish lakes. She
postulated that these diatoms were indicative
of solifluction processesinthe drainage basin.
Temperature. Algae are generally consid-
ered to be relatively poor indicators of ch-
mate, although temperature optima for some
taxa have been suggested. Diatoms have
been included in many studies to reinforce
paleoclimate interpretations, especially in
African lakes (e.g., Richardson and
Richardson, 1972; Stoffers and Hecky, 1978;
Stager, 1984). Preliminary research on light
and nutrient resource partitioning amongst
Afncan diatoms, and the relationships these
variables have with climate, also provides
interesting palececological possibilities
(Kitham et al., 1986},

In certain environments, the defined hab-
itat requirements of algaltaxamay be used to
inter changes in past climate. Smol (1983,
1987b) suggested that in polar regions, such
as the high arctic, algal microfossils may
provide proxy data for paleoclimates because
temperature changes are intimately related
to the extent of snow and ice cover on high
latitude lakes. Therefore, temperature deter-
mines the area of a lake that can be colonized
by photosynthetic organisms. During cold
summers, a portion of the lake’s pelagic re-
gion may remain permanently covered by a
raft of snow and ice, and therefore only shal-
low water, littoral species will thrive. As tem-
peratures ameliorate, a larger portion of the
lake is made available for algal growth, and
progressively deeper water floras develop.

Similar reasoning might explain the abun-
dance of shallow water diatoms in the late-
glacial and early postglacial sediments of
mosl lakes (¢.g., Sreenivasa and Duthie,
1973; Smoi and Boucherle, 1985). Planktonic
communities may have been late in develop-
ing because the cold temperatures charac-
teristic of the late-glacial truncated the
growing season in the pelagic region. Only
later, as temperatures ameliorated and lake
ice was less extensive, were deeper water
algae more competitive.

Seasonality. Seasonal changes in algal
populations have been the subject ofintense
study since the time of the first limnologists.
Knowledge of the marked seasonality of cer-
tain algal groups has been exploited by
paleocecologists to demonstrate that lamina-
tions in some lake sediments are annual
deposits. For example, Tippett {(1964), in a
classic paper on varves in Ontario lakes,

used the known seasonal distributions of
diatoms and chrysophyles as evidence for
the annual nature of the laminations. Other
studies that examined algal tossils in varves,
and related them to seasonal events, include
Simola {1977), Battarbee (1981), and Peglar
et al. (1984).

Conductivity/salinity. Water salinity is
one of the most important factors influencing
the distribution of algae. Much of the avail-
able data are for diatom species. Most
diatoms can be characterized ecologically
according to their salinity tolerances (i.e.,
halobian spectrum; defined by Kolbe (1927),
and subsequently modifed by Hustedt{1957)).
Recent work on calibration sets indicates that
diatoms may be charactenzed further by even
more specific salinity variables, such as
assemblages common to sodium carbonate-
—bicarbonate, sodium chiorde, or calcium
magnesium carbonate—bicarbonate waters
(Gasse, 1386). The biostratigraphy of other
algal remains, such as charophyle oospores
(Burne et al., 1980; Chivas et al., 1986), also
may be important paleosalinity indicators,
and certainly warrant further work.

Alhonen (1971) used the known salinity
tolerances for diatoms in Finnish sediment
cores 1o document the stages in the develop-
ment of the Baltic Sea. Similarly, Kjemperud
(1981) traced the posi-glacial isolation from
the sea of eight Norwegian basins by record-
ing the shift from marine, to brackish, and
finally to freshwater diatoms in his sediment
cores. Coincident with the shitt to a fresh-
water flora, he also noted the presence of
green algae, such as Padiastrum and Botryo-
coccus colonies — further evidence that the
water salinity had declined markedly.

Osborne and Moss (1977) and Buzer
{1981) interpreted the presence of brackish
and marine diatoms in their lacustrine sedi-
ments as evidence for marine transgres-
sions. In the latter study, changes in dino-
flagellate cysts were noted. Tuchman et al.
{1984) recorded salinification in a Michigan
lake based on a diatom profile, but this was
due to seepage from a salt storage facility
adjacent to the lake.

Paleosalinity interpretations may also be
used to infer past climates and water levels,
as these variables are closely related,
especially in closed basins. For example,
Bradbury (1971) delineated 15 diatom zones
ina 46 m core from Lake Texcoco (Mexico).
He suggested that past changes in water level
resulted in drastic salinity changes, which
were reflected by the dialom assemblages.
These data indicated that Lake Texcoco had
fluctuated from such extremes as a deep,
freshwater lake with low salinity, to a shallow,
brackish marsh. Stoermer et al. (1971)
believed that lake level fluctuations were
related to salinity changes during the
ontegeny of Devil's Lake’s in North Dakota.
Nutrients/eutrophication. Many algal
taxa are relatively stenotypic with respect to
their trophic requirements. Although a large
number of nutrients may potentially limit algal
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growth, the vast majority of temperate lakes
are phosphorus limited. Not surprising, most
palesecological studies dealing with
eutrophication have centered on phos-
phorus dynamics.

Alake may be enriched with nutrients froma
variety of sources, ranging from the steady,
albeit usually slow release of nutrients from
the terrestrial system (natural eutrophication),
to the greatly accelerated nutrient input resuft-
ing from human activities (cultural eutrophica-
tion). The latter includes direct sources, such
as sewage input, as well as more difuse
sources, such as agricultural runoff.

Virtually every type of eutrophication pro-
cess has been studied in the paleoecological
record. Diatoms are the most widely used
indicators; however, in contrast to mostofthe
previous examples, other algal markers
have been used. This is at least partially
because other groups, such as blue-greenor
green algae, are usually more competitive in
eutrophic waters. Most of the work on the
blue-green algae is via pigments (Engstrom
et al., 1985), whilst the green algae are usu-
ally studied by their morphological fossils
(Cronberg, 1986a). Chrysophycean scales
{Munch, 1980; Smol, 1980) and slatospores
{Carney and Sandgren, 1983; Smol, 1985;
Rybak, 1986) are also sensitive indicators.

Past trophic changes, unrelated to human
activity, usually involve the use of cores
spanhing a lake’s entire postglacial sedi-
mentary history. Attemnpts al estimaling paleo-
produclivity was a driving force for much of
the early paleolimnological work (Wetzel,
1970; Adams and Duthie, 1976). Often, the
apparent trophic shifts are related to a com-
plex of interdependent factors. For example,
in Little Round Lake (Ontario) diatom and
chrysophycean microfossils (Smol and
Boucherle, 1985) and fossil pigments (Brown
et al., 1977; Daley ot al., 1977) showed that
the lake's trophic status changed over the
past 11,000 years. These changes were
attributed to cold temperatures during the
lake's early history, watershed processes
requlating erosion and nutrient release, and
fluctuations inthe lake's meromictic stability.
QOne marked eutrophication event, which
occurred around 4,800 years ago, was
attributed to the effects of the decimation of
hamlock trees in the lake's catchment
(Boucherle et al., 1986); a major change in

forest composition that was most likely
caused by a pathogen {Davis, 1981). The
algal species shifts recorded at the “hemlock
decling’’ were similar to those noted in Little
Round Lake's recent sediments, with the lat-
ter coinciding with the arrival of European
settlars and land-clearance in the late-1800s
(Smol et al., 1983).

Stockner (1978) reviewed most of the early
Canadian work on eutrophication. Space lim-
itations preclude a comprehensive update of
the large number of studies that have
focussed on cultural eutrophication, exceptto
note that the limnological repercussions of
activities such as road construction (Smol and
Dickman, 1981}, agriculture (Bradbury, 1975;
Brugam, 1981), and sewage inputs (Stockner
and Benson, 1971) have all been considered.
Multidisciplinary approaches are the most
instructive (Engstrom et al., 1985).

Of particular interestto many North Ameri-
cans is the quality of the water in the Great
Lakes. Such large and deep bodies of water
may provide special challenges to paleo-
ecologists, but environmental reconstruc-
tions are still possible. Changes in diatom,
chrysophyte, and green algal populations
have all been used to document recent
eutrophication changes (¢.¢., Duthie and
Sreenivasa, 1971; Frederick, 1981; Harris and
Vollenweider, 1982; Stoermer et al., 1985).
An oftsheot of these studies has been the
guantification of biogenic silica in sedimen-
tary profiles as an estimate of past diatom
and chrysophyle populations (Schelske et
al., 1983, 1986). Such techniques have been
applied to smaller lake basins (Newberry and
Schelske, 1986).

In North America, cultural eutrophication
is usually restricted to about the last 150
years; in Europe, cultural disturbances may
date back thousands of years. For example,
Cronberg (1982, 1986) recorded strati-
graphic changes in green and biue-green
algal microfossils from Lake Vaxjosjon (Swe-
den). Originally, the lake was oligotrophic,
butitincreased in primary production argund
A.D. 600 as a resuit of human activity inits
drainage. Other investigators have traced
the limnological impact of slash and burn
agricuiture and peatiand drainage (Simola,
1983), hemp soaking (Battarbee et al., 1980),
fertilization by sea birds {(Moss, 1978, 1979).
and the effects of forest fires (Bradbury, 1986).

Table 2

alkalibiontic
alkaliphilous
indifferent
acidophilous

acidobiontic

The pH classification system for diatoms, as set up by Hustedt,
{1937-39)

accurring at pH values above 70

occurring at pH values about 7, with widest distribution > 7

occurring equally on both sides of pH = 7

occurring at pH values about 7, with widest distribution >7

occurring at pH values under 7. with optimum distribution
at pH = 5.5 and under
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pH/acidification. In recent years, paleo-
limnological studies on lake acidification
have earned much credibility for paleo-
ecological research in general. Presently, a
large number of lakes in North America and
northern Europe are acidic and devoid of
higher fife forms, such as fish. Acidic pre-
cipitation, related to cultural activities such
as the smelting of ores or the burning of coal,
has been suspected of aciditying these lakes.
Without historical water chemisiry data,
causative factors are difficult to identify.
Because alarge numberof diatoms and mallo-
monadacean chrysophytes are characteristic
of restricted pH regimes, their stratigraphic
distribution in affected lake sediments can be
used to trace the timing, rates, and patterns of
lake acidification. Much progress has been
made in demonstrating the predictive intor-
mation contained in fossil assemblages (Bat-
tarbee, 1984; Charles and Norton, 1986,
papers in Smol et al., 1986). In many ways,
acidification studies provide a stellar example
of the practical application of paleoecclogical
techniques to environmental problems.
Hustedt {19371939) was the first to clearly
recognize the pH specificity of diatomtaxa. He
identified diatoms from over 650 samples from
Java, Bali, and Sumatra, concluding that the
water's hydrogen ion concentration (pH) had
the greatest influence on the composition of
assemblages. The five categories he deline-
ated in his pH classification system continue
to be used commonly today (Table 2).
Nygaard (1956) expanded Hustedt's sys-
tem by attempting to quantify pastchanges in
lakewater pH. Nygaard proposed a series of
indices that related the relative abundances of
taxa in the various Hustedt categories to
lakewater pH. The next major step towards
quantification was by Merildinen (1967), who
used linear regression analysis to establish
quantitative relationships between logarithms
of Nygaard's indices and measurec pH
values. kn recent years, many statistical tech-
niques have been applied to diatom cali-
bration sets {e.g.. Charles, 1985; Anderson et
al., 1986; Huttunen and Merilainen, 1986; Tay-
lor, 1986), and the predictive tools available to
paleoecologists continue to be refined and
improved (Davis and Smotl, 1986). Most of the
literature again relates to diatoms (Battarbee,
1984), although chrysophyte scales increas-
ingly are being used to enhance and supple-
ment interpretations (Smol et al., 1984, Smol,
1986; Steinberg and Hartmann, 1986;
Hartmann and Steinberg, 1986}.
Paleclimnological studies have now been
completed or are in progress for numerous
affected regions, and recent declines in
lakewater pH have been inferred for many
sites using diatoms and chrysophyles
{Charies and Norton, 1986). Infarred pH
changes in the recent sediments of the
affected lakes are far greater than those
recorded throughout the Holocene. For
example, in Upper Wallface Fond (New York)
the diatom inferred pH declined from above 7
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to about 5 from circa 12,000 to 8,000 years
ago. The diatom inferred pH then remained
relatively stable throughout the Holocene
(Whitehead et al., 1986) until the recent acidi-
fication stage, which was of a larger magni-
tude than recorded previously (Charies et al.,
1986). Similar trends were inferred using
chrysophyte scales (Christie and Smol,
1986). Such studies have identified naturally
acidic sites (e.g., Ford, 1984, 1986).

Battarbee et al/. (1985) used paleolim-
nological techniques to assess competing
hypotheses for the onset of lake acidification
in British lakes. Acid precipitation, heathland
regeneration, afforestation, and natural
acidification were all considered. The acid
precipitation hypothesis was substantiated.

Although most pH reconstructions are con-
cerned with the effects of acid deposition, a
number of other types of studies have been
completed. For example, Fritz and Carlson
{1982) and Brugam and Lusk (1986) traced the
recovery of acid strip-mine lakes in the mid-
weslern states following the cessation of acid
ming inputs; McKee et al (1987) studied the
effects of uranium mining and miling on
Quirke Lake {Ontario); and Renberg (1986}
showed thatthe present acid(pH = 3}stateof
Lake Blamissusjon (Sweden) was related to
the oxidation of sulphides from nearby marine
sediments, which were exposed as a result of
isostatic uplift a few hundred years ago.

As with other aspects of paleophycological
work, continued refinements of pH calibra-
tions add additional autecological data for
indicators. For axample, Davis et al. (1985)
showed that diatom assemblages may be
quantified with respect to the water’s total
organic carbon (TOC), which can be used as
an estimate of lakewater colour. With acidi-
fication, precipitation ot coloured organic
compounds with acid-mobilized metals often
oceurs, thus explaining the clarity of most
acidified lakes. Metal concentrations, whose
solubilities often are enhanced by acidic
waters, have been implicated as factors
responsible for the composition of diatom and
chrysophyte assemblages (Charles, 1986;
Dixit, 1986; Gibson et al., 1987); however, work
on calibration sets that can quantify these
relationships are still in progress.

Conclusions

Paleophycological work has greatly
increased our understanding of past aquatic
environments. | have only gleaned a few
studies from a myriad of publications dealing
with sedimentary deposits. In addition, fossil
algae have been used to reconstruct events
that are lotally unrelated to stratigraphic
sequences. For example, archaeologists can
trace the origins of pottery by the diatoms
present in the polter’s clay (Jansma, 1984), or
forensic scientists used diatoms isolated from
human tissues to determine it drowning was
the cause of death of eight Greenlanders, who
died in the fifteenth century (Foged, 1982).
The applications are almost endless.

There are, of course, problems. The
autecologies of many algal taxa are still
poorly known, and this seriously hampers
many investigations. Continued work with
calibration sets, and the application of new
and more powertful statistical approaches,
will improve environmental reconstructions
and predictive capabilities. This cannot be
accomplished without continued improve-
ments in taxonomic precision — often the
biggest source of error in palececological
studies. Other problems, such as poor pre-
servation of key indicators (Round, 1964},
bicturbation of the sedimentary sequence
(Davis, 1974), or spatial variability in micro-
fossil distribution {Dixit and Evans, 1986),
can seriously limit interpretations. These
problems, however, are not unique to paleo-
phycological work.

Clearly, the best approach is a multi-disci-
plinary one that uses the widest variety of
indicators possible; therefore any redundan-
cies in the data set wili provide internal
checks on interpretations, and a more holis-
tic trajectory of the lake’'s ontogeny can be
inferred. In North America, this was demon-
strated decisively by the PIRLA {Paleo-
ecological Investigation of Recent Lake
Acidification) project, where a variety of
botanical, zoological, chemical, and physical
paleclimnological techniques, coupled with
state-of-the-art multivariate statistical treat-
ments, were applied to stratigraphic studies
of lakes in acid sensitive areas (Charles and
Whitehead, 1986). The results exemplify the
power of integrated approaches (Charles ef
al., 1986, 1987).

During the last decade, there has been a
tremendous surge of interest in paleolimnol-
ogy, with fossit algal work often taking a
leaching role. The transition from purely
descriptive studies, to attempts at using
“indicator species'’, to the calculation of
indices, to the development of transfer func-
tions using sophisticated statistical and com-
puter techniques has occurred over a
relatively shorttime. Similarly, withadvances
in the technological tools available to paleo-
ecologists, such as electron microscopy or
high pressure liquid chromatography
(HPLC), the suite of potential indicators will
continue to grow. As the number of qualified
researchers increases, progress willacceler-
ate atan evenfaster pace. As aresult, wecan
expect 1o have a clearer understanding of
ecological and environmental processes —
both modern and in the distant past.
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