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Introduction

In this review we discuss porphyry copper
depositsinwhichthe products are copper,
copper and motybdenum, or copper and
gold. In the first descriptive part, we
outline the definition, history, distribution,
and geologic characteristics of porphyry
copper deposits; in the second part, a
model is presented that incorporates
known characteristics with genetic con-
cepts. Most references cited are recent
summary papers, which can be used as
sources for more extensive research, Our

tion/alteration is widespread and exhibits
lateral zoning; later supergene alteration
can produce vertical zoning resulting in
leached cappings and zones of secondary
mineralization that can be critical to the
economics of mining.

The large size of the intrusive-related
porphyry copper hydrothermal systems is
possibly their most impressive feature.
Lowell {1974) suggests that a deposit
should have at least 20 million tonnes
containing a minimum of 0.1% copper to
be called a porphyry copper. The world's
largest porphyry coppers have reserves of
1.5 to 3 billion tonnes of 0.8 to 2% copper
(Tablel). Atypical giant - say, 2 billion
tonnes at 1.5% - might eventually produce
30 million tonnes of copper metal. Based
on 1978 figures, such a mine could supply
Canadian consumption for 130 years or
world consumption for more than three
years. The largest porphyry copper of the
Canadian Coerdillera is approximately one
billion tonnes with grades just under 0.5%
copper, most are much smaller. Atthe
present time, approximately half the
world's copper reserves, 60% of Canadian
copper rescurces, and 90% of British
Columbia’s reserves are containedin
porphyry deposits.

History

Large, low-grade supergene copper dep-
osits were discovered dunng the 19th
century inthe southwestern United States,
Chile, and Peru. The grade of these
deposits, enriched by secondary pro-
cesses, was about 2% copper but they
remained uneconomic until the develop-
ment of a method of mass mining, at
Bingham Canyon, Utah, in 1908. The
concomitant development of froth flota-
tion techniques, which allowed selective
separation of copper sulphides, was a key
factor in making the enterprise profitable.
Soon after, similar deposits were brought
into production at Ely in Nevada, Santa
Rita in New Mexico, Globe-Miami in
Arizona. and El Teniente and Chuquica-
mata in Chile. In all these deposits, mining
began in secondarily enriched {super-
gene) ore, Consequently, il took several
decades for the relationship between the
supergene deposits and unweathered,
generally uneconomic, primary minerali-
zation (protore} to be understood. Similar-
ly, the significance of porphyry intrusions
was slow to be recognized {Emmons,
1927). The genesis of these deposits
became evident only when improved
mining techniques and advances in equip-

Table |

Some Giants of The Porphyry Copper Worid {Modified After Sutulov, 1974 and Other Sources).

For Locations see Figure 2.

{Grade Approximate)

discussionrefiects most directly an the Reserves Copper Molybdenite

(;:tr;atil:tnl tC r:;glgzr:p;::2;;21:‘;2:22:1 Country Name {Million Tonnes) per cent per cent

Porphyry molybdenum deposits, though

similar to porphyry coppers, are suffi- United States (1) Bingham Canyan 1400 0.71 0.05

ciently different to warrant a separate

paper and are not discussed here. {2} Bute” large ? ?
Originally. the term porphyry copper (3) San Manuel 1,000 0.7 0.015

was applied to mineral deposits with

widely dispersed copper mineratization in {4) Twin Buttes 800 0.74 0.017

acid porphyritic rocks. Now the term {5} Safford 2 000 0.40 _

combines engineering considerations - -

with geologic features and refers to large, Mexico {6} La Caridad 600 0.75 0.016

relatively low-grade, epigenstic, {7} Cananea 1700 0.79 -

|n!ru.5|0n-rel_ated coner erosns t.hat can Panama {8) Cerro Colorado 3000 0.8 present

be mined using mass mining techniques.

The generalized geclogical characteris- Chile {9) Chuquicamata >2 000 1.3 0.04

tics of perphyry copper deposits are as {10} El Teniente 3260 0.87 0.03

follows: they are spatially and genetically

related to igneous intrusions; the intru- {11} El Abra 1500 0.80 -

sions are generally felsic but range widely New Guinea {(12) Bougainville 750 0.47 -

in composition; intrusions are epizonal

and invariably porphyritic; muitiple Philippines (13) Biga 700 0.5 -

intrusions, dyke swarms, intrusive breccias, ran (14} Sar Cheshmeh 450 1.13 03

and pebble dykes are characteristic;

hosts for intrusions can be any rock Canada (15} Valley Copper > 750 048 -

type and range from unrelated country {168) Lornex 400 0.41 0.014

rocks to comagmatic extrusive equiva-
lents; the intrusions and surrounding
rocks are intensely fractured; mineraliza-

"No reserve or grade figures available; from 1880-1964, 326 million tonnes with 2.45 per cent

copper mined.
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Figure 1
Highland Valley, south-central British Columbia
in June 1976. Viewed southwaesterly; Bethlehem

Copper (foreground) and Lornex open pits. 1A
to F show aspects of development and mining
from: A—exploration (Berg deposit); B—

preparation for production (Afton); C to F—
mining, milling, grinding, flotation (Highland
Valley).
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ment design lowered cutoff grades and
enabled mining of the protore at depth.
During World Wars | and |l copper
demand and production increased dram-
atically; after the wars, the market for
copper softened and there was little
reason to prospect for new porphyry
deposits. Later, because of the Korean
War, demand for copper renewed and
revived interest in porphyry copper explo-
ration in the southwest United States. In
the mid-1950s, exploration was extended
into the Canadian Cordillera, South Amer-
ica, the southwest Pacific, and other
regions. Development of these large, low-
grade deposits depended and still de-
pends on advances inengineering and ore
dressing techniques, on world price and
demand, and on taxation policies.

Distribution and Age
Parphyry copper provinces seem {o coin-
cide, worldwide, with orogenic belts (Figs.

Figure 2
World wide distribution of porphyry provinces.
Numbers refer to deposits described in Table 1.

2 and 3). This remarkable association is Calc-Alkaline Class Alkaline Class
clearest in Circum-Pacific Mesozoic to i 1 Bell. Granisle. Momson 5 lstend Copper 18 Cooper Mouan -
Cenozoic deposits but is alsc apparent in f\_\_,\‘,“_ 2 Gibratar 6 Mogge ™

North American, Australian, and Soviet N 3 mﬂ Valley Duums 7 Fish Lake 9 Afon
Paleozoic deposits. Inthe orogenic belts, Veley Copom, JA 8 Poson Moutsn 20 Canboo B
porphyry deposits occur in two main 4 Brenda 9 Catface 21 tommne
settings; inisland arcs and at continental 10 Barg 22 Stlone { Gakore Cresk )
margins. Deposits of Cenozoic and, to a 11 Huckisbeny

lesser extent, Mesozoic age predominate. 12 Ox Lake

Those of Paleozoic age are less common 13 Glaoer Guich

and anly a few Precambrian deposits with 14 Schafr Creek

characteristics similar to porphyry 16 Mount Nansen

coppers have been described (Kirkham, 18 Catros

1972; Gaal andIsohanni, 1979). Deforma-
tion and metamorphism of the older
deposits has commanly abscured pnmary
features; hencethey are difficult to classi-
fy {Griffis, 1979).

17 OK

Symbols

* Producing mine or
dstrict with producing Minee.
© Mar prospect

Porphyry Copper Classification .

Porphyry copper deposits comprise three
broad types: plutonic, volcanic and those
we will call "classic”. The general charac-
teristics of each are presented in Table
and illustrated on Figure 4. Plutonic
porphyry copper deposits ocour in batho-
lithic settings with mineralization princi-

pally occurring in one or more phases of
the igneous host rock. Volcanic types
oceur inthe roots of volcanoes, with
mineralization both in the volcanic rocks
and in associated comagmatic plutons.
Classic types occur with high-level, post-
orogenic stocks that intrude unrelated
host rocks; mineralization may occur
entirely within the stock,entirely in the
country rock, or in both. The earliest
mined deposits as well as the majority of
Cenozoic porphyry copper deposits are of
the classic type. Their characteristics,
particularly for deposits in the southwest
United States, have been extensively
described {Titley and Hicks, 1966, Lowell

Figure 3
Cordiileran porphyry mines and prospects and
their tectoric settings.
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Tablell
Characleristics of the Three Types of Porphyry
Copper Deposits.

and Guilbert, 1970). Theterm “classic” has
been applied to them because of their
historical significance, because oftherole
they played in development of genetic
models, and because no term currently in
the literature adequately describes them.
Deposits of this type have variously been
labelled simple, cylindrical, phallic (Su-
therland Brown, 1976) and hypabyssal.

In the Canadian Cordillera, Mesozoic
deposits are of the volcanic or plutonic
types (Figs. 6and 7) and are associated
with calc-alkalic or alkalic plutons which
commonly intrude and mineralize comag-
matic volcanic piles. Cenozoic deposits
are generally of the classictype {Fig. 5). To
date, the majority of Canadian Cordillera
porphyry deposits occur in the Intermon-
tane Belt, although a few have been
discovered inthe Insular and Coast
Crystalline Belts (Fig. 3}.

Intrusions A ssociated with Porphyry
Copper Deposits
Intrusions associated with porphyry
copper deposits are diverse but generally
felsic and differentiated. Thoseinisland
arc settings have primitive strontium
isotopic ratios {Sr87/Sr8é of 0.705 to 0.702)
and, therefore, are derived either from
upper mantle material or recycied oceanic
crust. In contrast, ratios from intrusions
associated with deposits in continental
settings are generally higher indicating
either derivation from or, more likely,
contamination by crustal material. Com-
positions generally range from quartz
diorite to quartz monzonite or granite in
calc-alkalic suites; and from diorite to
syenomonzonite or syenite in alkalic to
shoshonitic {(scmetimes calied dioritic)
suites. Multiple intrusive events are char-
acteristic of porphyry districts and many
deposits are related to intrusions that are
among the most differentiated of those
present. In some deposits, however,
mineralizing and nonmineralizing intru-
sions look practically identical. Differen-
tiation alone does not result inthe
formation of porphyry copper deposits.
Magma composition might influence
the behaviour of ore constituents. For
example, copper is partitioned into octa-
hedral sites in aresidual melt, andtheratio
of octahedral to tetrahedral sites is high
when aluminum is abundant relative to
total alkalis {Feiss, 1978). Therefore
potassium-poor island arc suites, which
usually have high aluminum-alkali ratios,
are likely to produce copper-rich hydroth-
ermal fluids. On the other hand, copper
enrichment in potassium-rich continental
suites may be accounted far by high
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Figure 4

Lithologic and alteration types in porphyry
deposits. Except where noted scale baris 1 cm
long. A—biotite quartz feldspar porphyry (QFP);
B—biotite hornfels cut by K-feldspar veins (K)
which are cut by an anhydrite-biotite vein (AB);

the hydrothermal fluids were in equilibrium with
country rock; C—biotite hornfels with pale lapilli
cut by quartz-pyrite veins with alteration enve-

lopes; hydrothermal fluids were not in equilibri-
um with the country rock; D—multistage veinsin

phyllic tuff; E—quartz-chalcopyrite veins with
flakey sericite-quartz envelopes in shattered
quartz monzonite porphyry; Fto H—breccias
showing a progression from incipient, to angular
transported, to rounded transported fragments.
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oxygen fugacity and high water pressure
in the magma (Mason and Feiss, 1979).
Thus, conditions leading to residual metal
and volatile concentration, not just chem-
istry, determine whether a magma will
have associated mineralization.

Porphyry copper deposits with asso-
ciated volcanism generally form duringan
intrusive phase late in the volcanic cycle
and mineralization usually follows one or
more pulses of magma emplacement. At
Ray, Arizona, for example, early quartz
diorite was intruded at 70 Ma, a porphyritic
phase at 63 Ma, and a mineralized por-

phyry at 61 Ma (Cornwall and Banks,
1977). Similarly, at El Salvador and at OK
Tedi, the onset of mineralization occurred
1to 3 million years after initial magma
emplacement (Gustafson and Hunt, 1975;
Page, 1975, respectively).

Intrusions associated with porphyry
copper deposits were generally emplaced
as crystal-liquid mixtures at less than four
kilometres depth; most were emplaced at
only one to two kilometres. Almost invari-
ably they are porphyritic, reflecting “sud-
den” crystallization dueto rapid chillingor
to concentration and subsequent release

LEGEND

. o o
pa— mm
-—— Biotite Homfels Zone

Figure 5
Model of classic-type porphyry copper deposits
(after Sutheriand Brown, 1976).

‘A’ Level Plan

Figure 6
Model of volcanic-type porphyry copper depo-
sits (after Sutherland Brown, 1976).
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of a volatile phase. Porphyry dykes are
nearly ubiquitous and the many breccia
bodies associated with porphyry copper
systems reflect the sometimes explosive
escape of volatiles. Many breccias com-
prise post-ore diatremes but those that
predate or form during mineralization can
be important hosts for ore. Several periods
of brecciation commonly occur and many
mechanisms operateto cause brecciation.
These include: explosive release of vola-
tiles, fluidization of fault breccia, solution
along fractures, chemical brecciation,
roof collapse, shrinkage during crystalli-
zation, and others (Kents, 1961; Bryner,
1961). The breccias are typified by trans-
ported fragments that range from large
angular rotated blocks to rounded, milled
fragments in a finely comminuted matrix.
Like the breccias, porphyry dykes can be
pre-, intra-, or post-ore in age (Kirkham,
1971). Commonly, intense hydrothermal
alteration accompanies and affects the
breccias and dykes. In such cases, it can
be difficult to distinguish porphyry dykes
from similar host rocks and, on occasion,
even to recognize breccia bodies.

Structural Features

Faults localized magma emplacement in
many porphyry copper districts. Fault
intersections and strongly fractured zones
are particularly important controls. In
some areas, plutons seem to be localized
by regional basement structures (Schmitt,
1966; Seraphim and Hollister, 1976; and
many others) or large scale, circular,
cauldron subsidence (?) structures
(Eggers, 1979).

Ground preparationin the deposits
themselves is generally complex. The
intrusions are often fractured by rejuvena-
tion of regional faults along which they
were emplaced. Furthermore, dyke em-
placement, formation of breccias and
hydrofracturing in response to hydrother-
mal activity also enhance permeability and
help create the “plumbing systems" fol-
lowed by later ore-bearing hydrothermal
fluids. Multiple episodes of healing and
refracturing typically occur as is shown by
crosscutting relationshipsin veins, and
mineralized fractures and faults.

Alteration

In general, strong alteration zones devel-
opin and around intrusions associated
with porphyry copper deposits. Hydro-
thermal fluids derived from both the mag-
ma and heated groundwaters cause the
alteration reactions and lead to formation
of stable mineral assemblages analogous
to metamorphic facies. Alteration is typi-
cally a base leaching process that is
controlled by the metal cationto hydrogen
ionratiointhe altering solution (Hemley
and Jones, 1964). If the alkali to hydrogen
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Figure 7

Model of plutonic-type porphyry copper deposits.

ratio is low, feldspars, micas, and other
silicates are unstable and hydrolysis
occurs releasing cations and driving the
hydrothermal system toward equilibrium
Reactions are controlled for the most part
by temperature and pressure but also by
the abundance, composition, and dyna-
mic behaviour of fluids, and the amount
of wall-rock interaction.

Four alteration types are common:
propylitic, argillic, phyllic, and potassic.
Under conditions of weak hydrolysis,
quartz and alkali feldspar are stable but
plagioclase and mafic minerals react with
fluid to form the propylitic assemblage of
albitized plagioclase, chlorite, epidote,
carbonate, and montmorillonite (with or
without hydromica) or, less commonly,
tremolite/actinolite. More intense hydro-
lysis produces argillic or phyllic alteration.
Argillic assemblages, which are charac-
terized by quartz, kaolinite, and chlorite,
with lesser montmorillonite, appear to be
transitional into phyllic alteration assemb-
lages. Phyllic assemblages are character-

ized by quartz and sericite, commonly
accompanied by pyrite. Intense hydroly-
sis, at elevated temperature, produces
advanced argillic assemblages consisting
of quartz, pyrophyllite, kaolinite or dickite,
and, in some cases, andalusite. Under
conditions of very intense hydrolysis the
end product of alteration could be a
porous mass of quartz. Potassic alteration
takes place at high temperature in the
presence of concentrated hydrothermal
fluids. Conditions are equivalent to those
in a late magmatic environment and,
except wherethe country rockis granite or
quartz monzonite, all constituents of the
rock are unstable. Alteration assemblages
consist typically of quartz (commonly as
resorbed grains), K-feldspar, biotite, inter-
mediate plagioclase (oligoclase to ande-
sine), and rare anhydrite.

In a generalized model, alteration
assemblages are strongly zoned around
the mineralized intrusion. They form
shells with a core of potassic alteration
grading outward through phyllic, argillic,

and propylitic alteration zones into
unaltered country rock (Lowell and Guil-
bert, 1970). In fact, the complete alteration
sequence is rarely developed or pre-
served, and assemblages are strongly
influenced by the composition of the host
rocks (Guilbert and Lowell, 1974). For
example, potassic alteration might pro-
duce secondary K-feldspar and sericite in
rhyolite, but biotite in andesite. Further-
more, pressure, temperature, and permea-
bility, conditions that determine lateral
and vertical alteration zoning, change
during the course of mineralization. These
changes, with time, resultin superimposed
and crosscutting stages of pervasive and
vein-related alteration. In strongly frac-
tured or otherwise permeable rocks,
alteration tends to be pervasive and
younger assemblages may completely
mask older ones. In less permeable rocks,
alteration is fracture and vein controlled
and changes intemperature, pressure,
and fluid composition can beinferred both
from various suites of alteration minerals
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and from fluid inclusion data. Commonly a
variety of alteration types exist between
adjacent fractures or veins.

Invariably stockworks of veins with
many cross-cutting relationships are
present in porphyry copper deposits.
These veins demonstrate that multiple
episodes of fracturing and healing occur
and that each stage may have hydrother-
mal fluids of different character. In gen-
eral, the age sequence of alteration types
is similar but not identical to the lateral
zoning sequence; from oldest to youngest,
vein alteration types are commaonly potas-
sic and propylitic, then phyllic, and finally
argilhic.

Hypogene Mineralization and Zoning
Hypogene mineralization consists of dis-
seminations, fracture fillings, and quartz
veinlets containing varying amounts of
pyrite, chalcopyrite, bornite, and molyb-
denite. Zoning in porphyry coppers
differs, not only between classes of
deposits {Table 1), but also between
individual deposits. In deposits of the
classic type, a typical pattern would be as
follows: a weakly mineralized or barren
core zone centred ontheintrusion has
minor chalcopyrite and molybdenite and
rare bornite; pyrite is generally less than
2%. Surrounding ore shells have enrich-
ment in first molybdenite, then chalcopy-
rite; pyrite abundance increases cutward
in the ore shells. A peripheral pyrite-rich
halo with 1010 15% pyrite but only minor
amounts of chalcopyrite and molybdenite
encloses the ore shells. Base metal veins
with gold and silver are usually foundin
radial fracture zones peripheral to the
pyrite halo. Overall, pyrite is the most
abundant and widespread sulphide min-
eral in porphyry copper deposits.

The zoning discussed above adequate-
ly describes classic-type depositsinthe
southwestern United States and Tertiary
deposits in the Canadian Cordillera.
However, Mesozoic depositsinthe Cordil-
lera are of volcanic and plutonic type and
differ from classic types(Tablell}. Volcan-
ic types usually have poorly defined metal
zoning, in which central, weakly pyritized
ore zones containing chalcopyrite, bor-
nite, and magnetite are flanked by barren
pyritic zones, Mineral zoning in plutonic
types generally proceeds from bornite in
the core through chalcopyrite into poorly
developed pyritic halos; some have a low-
grade siliceous core zone; molybdenite
zones are irregularly distributed.

Ore Fluids and Sulphur Sources

A knowledge of the compositions and
variations in composition of hydrothermal
fluids and of temperature and pressure
conditions are of critical importance in
understanding porphyry copper systems.

Both fluid inclusion and isotopic studies
have provided the basis for evaluating the
nature of ore forming fluids (Nash, 1976;
Sheppard, 1977). The fluids involvedin
alteration and ore formation are metal and
salt-rich brines containing both magmatic
and meteoric components. Proportions ot
each may change at any stage in the
hydrothermal process and may vary from
place to place in the porphyry system.

Homogenization temperatures from
various deposits range from 250° to over
750° Celsius. At Cerro Verde, Peru (Le Bel,
1979a, 1979b), for example, fluid inclu-
sions homogenized at between 380° and
410° Celsius. Temperatures derived from
study of sulphur isctopes, sulphide-
sulphate ratios, C13, and the composition
of sericite {actually phengitic muscovite)
concur withthe homogenization
temperatures.

Sulphur, hydrogen and oxygen isctope
studies shed light on the sources of
sulphur and water in the ore deposits. At
Cerro Verde, sulphurisotopes from pyrite
and chalcopyrite display magmatic or
mantle values, whereas sulphate minerals
have meteoric values. Detailed study
revealed that sulphates and carbonates
hegan crystallizing under magmatic con-
ditions but were subsequently modified by
meteoric waters. Similarly, in the United
States, studies of hydrogen and oxygen
isotopes {Sheppard et al., 1971) and of
fluid inclusions from Bingham Canyon
and Butte (Roedder, 1971} indicate that
heated meteoric water is involved in
porphyry copper formation. At Valley
Copper, in British Columbia, as at Cerro
Verde, the ore fluid was apparently a
mixture (Jones, 1975). Magmatic water
comprised roughly 75% of the ore fluid
during main-stage mineralization; later
the system was quenched by an influx of
meteoric or sea water.

Geological and geochemical evidence
in porphyry deposits invariably suggest
formation depths of less than four kilome-

tres and indicates that most formed at one

to two kilometres depth (Sillitoe, 1973).
At Cerro Verde and Valley Copper, for
example, Le Bel and Jones, respectively,
inferred pressures of 200 to 300 bars,
equivalent to a depth of one to two
kilometres.

Sources of Metals in Porphyry

Copper Deposits

The close liason between porphyry belts
and orogenic belts suggests that the
fundamental control of porphyry bells is
tectonic. Isotopic evidence indicates that
sulphur in the deposits is largely of upper
mantle or remelted oceanic crust origin,
although meteoric waters play an impor-
tant role in alteration and metal deposition
in the porphyry environment.
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The origin of the metals in the deposits
is more speculative. Metals and sulphur in
hydrothermal fluids may be concentrated
as by-products of magmatic crystalliza-
tion. However, Noble {1970) and more
recently Banks and Page (1977) argued
that magmas are incapable of transporting
sufficient guantities of metals and sulphur
to produce porphyry copper deposits.
They concluded that hydrothermal fluids
originate independently from magmas but
in the same source area. inthistheory,
porphyry intrusions are associated with
the deposits only because magma and
later hydrothermal solutions followed the
same access routes. Another possibility is
that metals and/or sulphur are derived
from the country rock. inthistheory, metal
is scavenged from the country rock by
convecting fluids driven by the heat of the
associated magma.

Post-Depositionsl Eftects

Metamorphism and deformation are rarely
significant in Cordilleran porphyry copper
deposits. One exception is Gibraltar, a
plutonic porphyry deposit in central
British Columbia, in which contempora-
neous mineralization and deformation has
been described {Drummond et al., 1976).

In older terranes, metamorphism and
deformation may mask original alteration
types and zoning through retrograde
reactions and fabric readjustments. Alter-
ation assemblages most resistant to
change in low-grade metamorphic ter-
ranes will be propylitic, phyllic, and
argillic, whereas only phyllic alteration will
survive in higher grade terranes. Alumi-
num silicates derived from argillic (alumi-
nous) assemblages may signal earlier
hydrothermal activity, particularly in gra-
nitoid rocks.

Supergene effects have received little
attention in this review because only afew
porphyry deposits in the Canadian Cordil-
lera contain significant supergene miner-
alization. Some of these deposits show
grade enrichment, but often the super-
gene zones present metallurgical prob-
lems which resultin poor recovery and
low-grade concentrates. At Afton, how-
ever, the supergene zone is not enriched;
rather, the natural beneficiation converted
sulphide ore into native copper and oxide
ore, thus simplifying milling and smelting.
Nevertheless, an understanding of super-
gene effects and processes in the por-
phyry environment is necessary, especial-
ly at the exploration stage, to interpret the
weathered outcrops and leached cap-
pings that constitute many of the surface
showingsintheCanadian Cordillera. Fora
thorough account of supergene effects,
see Ney of al. (1976).
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Relationship with Plate Tectonics
Porphyry copper deposits are found
mainly in island arcs and near continental
margins, both of which represent destruc-
tive boundaries of lithospheric plates
(Mitchell and Garson, 1972). In this setting
agenetic relationship between subduc-
tion, magmatism, and related porphyry
deposits is stated or implied and is
generally accepted (Sillitoe, 1972; Crea-
sey. 1977). Beyondthis generalization, the
relationship is often difficult to substan-
tiate, even inthe youngest Cenozoic
orogenic belts (Gustafson, 1878), letalone
in older terranes (Sangster, 1979). For
exampte, at OK Tedi, the youngest known
porphyry copper deposit, mineralizationis
1.1t0 1.2 Ma old (Page and McDougall,
1472) but subduction apparently tock
place some 30 million years earlier.
Furthermore, some porphyry deposits lie
in continental settings. Mesozoic to Ce-
nozoic porphyry deposits in the south-
western United States, for example, are
hundreds of kilometres from the continen-
tal margin and 200 kilometres inland from
the western edge of the Precambrian
craton {Rogers et al., 1974). This is much

too far intand to be related to atypical
subduction zone and debate continugs
whether there is any relationship between
this mineralization and subduction (Lo-
well, 1974; Sillitoe, 1975).

Models for Porphyry Copper Deposits

MNo single model can adeguately portray
atteration and mineralization processes
that have produced the wide variety of
porphyry copper deposits. However, ore-
forming regimes that are the products of
volatile-enriched magmas emptaced in
highty permeable terranes, can be des-
cribed in a series of models that represent
successive stages in an evolving process.
End-member models of hydrothermal
regimes (Fig. 8) attempt to show contrast-
ing conditions for systems dominated by
magmatic and meteoric waters, respec-
tively. In both, enough time has lapsed
after magmatic emplacement for convec-
tion cells to become established inthe
country rock inresponse to the magmatic
heat source. The convecting fluids
transfer mass and heat from the magma
into the country rock and redistribute
elements inthe convective system. In

intrusive settings, where these hydrother-
mal regimes operate, temperatures range
from magmatic at depth, to ambient at the
surface (greater than 800° to 20° Celsius}).
At depth, fluid pressure is lithostatic and
probably equivalent to a maximum load of
fourto five kilometres; near the surface, it
approaches hydrostatic. At depth, the
main cooling is accomplished through
conduction; near the surface, cooling
results from convective fluid movement.
The fundamental difference between
these two models is the source and flow-
path of the hydrothermal fluids.

Thetwo models shown on Figure 8
represent end members of acontinuum. In
the traditional arthomagmatic end
member, volatiles and metals are concen-
trated during crystallization of the magma
then break through the crystallized
carapace, as hydrothermal fluids, in the
post-magmatic stage. Theinitial wave of
escaping fluids fractures the country rock,
creating crackte zones and a primeval
plumbing system that controls the travel
paths of subsequent hydrocthermal fluids
and localizes alteration and mineralization
{Burnham, 1967, Holland, 1972; Whitney,

ORTHOMAGMATIC CONVECTIVE
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Figure 8

Model of hydrothermal systems with contrasting
orthomagrmatic and convective fluid flow pat-
terns. For explanation, see text.
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1975; Henley and McNabb, 1978). Further
crackling results from magmatic pres-
sures, boiling, and hydrofracturing (Phil-
lips, 1973). Inthe convective end member,
the fluid is mostly groundwater whose
source is meteoric, connate, or seawater
(Cathles, 1977; Norton and Knapp, 1977;
Norton, 1978). In this model, thermally
driven convective cells are initiated by
emplacement of the magma. The perme-
ability of the country rock, enhanced by
the intrusive events, is sufficient to allow
convective circulation to begin. Convec-
tion thoroughly redistributes fluids and
concentrates ore and gangue constituents
in and near the intrusion.

In the evolving dynamic systems that
produce porphyry copper deposits, pro-
portions of magmatic and meteoric fluids
can be expected to fluctuate, both in time
and space. Application of fluid inclusion
studies, stable isotope, and fluid dynamic
simulation studies to the end-member
models yields the following observations:

1) Inthe orthomagmatic model, the
cooling stock generates an ascending
hydrothermal plume. There is some peri-
pheral entrainment of meteoric water. In
the convective model, permeable country
rocks are the primary source of fluids.
Groundwater flows into the convective

cells from as much as 2km aboveand 5 km
lateral to the stock.

2) The magmatic component consti-
tutes up to 95% of the hydrothermal fluidin
the orthomagmatic system and as little as
5% in the convective system.

3) Usually, salinity is relatively high in
ore zones. In orthomagmatic systems,
saline fluids with greater than 15% and
ranging as high as 70% weight-equivalent
sodium chloride can be found. In convec-
tive systems, overall salinity is low to
moderate, generally less than 15% weight-
equivalent sodium chloride, though boil-
ing might cause local areas of higher
salinity.

4) Highly saline fluid inclusions, with
co-existing gas and fluid-rich inclusions,
provide the best evidence that boiling
occurred. In orthomagmatic systems,
there is widespread evidence of boiling or
high-temperature entrapment of super-
critical fluid. Often, second or multiple
episodes of boiling occurred as fluid
pressures fluctuated between lithostatic
and hydrostatic. These rapid changes in
hydraulic pressure seem to have been
caused by throttling and repeated self-
sealing and refracturing of the rocks. In
the convective systems, boiling appearsto
have been local and of limited duration.

\

STAGED ALTERATION MODEL
After Gustafson & Humt 1976

Figure 9
Model showing four sequential stages of altera-
tion/mineralization. For explanation, see text.
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5) In orthomagmatic systems, fluid
temperatures range from magmatic
down to 4000 Celsius; seemingly, high
temperatures persisted for a protracted
period of time. In convective systems, heat
transfer efficiency is greater, and, al-
though temperatures briefly reach 450°
Celsius or more, they quickly drop to
about 250°. These lower temperatures are
evidently maintained for a considerable
length of time.

6) The following alteration patterns
emerge. Orthomagmatic systems are
dominated by potassic and propylitic
alteration, with narrow zones of phyllic
alteration in the area of interaction be-
tween magmatic and meteoric fluids. As a
consequence, pervasive alteration and
mineralization form a series of shells
around the core of the intrusion. Convec-
tive systems are dominated by phyllic
alteration, with peripheral propylitic alter-
ation around restricted, locally obliterated
potassic core zones. Alteration and miner-
alization are both pervasive and fracture
controlled.

7) Sulphide distribution patterns can
be identical in the two settings, however,
there is a fundamental difference in the
sources of ore constituents. In the ortho-
magmatic system, metals and sulphur are
derived from the magma and are concen-
trated in residual fluids. In the convective
system, metals and sulphur are scavenged
from the enclosing rocks by convecting,
heated groundwaters.

A tew porphyry copper deposits, for
example Granisle and Bell in British
Columbia (Wilson et al., 1980), closely
resemble one or the other end-member
model. Most deposits combine elements
of both models, commonly with evidence
for early orthomagmatic and later convec-
tive alteration/mineralization. Problems in
identifying all the events and their se-
guence arise because younger, superim-
posed episodes can mask older ones
completely. These complications make
static, end-member models, such as are
shown on Figure 8, inadequateto describe
actual porphyry systems; staged models
which incorporate changes with time are
more realistic. On Figure 9, the four main
stages of mineralization/alteration that
typically occur in porphyry copper sys-
tems are illustrated. The Figure is pat-
terned after Gustafson and Hunt's (1975)
description of the El Salvador depositin
Chile.

Intrusion of the magma causes thermal
metamorphism due to conductive heat
flow (Fig. 9, stage 1). This produces biotite
hornfels, often referred to as early deve-
loped biotite (EDB). Later, upward and
outward flow of fluids increasesthe rate of
cooling of the pluton, and causes addi-
tional fracturing and attendant mass
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transfer (Fig. 9, stage 2). Heating during
stage 1, abetted by the heat and mass
transfer of stage 2, leadstoinitial minerali-
zation and produces a potassic core,
peripheral propylitic alteration zones, and
possibly minor phyllic zones. Stages 1 and
2 constitute the orthomagmatic end-
member modet outlined above. At leastin
the potassic zone, stage 2 hydrothermal
processes take place at high temperature
and lithostatic pressure. For brief periods,
however, fluid pressures may exceed
lithostatic pressure and become an impor-
tant control in fracture and breccia propa-
gation. Alteration reactions in this stage
trend toward pervasive prograde chemical
equilibrium in the altered rocks. Aleration
and mineralizaiton processed may termin-
ate at the end of stage 2, but generally
continue and evolve.

Al three types of porphyry copper
deposits inthe Canadian Cordilleran
display elements of stages 1 and 2. In
some, such as the classic-type Granisle
deposit (Wilson et al., 1980} and several
volcanic-type deposits, such as Copper
Mountain, Stikine Copper and Schatt
Creek, much of the ore was deposited
during these orthomagmatic stages. In
plutonic deposits, because the country
rock is granitic, thermal metamorphic
etfects (stage 1) are difficult to recognize.
Stage 2 potassic alteration is erratically
distributed; either it was not originally
widespread or it has been overprinted by
later alteration. In the plutonic deposits
main-stage mineralization has a predom-
inent orthomagmatic component.

Later alteration and mineralization are
controlled by convective hydrothermal
circulation involving both magmatic and
meteoric fluids, but dominated by the
latter {Fig. 9, stage 3). Groundwater flows
toward and through the crackled intru-
sion, resulting in widespread phyllic
overprinting of earlier alteration types. So
long as permeability is maintained, pres-
sure is hydrostatic and heat loss is rapid.
This cooler, more acidic, hydrothermal
regime produces K-feldspar and biotite-
destructive alteration. Pervasive alteration
may result, or retrograde margins or
envelopes develop on veins and fractures
as is commeon in the plutonic deposits of
Highland Valley, British Columbia. Exten-
sive remobilization and enrichment of
early formed copper sulphides by means
of hypogene leaching can take place at
this stage (Gustafson and Hunt, 1975;
Brimball, 1979).

As the system cools, hydrothermal
activity wanes, and the convective cell
begins to collapse inward and downward
(stage 4). Theresult is a relatively low-
temperature, dilute-acid hot spring envir-
onment that causes argillic overprinting.
Al the same time, interaction of post-ore

porphyry intrusions with the cool ground-
water may propagate pebble breccia pipes
or diatremes. This stage is rarein classic-
type Cordilleran deposits but is well
developed in at least one volcanic-type
deposit, Island Copper. and several
plutonic-type deposits (Highland Valley).

Conclusion

The spectrum of characteristics of a
porphyry copper deposit reflects the
various influences of each of the four main
and many transient stages in the evolution
of the porphyry hydrothermal system. Not
all stages develop fully, nor are all the
stages of equal importance. Various
factors, such as magmatype, volatile
content. the number, size, timing and
depth of emplacement of mineralizing
porphyry plutons, variations in country
rock composition and fracturing, all
combineto ensure a wide variety of detail.
As well, the rate of fluid mixing, density
contrasts in the fluids, and pressure and
temperature gradients influence the end
result. Different depths of erosion alone
can produce awide rangein appearances
even in the same deposit. The search for
porphyry copper deposits, especially
buried ones, must be founded on detailed
knowledge of their tectonic setting, geol-
ogy, alteration patterns, and geochemis-
try. Sophisticated genetic models incor-
porating these features will be used to
design and control future exploration
programs.
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