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Summary

In the widely-read Geoscience Canada
Facies Models volume, Walker (1979) ad-
vocates a method for constructing facies
maodels based on transition frequencies
(see also Harper, 1984). | here discuss
modifications to Walker's method, pitfalls
both to Walker's and related methods, and
suggest improvements, especially the use
of median tetrads (defined below) and
halt-normal plots to recognize significant
facies transitions “masked” by other ap-
proaches.

Walker’'s Method

Given several litho- and/or biofacies ob-
served in successions, for each possible
facies transition i to j {excluding self-transi-
tions i to i):

a) tabulate the number of cbserved
instances of the transition, and convert it to
a relative frequency [Waiker uses the
rejative frequency with respect 1o row to-
tals, i.e., number of observed instances of i
overlain by j divided by number of in-
stances of 1 overlain by some facies other
than 1 (s0 that frequency row totals equal
Lk

b) calculate the probability of transition
from i to j assuming the nult hypothesis
that such transitions are random. depend-
ing only on the relatve abundance of
facies in the successions sampled;

c) subtract (b) from (a), and erect a
facies relationship diagram emphasizing
those differences which are large.

Improvements

Let us consider modifications to Walker's
procedure by analyzing the large transition
count matrix compiled by Johnson (1984)
for the 3000 m-thick nonmarine Bellingham

Bay Member of the Chuckanut Formation
of Northwest Washingten (Fig. 1). John-
son's data provides an opportunity to ana-
lyze a large database (10 facies types,
2243 facies transitions cournted}.

t) Observed frequencies. Each element of
the matrix in Figure 1 gives the number

of occurrences of the facies listed on the
left overlain by the facies listed on the

top, 8.g., there were 39 observations of
facies C overlain by facies Fm. Walker
would convert these to frequencies relative
to row totals. However, it is simpler to
work with actual transition counts.

2) Estimating transition probabilities for a
random sequence. In estimating such
probabilities, Walker (1979, p. 3) would use
the actual numbers of instances of each
facies type recorded in measured sections
(rather than the row and column totals
shown in Fig. 1). His procedure amounts to
placing the actual facies counts as ex-
pected row {and column) totals for the pur-
poses of computing transition probabilities
(and expected cell counts) for the randem
sequence. Walker's procedure presumes
that recorded counts of facies serve to
astimate “the absolute abundance of the
various facies” in the environment under
study. Yet, such counts probably also reflect
vagaries of outcrop pattern. For instance,
facies are counted only if they occur at

a facies transition; facies which tend to be
covered more than others would tend to

be double counted (where such facies are
covered in the middle, they would tend

to appear both at the top of one continuous
cutcrop interval yielding transition counts

C Fm Fl sm Sr
C - 39 23 2 21
Fm 53 - 99 55 252
Fl 15 93 - 13  2¢6
sm 2 64 18 - 27
Sr 208 284 195 53 -
35X 5 21 il 14 131
51 ] 14 1 [¢] 5
3e ¢} 4 i 2 3
GX a 1 2 %] L
Sm 2 6 2 7 3

COL
TOTAL 95 522 374 146 643

Figure 1 Facies transihon counts for nonmaring
Bellingham Bay Member of the Eocene Chuck-
anut Formation of Northwest Washington. (Data

203

and at the base of another). More funda-
mentaily, Figure 1 gives counts of facies
transitions, not facies; any model explaining
it should refer to frequencies of facies
transitions not frequencies of facies. My
own predilection is to use actual row and
column totals {Fig. 1) to estimate expected
transition probabilities.

3) Preserving row (and column) totals.
Walker (1979, p. 3) considers one row at a
time. For each row, he estimates the prob-
ability of a transition from facies i to facies |
by n/(N-n) where n, and n, are the number
of oceurrences of facies i and j and N is
the grand total of facies occurrences. In ef-
fect, he estimates the conditional probabil-
ity of transition for i to j given that a
transition from i to some other facies has
occurred. While Walker's method preserves
row totals, it distorts column totals {Read,
1969, p. 204; Turk, 1982; Carr, 1982, p.
907; Powers and Esterling, 1982). For ex-
ample, column A and B totals obtained
from Walker's Figure 2¢ by multiplying pre-
dicted frequencies by observed row totals
(on his Fig. 2a) are 5 and 9, not 15 and

12. Also, Walker's method could just as
reasonably be applied to expected column
totals; in other words, he could estimate
the conditional probability of transition from
facies i to j given that a transition {0 |
from some cther facies has occurred

(= ny/(N-n). Yet, this estimate ditfers from
his original (= n/(N-n;); one might be
judged significant yet the other not.

Turk (1979; 1982), Powers and Esterling
(1982, p. 915-917) and Carr (1982) call
attention to an alternative way of estimalting
expected cell counts: assume a model of

ROW
5x st Se Gx Gm TOTAL
9 2 o) ) 1 97
kt:] 1@ 2 10 19 529
38 4 4 a 4 371
14d 2 2 B 2 127
77 S 5 d 4 643
- 1l 14 32 24 299
14 - 1 1 4 EL)
3L 6 - Q 2 51
27 3 2 - 2 38
27 3 1 3 - 52
271 46 51 4% 49 |;;;3-

taken from Johnson, 1984, Table Il p 378).
For description of sedimentary facies see John-
s50n (1984, Table 2 and p. 367-377)
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quasi-independence and use iterative pro-
portional fitting to both row and column
totals. The technique is easily applied using
the widely available SAS package (SAS
Inst., 1982, p. 540-542). In our context,
quasi-independence means that for all fa-
cies transitions i—j where i does not equal
j, the probability of transition from facies i
to j is equal fo a, times b, wherg

a, = the probability of a transition from

facies i (row effect)
by = the probability of a transition 1o
facies j (column effect)

A transition from a facies i to itself may be
regarded either as undefined or as unob-
served. Figure 2 shows predicted numbers
of facies transitions for a random sequence
obtained using iterative propartional fitting
to row and column totals. (Compare with
Fig. 1 showing actual counts observed.)

Onea may test the matrix as a whole for
non-randomness before proceeding further
(Harper, 1984). See Powers and Eslerling,
1882, p. 916, and Turk (1979) for appropri-
ate chi-square test comparing Figures 1
and 2. The values in Figures 1 and 2 yreld
a chi-square value of 1126 (for 71 degrees
of freedom), which is significant at the
.0001 level.

4) Recognition of Outliers. Walker's next
step would be to subtract the values in
Figure 2 from corresponding values in Fig-
ure 1 {(Walker, 1979, subtracted observed
from expected frequencies) and use any
anomalously large differences to construct
a facies transition diagram. If we are to
use such residuals, it would be a good idea
to transform them so that they are approxi-
mately distributed as normal. Each residual
might then be tested for signiticance. Pow-
ers and Esterling (1982, p. 922) and Turk
(1979, p. 990) suggest the fransformation:

{Observed \.ralueg - Expected value,)
(Expected value,)' . These adjusted resid-
uals are approximately distributed as unit
normal. Haberman (1973, p. 206) proposes
an almost identical transformation but di-
vides the above expression by a difficult to
calculate variance term. Actually, the above
residuals will be approximately distributed
as unit normal only if variances of the
residuals are all close to 1 (Haberman,
1973, p. 206).

Figure 3 shows the residuals comparing
the observed with expected frequencies
(Figs. 1 and 2).

Application of Walker's original {row-
wise) procedure (1979) supplemented with
hinomial tests of significance (Harper,
1984) singles out the facies transitions
shown in Figure 4 as significant at the .01
level. These virtually are the same transi-
tions that Johnson regarded as significant
using Walker's procedure, but without
formal tests (Johnson, 1984, Fig. 14). The
residuals shown in Figure 3 suggest signifi-

cant facies transitions as shown in Figure
4 (residuals > 2.32 regarded as significant
at .01 level; Powers and Esterling, 1982,

p. 922). The virtual identity of the residuals
identitied by the two methods (Fig. 4)

and Johnson (his Fig. 14) suggests that, in
general, Walker's method gives the same
results as iterative proportional fitting and
analysis of residuals. But could all these
results be wrong? Analysis of raw residuals
- adjusted or not - is susceplible to a
serious, if not fatal, flaw: if more than one
significant cutlier exists, these outliers

are likely to go undetected by the method
(Hawkins, 1980, p. 51-73; Braudu and
Hawkins, 1982, p. 104; Pearson and Sekar,
1936). This potential pitfall is discussed

in the next section.

5) Recognition ot Qutliers — The Problem
of Masking. Any procedure designed to
search for anomalous values, i.e., outliers,
is susceptible to two types of errors —
masking and swamping (Bradu and Hawk-
ins, 1982). Masking occurs if the procedure
declares fewer outliers than actually exist
(i.e., so-called “type-two" errors occur).
Swamping occurs if the procedure declares
more outliers than actually exist (i.e., "type-
one” errors occur). Analysis of raw resid-
uals as outlined above, while perhaps
relatively free of swamping, runs a high risk
of masking significant residuals. if more
than one exist. in particular, all but the
largest residual may weil ba masked.

As an example, suppose that transition
countg for ten facies have expected values
identical to those given in Figure 2 above,
except for elements at (3,2), {5.1). (5,2),
and (5.6). Set the expected values of n, ;.
Ns 1. Ng» and ng g to 350, 100, 2500 and
308, respectively, (as opposed to 106, 34.

235 and 105 n Fig. 2). Any artificial dataset
produced under such constraints results
from a perlectly quasi-independent (ran-
dom) model with four glaring outliers. One
such dataset is given in the appendix. If
we apply iterative proportional fitting to the
dataset (as was done in Fig. 2), and calcu-
late residuais (as in Fig. 3), three of the
four outliers produce residuals which are
zero! {All but that for ng , = 2500 are 0).
At first glance it might appear that a
multi-step procedure identifying outliers one
at a time could circumvent the probiem of
masking. For example, Carr {1982, p. 908)
would identify significant extreme cells as
follows: perform a chi-square test of the
matrix as a whole to test its fit to a random
model (in his case. a log-linear model of
quasi-independence). Carr's model is gen-
grated using iteralive proportional fitting
as outiined above. If the quasi-independ-
ence model provides an inadequate fit
to the observed data: a) select the cell that
causes the greatest reduction in the chi-
square statistic; b) recalculate the chi-
square statistic with the cell eliminated; c)
continue steps (a) and (b) until the recalcu-
lated chi-square value is not significant.
However, such multi-step procedures also
run a high risk of masking (Hawking, 1980,
p. 51-62, 63-67). Carr's procedure applied
to the above artificial dataset does locate 3
outliers. However, if outliers "351" and
"2500" are changed to "500" and 1900,
respectively, then the procedure misses
three of the four detined outliers (including
“1900" - the most deviant)! Rather, it de-
letes one spurious “deviant” cell after
another (mostly ones with negative resid-
uals. 7 in all) leaving real outhers intact. |
have appiied Carr's procedure applied
to the Bellingham Member data using a .05

ROW

! Fm F1 Sm sr 5% Sl Sa Gx Gm TOTAL

C - 24.2 15.5 5.4 34.3 1.8 1.6 1.8 1.6 1.8 97
Fm 24.0 - 167.6 37.3 237.7 74.8 l1.4 12,7 11.3 12.2 529
tl 15.1 105.8 - 23.5 149.6 47.1 7.1 8.4 7.1 7.7 371
3m 4.6 32.4 26.7 - 45.8 14.4 2.2 2.4 2,2 2.3 127
Sr 33.5 235.4 158.6 52,2 - 184,7 15.9% 17.7 15.9 17.@ 643
5x 11.6 8€.8 5S1.7 17.9 114.2 - 5.% 6.1 5.4 5.8 299
5l 1.3 8.5 5.6 2.0 12.5 3.9 - .7 .6 .6 36
Se 1.8 12,5 8.2 2.8 17.7 5.6 B - .8 .9 51
Gx 1.3 3.3 6.9 2.1 13.2 4.1 .6 7 - .7 38
Gm 1.8 12.8 H.2 2.8 18.9@ 5.7 .92 1.8 .9 - 52
oL —-——--
TOTAL 9% 522 374 1486 643 271 46 Sl 46 49 2243

Figure 2 lterative Propartional Fit to Beltingham
Member data of Figure 1
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stopping level of significance; this produces
very different results from those shown in
Figure 4.While eight of the transitions
shown in Figure 4 are singled out as de-
viant {Sr to Fm; Sr to FI; Fl to Sr; Sl to Sx;
Sx to Se; Sx to Gx; Sx to Gm; and Sl to
Gm) by the method, the remaining 14 are
not regarded as significant (doubtless due
to masking}. For more discussion of Carr's
method, see the appendix.

6) ARecognition of Qutliers — A Supple-
mental Procedure. Bradu and Hawkins
(1982) provide a way to identify multiple
outliers in a single step while avoiding

the problem of masking: median tetrads
(defined below) are used instead of resid-
uals. Half-normal plots hslp to locate de-
viant outliers. The method requires at least
tive different facies types in the data ma-
trix.

Suppose we have shown that our data
matrix as a whole does not fit a quasi-
independent (random} model (in section 3
above). Then, as Powers and Esterling
(1982, p. 922-23) point out, we should use
a model which includes both signal and
noise. A log-linear model (Carr, 1982, p.
907-908) with an interaction term does just
this. For two facies, i and |, suppose quasi-
independence holds. Then the expected
number of transitions from i to j, E;;, equals

E; = Nab, n
where N = total number of facies transi-
ticns observed (see discussion of quasi-in-
dependence above). Thus:

log(E,) = log(N) + log(a,) + log(b,). (2}
where log(N) is a constant. Suppose,
however, quasi-independence does not
hold, but i and j interact (i.e., outliers exist).
We can model this interaction with a term

g, 5o that
tog(E,) = log(N) ~ log(a,} + (3)
logb,) + g, = Y, say. (4)

[Carr (1982, p. 908) misleadingly refers to
this model as the model of quasi-independ-
ence; this is true only if the interaction
terms are all zero (eqn. 2 above)]. Now,
suppose that there is a subsel T of aber-
rant cells such that

g, = Ofor(i,)notinT (5)

g, * Ofor(ij)inT (6)
The subset T contains the outliers.

Following Bradu and Hawking 1982), we
may define a tetrad T, eg as:

Tyeg © Yo+ Yeg Yo = Ye (7
Tetrads for whichi e or ] = g are identi-
cally zero and should be ignored.

Similarly, in our case, any tetrad involving a
diagonal element is undefined and may

be ignered (Bradu and Hawkins, 1982. p.
107).

If alt four celis of the tetrad are non-
deviant, then the expected value of T, ., is
zero, as is the expected value of g, If,
however, cell (i,j) is an outlier, whereas

cells (8,j), (i.g) and (e,g) are not, then T,
is an unbiased estimator of g,. (Bradu

and Hawkins call such a tetrad a "clean”
tetrad. A “contaminated” tetrad is one
where (e,j) and/or (i,g) and/or (e.g) are out-
liers.)

Bradu and Hawkins (1982, p. 105) rec-
ommend the following procedure:

(1) For each cell calculate Qyi.j} the

median tetrad (median not mean;

Noether, 1971, p. 7).

(2) Rank cells in decreasing order of

|Q:{i,j)|, the absolute value of the median

tetrad.

(3) Generate half-normal plot and use it

to locate outliers (see details below),

To compute the median tetrad Q,(1,2) for,
let us say, the matrix shown in Figure 1,
calculate the tetrads T ..o for (8,g) = (4,3},
(5.3), (6,3}, (7.3), (8.3), (9,3), (10.3), (3.4),

(5,4) ... (9,10). {In other words, for all non-
c Fm Fl sm

C - 3.8 -1.% -1.5
Fm 5.% - -0.8 2.9
Fl ~-0.6 -1.2 - -2.2
sm -1.2 5.6 -0.6 -

Sr -2.3 3.2 3.6 -1
Sx -1.9 -6.7 -2.9 -0.9
51 -1.1 .4 -2.80 -1.4
Se -1.3 -2,4 -1.8 -0.5
Gx -1,2 -2.7 -1.6 -1.4
Gm -1.3 -1,9 -2.,1 2.5

Figure 3 Residuals of Beflingham Member data
Expy ¢ (E)(,l::ﬁ,,)1 z

Residual, = (Obs,

/SM

= 4

<
= ‘\\\\\\\\\\\\\\\\\\\\\ <

Figure 4 Facies relationship diagram for Bel-
hngham Member. Solid arrow = facies transition
mdicated as signilicant both by (A) the proce-
dure of Walker {1979) and Harper (1984), as well
as (B) the analysts of residuals in Figure 3.
Dashed arrow = fransition indicated as signifi-
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diagonal values of the submatrix formed
by deleting rows 1 and 2 and columns

1 and 2.) One such tetrad, T.45. equals
log(39) + log{18) — iog(23) - log(64)

= —.74 (A minor point: for an observed
transition with a zero entry in Fig. 1, e.g.,
that from C to Se, the log of the entry
must be defined as zero, i.e., as log(1), or
otherwise handled, in order to preserve
the linear aspect of the loglinear model.

The power of the above method is this: if
“clean” tetrads make up at least half of
the tetrads involving the cell (i,)) then
IQ:(i.j)] will be a respectable estimate of g,
not susceptible to masking {Bradu and
Hawkins, p. 105).

Bradu and Hawkins suggest that half-
normal plot he used to identify outliers (for
a discussion of such plots see Johnson
and Leone, 1977, p. 806-09). In the ab-
sence of outliers, a half-normal plot will be

Sr Sx sl Se Gx Gm

-2.3 -@.5 .3 -1.4 -1.3 -d.¢6

.9 -4.3 -8.,4 -3.9 -@2.4 -0.,6

4.1 -1.3 ~-1,2 -1,4 -2,7 -1.3
-2.8 -1.,2 -0.1 -9.3 -1.5 -0.2
- -2.7 -2.7 -3.06 -4.9 -3.2
1.6 - 2,4 11.3 11.4 5.9
-2.1 5.0 - .4 .5 4,2
-3,5 1¢.8 5.6 - -8.% 1.1
-3.4 11,2 3.8 1.6 - 1.6
-3.5 8.9 2.3 a 2.3 -
Obs, - observed transition count (from Fig. 1)

Expu = expeacted count (from Fig. 2)

cant only by (A). Dragonally dashed arrow —
transtbon indicated as significant by (B). Level of
significance — .01 (.05 for transition Sx to 8!
using (A)). (Compare with Johnson, 1984, Fig.
14, p. 377}
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2.5000.

1,5000.

1.0000.

0.5000.

0.0 ¢ e ot e e R
i

Figure 5 Half-normal plot of simulated data
matrix with four outliers. Qutlier A = transition
from Sr to C; B = transition from Sr to Sx; C =

& = 23 15 5 33
Fm 23 - 185 37 237
Fl 14 351 = 22 149
Sm 3 32 18 - 44
Sr 99 254¢ 149 51 -
Sx 8 Ra 59 17 114
sl 1 9 5 %] 11
Se 3 14 9 2 18
Gx 2 9 5 ik L2
Gm @ Il 7 1 18
COL

TOTAL 153 3025 363 136 636

Figure 6 Simulated data matrix with four outliers
(for explanation see text)

39,98

transition from Fl to Fm; and D = transition

TOTAL
@ 85
11 521
8 611
1 119
16 3179
5 292
(%} 27
o] 46
@ % |
- 40
e

linear; suspected outliers will lie at the
end of the plot where a deviation from line-
arity occurs. Sparks (1970) provides a
short Fortran program which will generate
half-normal plots (see also Munford, 1972).

Figure 5 shows a half-normal plot for
the artificial dataset defined above (listed in
the appendix). All four outliers show up
on the plot.

A half-normal plot for the Bellingham
Member data (Fig. 1) does not show out-
liers. Rather, it is perfectly linear. This result
suggests that median tetrads and half-
normal plots should be used to supplement,
not replace, the methods discussed earlier in
this paper.
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Appendix

Figure 6 shows an artificial dataset pro-
duced by assuming that the transition
counts for ten facies have expected values
identical to those given in Figure 2 above,
axcept for elements at {3,2), (5,1), (5.2},
and (5,6), which have expected values of
350, 100, 2500, and 308, respectively. A
loglinear mode! is assumed such that the
log of each dataset element is distributed
as unit normal; for this reason, transition
counts listed may differ slightly from those
given in Figure 2.

A few details regarding Carr's method
follow: First, Carr (1982, p. 909) recom-
mends the stepwise technique of Brown
(1974) which selects the cell at each step
whose deletion brings about the greatest
reduction in chi-square. However, Brown's
procedure only approximates the vaiue
of chi-square that will result from the dele-
tion of each cell. It is much safer {o caleu-
late these resultant chi-square values
exactly (with a modest increase in com-
puter time using SAS). Brown's procedure
can result in an incorrect suite of cells
being selected as outliers, especially where
differences betwaen the effects of cells
on chi-square are slight; indeed, it intro-
duces errors when applied to the Bel-
lingham data.

Secondly, Brown (1974, p. 408) suggests
an alternative criterion for the stepwise
identification of cells as significant: instead
of selecting the cell at each step whose
deletion produces the minimum chi-square,
select the cell with the maximum residual
(Fig. 3). This alternative applied to the
Belingham data produces the same results
as shown in Figure 4{B) with the notable
exception that residuals for transitions C to
Frm, Srto Fm, Srto Fl and Fl to Sr are
not regarded as significant.

Reference
Brown, M.B.. 1974, Identification of the Sources

of Significance in Two-way contingency tables
Applied Statistics, v. 23, p. 405-413.
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