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SUMMARY
Earth history is punctuated by numerous
periods during which large volumes of
mafic magma were emplaced.  Such
magmas not generated by a ‘normal’
spreading ridge or by subduction are
termed Large Igneous Provinces (LIPs),
and consist of continental flood basalts,
volcanic rifted margins, oceanic pla-
teaus, ocean basin flood basalts, subma-
rine ridges, and seamount chains.
Associated felsic rocks may also be
present. LIPs of Mesozoic and Cenozoic
age are typically the best preserved.
Those of Paleozoic and Proterozoic age
are usually more deeply eroded, and
consist of flood basalt remnants and a
deep-level plumbing system (of giant
dyke swarms, sill provinces and layered
intrusions). In the Archean the most
promising LIP candidates are greenstone
belts containing komatiites. Many LIPs

Igneous Rock Associa-
tions in Canada 3.
Large Igneous Provinces
(LIPs) in Canada and
Adjacent Regions: 3 Ga
to Present

have been linked to regional-scale uplift,
continental rifting and breakup, and
climatic crises. They can be used as
precisely dated time markers in the
stratigraphic record, and are key targets
for Ni-Cu-PGE exploration. LIPs have
also become a focus in the debate on the
existence and nature of mantle plumes.

Canada has a rich record of
LIPs. At least 80 candidates are recog-
nized in Canada and adjacent regions,
with ages ranging from 3100 to 17 Ma.
We review proposed links between the
LIP record of Canada and mantle
plumes, continental breakup, regional
uplift, and ore deposits.  However, given
that many mafic units in Canada remain
poorly characterized, a concerted
geochronology campaign with integrated
paleomagnetism and geochemistry would
be invaluable in expanding the applica-
tion of the Canadian LIP record to
solving major geological problems.

RÉSUMÉ
L’histoire de la Terre est ponctuée de
nombreuses périodes de mise en place
de forts volumes de magma mafiques.
De tels magmas qui ne sont pas issus de
zones d’expansion « normale » ou de
subduction sont appelés Grandes prov-
inces ignées (GPI), et celles-ci sont
constituées de basaltes d’épanchements
continentaux, de marges de fosse
volcaniques, de plateaux océaniques,
d’épanchements de basaltes de bassins
océaniques, de crêtes sous-marines, et
de chaînes de monts sous-marines.
Peuvent également y être  associées des
suites de roches felsiques. Générale-
ment, les GPI du Mésozoïque et du
Cénozoïque sont les mieux préservées.
Celles du Protérozoïque et du
Paléozoïque sont généralement plus
fortement érodées et sont constituées de
vestiges de basaltes d’épanchement et
des réseaux de conduits d’origine
(réseaux géants de dykes, provinces de
filons-couches et d’intrusifs stratifiées).

Dans l’Archéen, les meilleurs candidats
sont représentés par les bandes de
roches vertes à komatiites.  De
nombreuses GPI ont été associées à des
épisodes de soulèvement régionaux, de
dérives ou de fragmentations
continentales, ainsi qu’à des crises
climatiques.  Elles peuvent servir de
marqueurs temporels stratigraphiques et
sont des cibles de première importance
dans l’exploration de gisements de Cu-
Ni-ÉGP.  Les GPI sont aussi devenues
des arguments très considérés dans le
débat sur l’existence et la nature des
panaches mantelliques.

Le Canada possède de riches
archives de GPI, et au moins 80 candi-
datures ont été isolées sur le territoire
canadien et dans les régions adjacentes,
leur âge délimitant une fourchette allant
de 3 100 Ma à 17 Ma.  Nous passons
en revue les liens proposés entre la suite
des GDI canadiennes d’une part, et celle
des panaches mantelliques, des
fragmentations continentales, des
soulèvements régionaux, et des
gisements minéraux, d’autre part.
Toutefois, vu le piètre état de
caractérisation des unités mafiques au
Canada, une campagne de
caractérisation géochronologique,
paléomagnétique et géochimique serait
d’une valeur inestimable pour favoriser
l’utilisation des GDI canadiennes pour
nous aider à solutionner de grands
problèmes géologiques.

INTRODUCTION
Large Igneous Provinces (LIPs) repre-
sent voluminous magmatic events that
were not generated by a ‘normal’ spread-
ing ridge or by subduction (Coffin and
Eldholm, 1994; 2001; Ernst et al.,
2004). They may be emplaced as often
as once every 10 Ma (e.g. Coffin and
Eldholm, 2001), and time series analysis
of the LIP record for the past 3.5 Ga
suggests weak cyclicity (Isley and
Abbott, 2002; Prokoph et al., 2004).
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The most dramatic LIPs are emplaced
rapidly (within <10 Ma and often within
only a few Ma). These include continen-
tal flood basalts, seaward-dipping
reflector sequences, oceanic plateaus,
and ocean basin flood basalts. Conti-
nental flood basalts can be as large as
several million cubic km (e.g. the
Siberian Traps; Reichow et al., 2002).
The largest LIP is the Ontong Java
oceanic plateau, which has a volume of
44.4 million cubic km (Coffin and
Eldholm, 2001) for combined extrusive
(6 million cubic km) and intrusive
components (Courtillot and Renne,
2003).     The initial large-volume short-
duration stage of magmatism of some
LIPs has been linked to the arrival of a
mantle plume (e.g. White and
McKenzie, 1989;     Campbell and
Griffiths, 1990; Coffin and Eldholm,
1994; 2001; Campbell, 1998, 2001;
Ernst and Buchan, 2001; Courtillot et
al., 2003). Subsequent rifting/breakup
is often associated with a second burst
of volcanism (Campbell, 1998) by
decompression melting (White and
McKenzie, 1989). In addition, LIP
magmatism can continue for prolonged
periods after the initial outburst (or
outbursts), in the form of seamount
chains and ridges, which are usually
explained as hotspot tracks associated
with a plume tail. Other models invoke
plate fracturing and ‘edge convection’
(upper mantle convection between thick
and adjacent thin lithosphere), and have
been suggested as an alternative to
plume models for LIPs and hotspot
chains     (e.g. Anderson, 2001; Foulger
and Natland, 2003).

The volcanic portion of older
continental LIPs is largely removed by
erosion and deformed during continen-
tal collision, whereas older oceanic LIPs
are mostly lost during subduction and
deformed during ocean closure. There-
fore, in the Paleozoic and Proterozoic
record, continental LIPs are typically
recognized by their exposed plumbing
system of giant dyke swarms, sill
provinces, large layered intrusions, and
remnants of flood basalts (Ernst and
Buchan, 2001). The oceanic LIP record
may be recognized in some accreted
volcanic packages and ophiolite com-
plexes (e.g., Coffin and Eldholm, 2001;
Moores, 2002).

The extrapolation of the LIP
record into the Archean is more specu-
lative. There are erosional remnants of
typical flood basalt provinces, namely
the Fortescue sequence of the Pilbara
craton of Australia and the Ventersdorp
sequence of the Kaapvaal craton of
southern Africa (Eriksson et al., 2002).
However, most Archean volcanic rocks
occur as deformed and fault-fragmented
packages termed greenstone belts.
Among these, the best candidates for
LIPs are thick tholeiite sequences that
contain komatiites. The nature of
Archean LIPs is discussed in greater
detail below.

LIPs are important 1) for testing
plume and non-plume models for the
generation of LIPs; 2) as precise time
markers for stratigraphic correlations;
3) as an aid in reconstructing conti-
nents; and 4) as the hosts of major PGE
deposits and as a potential tool in
diamond exploration. In addition, they
can be helpful in studying 5) climatic
effects, and 6) regional uplift. We return
to these topics after a review of the LIP
record of Canada and adjacent regions.

PRELIMINARY LIP HISTORY OF
CANADA AND ADJACENT REGIONS
Methodology
Our compilation is based on a recent
summary of the global LIP distribution
(Ernst and Buchan, 2001) and a newly
published compilation of dyke swarms
and related magmatic units in Canada
and adjacent regions (Buchan and Ernst,
2004). We currently recognize at least
80 LIPs and possible LIP remnants in
and adjacent to Canada. The
Proterozoic and Phanerozoic mafic
magmatic record is reviewed first since
its links with LIPs are better defined
(Table 1, Fig. 1). The more speculative
Archean LIP history follows (Table 2,
Fig. 1).

The Proterozoic record relies
heavily on diabase dyke swarms and sills
(Fig. 2). Dykes injected laterally into
the interior of continents have a preser-
vation potential that is much greater
than that of associated lavas, and
therefore provide a robust record of
cratonic LIP events (e.g. Halls, 1982;
Fahrig, 1987; Buchan and Halls, 1990).

The compilation includes
information on tectonic setting. Our
criteria for determining setting rely
heavily on dyke swarm geometry and its
relationship to cratonic margins
(Fig. 3, Table 3). Events are inferred to
have a mantle plume origin if a giant
radiating dyke swarm is present. Giant
linear dyke swarms that extend into a
craton (i.e. trend perpendicular to a
cratonic margin) are inferred to repre-
sent an aulacogen-type swarm (‘failed-
arm’ type in Fahrig, 1987), and can also
be used to infer a plume origin with the
plume centre situated at the edge of a
craton. By contrast, linear swarms that
parallel the edge of a craton may simply
be rift/breakup related (Ernst and
Buchan, 1997) or may possibly repre-
sent a back arc rifting setting (e.g.
Rivers and Corrigan, 2000), or overrid-
ing of a spreading ridge (Gower and
Krogh, 2002).

In addition (Table 3), those
Archean greenstone belts containing
komatiites are inferred to be plume-
related on the basis of the elevated
temperatures required for generation of
komatiites     (e.g. Campbell, 1998, 2001;
Arndt et al., 1998; Condie, 2001).
Finally,,,,,     small, intraplate events not
obviously linked to a cratonic boundary
are categorized as ‘hotspots’.

Below (and in Tables 1 and 2) we
summarize the main events, their age
distribution and tectonic setting.  It
should be noted that referencing has
been minimized in the text below
because detailed referencing is available
through Tables 1 and 2. Also note that
we have included number-labels of the
form [#14a] in order to facilitate easy
cross-correlation with entries in Tables 1
and 2, and with the distribution of main
units in Figure 1.

Proterozoic to Present
2.51–2.41 G2.51–2.41 G2.51–2.41 G2.51–2.41 G2.51–2.41 Ga:a:a:a:a: The earliest Proterozoic
LIPs consist of dykes, layered intrusions
and volcanic rocks and are mainly
associated with the eastern and southern
margin of Laurentia. Most notable are
the ca. 2.5 Ga Mistassini [#1a] and
2.49–2.45 Ga Matachewan events [#1b]
whose radiating diabase dyke swarms
locate two plume centres about 800 km
apart, and imply rifting of the southeast
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EventEventEventEventEvent namenamenamenamename Magmatic components Magmatic components Magmatic components Magmatic components Magmatic components (Age)
(Age) (Location)
[Size]

1  2.51–2.41 Ga1  2.51–2.41 Ga1  2.51–2.41 Ga1  2.51–2.41 Ga1  2.51–2.41 Ga

1a  Mistassini1a  Mistassini1a  Mistassini1a  Mistassini1a  Mistassini (~2.5 Ga) DYKES: MistassiniDYKES: MistassiniDYKES: MistassiniDYKES: MistassiniDYKES: Mistassini (~2.5 Ga)
(e. Superior Prov.) REFREFREFREFREF.:.:.:.:.: #204 in [1]; #43 in [2]
[100,000 sq. km] COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: ?Link with PPPPPtarmigantarmigantarmigantarmigantarmigan swarm (2.51 Ga [#35 in [2]] of ne Superior Prov. ?Link with

Du ChefDu ChefDu ChefDu ChefDu Chef swarm (2.41 Ga) [#45 in [2]] along Grenville Front
SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P1); Breakup (B1; se. Superior Craton)

1b  1b  1b  1b  1b  MatachewanMatachewanMatachewanMatachewanMatachewan     (2.49–2.45 Ga) DYKES: Matachewan [Hearst]DYKES: Matachewan [Hearst]DYKES: Matachewan [Hearst]DYKES: Matachewan [Hearst]DYKES: Matachewan [Hearst] (2.47 and 2.45 Ga)
(s.& c.  Superior Prov.) LLLLLAAAAAYERED INTRYERED INTRYERED INTRYERED INTRYERED INTRUSIONS:USIONS:USIONS:USIONS:USIONS: East BEast BEast BEast BEast Bull Lake ull Lake ull Lake ull Lake ull Lake (2.48 Ga); AgneAgneAgneAgneAgnew w w w w (2.49 Ga); RivRivRivRivRiver er er er er VVVVValley alley alley alley alley (2.475 Ga);
[360,000 sq. km] FFFFFalconbridge alconbridge alconbridge alconbridge alconbridge TTTTTwp wp wp wp wp (2.44 Ga)

VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS: Dollyberry; Ellise MountainDollyberry; Ellise MountainDollyberry; Ellise MountainDollyberry; Ellise MountainDollyberry; Ellise Mountain; Copper Cliff  Copper Cliff  Copper Cliff  Copper Cliff  Copper Cliff rhyolites (~2.45 Ga); Thessalon Thessalon Thessalon Thessalon Thessalon.
REFREFREFREFREF.:.:.:.:.: #206 in [1]; #42 in [2]
COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: ? Link with  P P P P Ptarmigantarmigantarmigantarmigantarmigan swarm (2.51 Ga [#35 in [2]] of ne. Superior Craton)
SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P1); Breakup (B1; s. Superior Craton)

1c  Kaminak1c  Kaminak1c  Kaminak1c  Kaminak1c  Kaminak DYKES: KaminakDYKES: KaminakDYKES: KaminakDYKES: KaminakDYKES: Kaminak (~2.45 Ga)
(ca. 2.45 Ga (Hearne Prov.) REFREFREFREFREF.:.:.:.:.: #203 in [1]; #44 in [2]
[18,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (?P1); ?Breakup (Hearne Craton)

COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Linked with MMMMMatacheatacheatacheatacheatachewanwanwanwanwan event [#1b] by Bleeker (2004)

1d  M1d  M1d  M1d  M1d  Miririririrond Lakeond Lakeond Lakeond Lakeond Lake (2.49 Ga) (Trans Hudson) DYKES:DYKES:DYKES:DYKES:DYKES: Mirond LakeMirond LakeMirond LakeMirond LakeMirond Lake (2.49 Ga)
[two ‘windows’ into Archean basement REFREFREFREFREF.:.:.:.:.: #41 in [2]
about 120 km apart] SETTING:SETTING:SETTING:SETTING:SETTING: ?Breakup (Sask Craton)

2  2.24–2.21 Ga2  2.24–2.21 Ga2  2.24–2.21 Ga2  2.24–2.21 Ga2  2.24–2.21 Ga

2a  Kikkertavak 2a  Kikkertavak 2a  Kikkertavak 2a  Kikkertavak 2a  Kikkertavak (2.235 Ga) DYKES: KikkertavakDYKES: KikkertavakDYKES: KikkertavakDYKES: KikkertavakDYKES: Kikkertavak (2.235 Ga)
(Makkovik Prov.) REFREFREFREFREF.:.:.:.:.: #47 in [2]
[6500 sq. km] COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Linked with LoLoLoLoLowwwwwer Aillik Ger Aillik Ger Aillik Ger Aillik Ger Aillik Grrrrroupoupoupoupoup (2.18 Ga) rift magmatism [Ketchum et al., 2001]

SETTING: SETTING: SETTING: SETTING: SETTING: ?Breakup (s. North Atlantic [Nain] Craton)

2b  BN-1 2b  BN-1 2b  BN-1 2b  BN-1 2b  BN-1 (2.21 Ga) DYKES: BN-1DYKES: BN-1DYKES: BN-1DYKES: BN-1DYKES: BN-1 (norite) (2.21 Ga); MD-1MD-1MD-1MD-1MD-1 undated but possibly similar in age
(s. Greenland) REFREFREFREFREF.:.:.:.:.:  #193 in [1]; #40 in [2]
[54,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: ?Breakup (? North Atlantic [Nain] Craton)

2c  2c  2c  2c  2c  UngavaUngavaUngavaUngavaUngava DYKES: UngavaDYKES: UngavaDYKES: UngavaDYKES: UngavaDYKES: Ungava radiating swarm = Senneterre Senneterre Senneterre Senneterre Senneterre (2.22 Ga), Maguire Maguire Maguire Maguire Maguire and Klotz Klotz Klotz Klotz Klotz (2.21 Ga)
(2.22–2.21 Ga) SILLS: NipissingSILLS: NipissingSILLS: NipissingSILLS: NipissingSILLS: Nipissing (2.22 Ga)
(ne. and e. Superior Prov.) REFREFREFREFREF.:.:.:.:.: #191 in [1]; #50-52 in [2]
[500,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P1); Breakup (B1, e. Superior Craton)

2d  Malley–MacKay2d  Malley–MacKay2d  Malley–MacKay2d  Malley–MacKay2d  Malley–MacKay (2.23 and 2.21 Ga) DYKES:DYKES:DYKES:DYKES:DYKES: MalleyMalleyMalleyMalleyMalley NE trend (~2.23 Ga)]; MacKay MacKay MacKay MacKay MacKay ENE-E trend (~2.21 Ga)
(Slave Prov.) REFREFREFREFREF.:.:.:.:.: #192 and #197 in [1]; #48 and #57 in [2]
[35,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Breakup (Slave Craton)

3  2.19–2.17 Ga3  2.19–2.17 Ga3  2.19–2.17 Ga3  2.19–2.17 Ga3  2.19–2.17 Ga

3a  Dogrib3a  Dogrib3a  Dogrib3a  Dogrib3a  Dogrib (2.19 Ga) DYKES: DogribDYKES: DogribDYKES: DogribDYKES: DogribDYKES: Dogrib (2.19 Ga)
(Slave Prov.) SILLS:SILLS:SILLS:SILLS:SILLS: Duck Lake Duck Lake Duck Lake Duck Lake Duck Lake (2.18)
[11,000 sq. km] REFREFREFREFREF.:.:.:.:.: #185 in [1]; #60 in [2]; Bleeker & Kamo, 2003

SETTING:SETTING:SETTING:SETTING:SETTING: Breakup (Slave Craton)

3b  3b  3b  3b  3b  TTTTTulemalu-Mulemalu-Mulemalu-Mulemalu-Mulemalu-MacQacQacQacQacQuoiduoiduoiduoiduoid (2.19 Ga) DDDDDYKES: YKES: YKES: YKES: YKES: TTTTTulemalu-Mulemalu-Mulemalu-Mulemalu-Mulemalu-MacQacQacQacQacQuoiduoiduoiduoiduoid (2.19 Ga)
(Hearne Prov.) REFREFREFREFREF.:.:.:.:.: #186 in [1]; #61 in [2]
[15,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Breakup (Hearne Craton)

3c  3c  3c  3c  3c  BiscotasingBiscotasingBiscotasingBiscotasingBiscotasing (2.17 Ga) DYKES: BiscotasingDYKES: BiscotasingDYKES: BiscotasingDYKES: BiscotasingDYKES: Biscotasing (2.17 Ga)
(Superior Prov) REFREFREFREFREF.:.:.:.:.: #184 in [1]; #64 in [2]; Halls and Davis, 2004
[350,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P3)

3d  Cramolet Lake–Payne River3d  Cramolet Lake–Payne River3d  Cramolet Lake–Payne River3d  Cramolet Lake–Payne River3d  Cramolet Lake–Payne River MAMAMAMAMAGMAGMAGMAGMAGMATISM: ‘CTISM: ‘CTISM: ‘CTISM: ‘CTISM: ‘Cyyyyycle 1’cle 1’cle 1’cle 1’cle 1’, including CCCCCramolet Lakeramolet Lakeramolet Lakeramolet Lakeramolet Lake sill of basal SSSSSeeeeewarwarwarwarward Sd Sd Sd Sd Subgrubgrubgrubgrubgroupoupoupoupoup (2.17 Ga)
(2.17 Ga) DDDDDYKES:YKES:YKES:YKES:YKES: PPPPPayne Rivayne Rivayne Rivayne Rivayne Rivererererer ~2.17 Ga  [ S. Pehrsson, pers. comm., 2000]
(New Quebec Orogen) REFREFREFREFREF.:.:.:.:.: #63 in [2]
[30,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Breakup (B2, e. Superior Craton)

TTTTTable 1able 1able 1able 1able 1   Large Igneous Provinces (LIPs) and potential LIPs in Canada and adjacent regions since 2.5 Ga. Names of the largest events are
underlined. Obsolete names in square brackets. Pre-2.5 Ga record is discussed in Table 2. Anorthosites have not been included. Details and full
referencing on most events are available in compilations [1] (=Ernst and Buchan, 2001) and [2] (=Buchan and Ernst, 2004), or in the
additional cited references. Abbreviations: se. = southeast, ne. = northeast, c. = central, etc. Units in each entry are ordered in terms of decreas-
ing size. “REFREFREFREFREF.:” = key reference(s). SETSETSETSETSETTINGTINGTINGTINGTING codes are explained in Table 3.
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TTTTTable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continued

4  2.12–2.07 Ga4  2.12–2.07 Ga4  2.12–2.07 Ga4  2.12–2.07 Ga4  2.12–2.07 Ga

4a  Marathon 4a  Marathon 4a  Marathon 4a  Marathon 4a  Marathon (2.12–2.10 Ga) DYKES: Marathon-N DYKES: Marathon-N DYKES: Marathon-N DYKES: Marathon-N DYKES: Marathon-N (2.12 Ga); Marathon-RMarathon-RMarathon-RMarathon-RMarathon-R (2.10 Ga)
(c. Superior Prov.) REFREFREFREFREF.:.:.:.:.: #180 & 181 in [1]; #69 in [2]
 [60,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P2); Breakup (B1, either nc. or sc. Superior Craton)

4b  Cauchon Lake 4b  Cauchon Lake 4b  Cauchon Lake 4b  Cauchon Lake 4b  Cauchon Lake (2.09–2.07 Ga) DYKES: Cauchon Lake DYKES: Cauchon Lake DYKES: Cauchon Lake DYKES: Cauchon Lake DYKES: Cauchon Lake (includes Birthday Rapids Birthday Rapids Birthday Rapids Birthday Rapids Birthday Rapids) (2.09 and 2.07 Ga)
(nw. Superior Prov.) REFREFREFREFREF.:.:.:.:.: #175 in [1]; #72 in [2]

SETSETSETSETSETTING:TING:TING:TING:TING: ?Breakup (B2, nw. Superior Craton)

4c  Fort Frances4c  Fort Frances4c  Fort Frances4c  Fort Frances4c  Fort Frances (2.075 Ga) DYKES: Fort FrancesDYKES: Fort FrancesDYKES: Fort FrancesDYKES: Fort FrancesDYKES: Fort Frances (2.08 Ga)
(sw. Superior Prov.) REFREFREFREFREF.:.:.:.:.: #174 in [1]; #73 in [2]
[75,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P2); Breakup (B1, sc. Superior Craton)

4d  Lac Esprit  4d  Lac Esprit  4d  Lac Esprit  4d  Lac Esprit  4d  Lac Esprit  (2.07 Ga) DYKES: Lac Esprit DYKES: Lac Esprit DYKES: Lac Esprit DYKES: Lac Esprit DYKES: Lac Esprit (2.07 Ga)
(ne. Superior Prov.) REFREFREFREFREF.:.:.:.:.: #74-75 in [2], Buchan et al., 2004

SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P2); ?Breakup (B1, nc. Superior Craton)

4e  Griffin 4e  Griffin 4e  Griffin 4e  Griffin 4e  Griffin (2.11 Ga) SILLS: Griffin [Hurwitz]SILLS: Griffin [Hurwitz]SILLS: Griffin [Hurwitz]SILLS: Griffin [Hurwitz]SILLS: Griffin [Hurwitz] (2.11 Ga)
(Hearne Prov.) REFREFREFREFREF.:.:.:.:.: #179 in [1]; #70 in [2]
[80,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P3); ?Breakup (Hearne Craton)

4f  Napaktok4f  Napaktok4f  Napaktok4f  Napaktok4f  Napaktok (?2.12 Ga) DYKES: NapaktokDYKES: NapaktokDYKES: NapaktokDYKES: NapaktokDYKES: Napaktok (<2.13 Ga); TikkigatsiagakTikkigatsiagakTikkigatsiagakTikkigatsiagakTikkigatsiagak (2.12 Ga); ?DomesDomesDomesDomesDomes
(Labrador Coast) REFREFREFREFREF.:.:.:.:.: #182 in [1]; #68 in [2]

SETTING:SETTING:SETTING:SETTING:SETTING: ?

5  2.05–2.02 Ga5  2.05–2.02 Ga5  2.05–2.02 Ga5  2.05–2.02 Ga5  2.05–2.02 Ga

5a  Kangâmuit5a  Kangâmuit5a  Kangâmuit5a  Kangâmuit5a  Kangâmuit DYKES: KangâmuitDYKES: KangâmuitDYKES: KangâmuitDYKES: KangâmuitDYKES: Kangâmuit (of Greenland) (2.04–2.05 Ga); Iglusuataliksuak Iglusuataliksuak Iglusuataliksuak Iglusuataliksuak Iglusuataliksuak (2.05 Ga)
(2.05–2.04 Ga) REFREFREFREFREF.:.:.:.:.: #170 in [1]; #80 in [2]; [#78 in [2]
(wc. Greenland; Nain Prov.) SETTING:SETTING:SETTING:SETTING:SETTING: Breakup (?B2, n. North Atlantic [Nain] Craton)
[20,000 sq. km]

5b  Lo5b  Lo5b  Lo5b  Lo5b  Lowwwwwer Per Per Per Per Pooooovungnitukvungnitukvungnitukvungnitukvungnituk (2.04 or 1.96 Ga) VVVVVOLOLOLOLOLCANIC RCANIC RCANIC RCANIC RCANIC ROCKS: LoOCKS: LoOCKS: LoOCKS: LoOCKS: Lowwwwwer Per Per Per Per Pooooovungnitukvungnitukvungnitukvungnitukvungnituk
(Cape Smith Belt, ne. Superior Prov.) SILLS: KorakSILLS: KorakSILLS: KorakSILLS: KorakSILLS: Korak [2.04 Ga)

REFREFREFREFREF.....: #169 in [1]; Modeland et al., 2003
SETTING:SETTING:SETTING:SETTING:SETTING: Breakup (B3, n. Superior Craton)

5c  Hearne 5c  Hearne 5c  Hearne 5c  Hearne 5c  Hearne (2.04 Ga) DYKES: HearneDYKES: HearneDYKES: HearneDYKES: HearneDYKES: Hearne (2.04 Ga)
(Slave Prov.) REFREFREFREFREF.:.:.:.:.: #168 in [1]; #81 in [2]
[15,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Breakup (B2, s. Slave Craton)

5d  Lac de Gras 5d  Lac de Gras 5d  Lac de Gras 5d  Lac de Gras 5d  Lac de Gras (ca 2.025 Ga) DYKES: Lac de GrasDYKES: Lac de GrasDYKES: Lac de GrasDYKES: Lac de GrasDYKES: Lac de Gras (2.02–2.03 Ga)
(Slave Prov.) LLLLLAAAAAYERED INTRYERED INTRYERED INTRYERED INTRYERED INTRUSION:USION:USION:USION:USION: Booth RivBooth RivBooth RivBooth RivBooth River Complex er Complex er Complex er Complex er Complex (2.02 Ga)
[30,000 sq. km] REFREFREFREFREF.:.:.:.:.: #167 in [1], #82 in [2]

SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P3)

6  2.00–1.95 Ga6  2.00–1.95 Ga6  2.00–1.95 Ga6  2.00–1.95 Ga6  2.00–1.95 Ga

6a  Minto–Eskimo 6a  Minto–Eskimo 6a  Minto–Eskimo 6a  Minto–Eskimo 6a  Minto–Eskimo (2.00 Ga) DYKES: MintoDYKES: MintoDYKES: MintoDYKES: MintoDYKES: Minto (2.00 Ga); InukjuakInukjuakInukjuakInukjuakInukjuak
(e. Hudson Bay, ne. Superior Prov.) VVVVVOLOLOLOLOLCANIC RCANIC RCANIC RCANIC RCANIC ROCKS:OCKS:OCKS:OCKS:OCKS: Eskimo;Eskimo;Eskimo;Eskimo;Eskimo; PPPPPersillon (Persillon (Persillon (Persillon (Persillon (Pachi);achi);achi);achi);achi); NNNNNastapoka Gastapoka Gastapoka Gastapoka Gastapoka Grrrrroupoupoupoupoup
[10,000 sq. km for dykes only] OPOPOPOPOPHIOLITE:HIOLITE:HIOLITE:HIOLITE:HIOLITE: WWWWWatts Gatts Gatts Gatts Gatts Grrrrroup oup oup oup oup (2.00 Ga)

REFREFREFREFREF.:.:.:.:.: #162 in [1]; #88 and #92 in [2]; Scott et al., 1999
COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: geochemically linked with western P P P P Pooooovungnitukvungnitukvungnitukvungnitukvungnituk (2.04 Ga) by Legault et al. (1994)
SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P3);?Breakup (nc. Superior Craton)

6b  Flaherty–Haig 6b  Flaherty–Haig 6b  Flaherty–Haig 6b  Flaherty–Haig 6b  Flaherty–Haig (?1.96 Ga) VOLCANIC ROCKS: FlahertyVOLCANIC ROCKS: FlahertyVOLCANIC ROCKS: FlahertyVOLCANIC ROCKS: FlahertyVOLCANIC ROCKS: Flaherty (? ~1.96 Ga)
(e. Hudson Bay) SILLS:SILLS:SILLS:SILLS:SILLS: HaigHaigHaigHaigHaig; Sutton Inlier; Sleeper IslandSutton Inlier; Sleeper IslandSutton Inlier; Sleeper IslandSutton Inlier; Sleeper IslandSutton Inlier; Sleeper Island

REFREFREFREFREF.:.:.:.:.: #161 in [1]; Chandler and Schwarz, 1980; Schwarz and Fujiwara, 1981
COMMENTCOMMENTCOMMENTCOMMENTCOMMENT: : : : : linked with     eastern P P P P Pooooovungitukvungitukvungitukvungitukvungituk (1.96 Ma) by Legault et al. (1994)
SETTING:SETTING:SETTING:SETTING:SETTING: ?Breakup (B3, nc. Superior Craton)

6c  U6c  U6c  U6c  U6c  Upper Ppper Ppper Ppper Ppper Pooooovungnitukvungnitukvungnitukvungnitukvungnituk (ca. 1.96 Ga) VVVVVOLOLOLOLOLCANIC RCANIC RCANIC RCANIC RCANIC ROCKS:OCKS:OCKS:OCKS:OCKS: UUUUUpperpperpperpperpper PPPPPooooovungnitukvungnitukvungnitukvungnitukvungnituk (1.96 Ga)
(Cape Smith Belt, ne. Superior Prov.) REFREFREFREFREF.:.:.:.:.: #169 in [1]; Pehrsson per. comm., 2000; Legault et al., 1994; Modeland et al., 2003

SETSETSETSETSETTING: TING: TING: TING: TING: Breakup (B3, n. Superior Prov. at 2.04 Ga)

6d  Mugford6d  Mugford6d  Mugford6d  Mugford6d  Mugford (1.95 Ga) VOLCANIC ROCKS: Mugford VOLCANIC ROCKS: Mugford VOLCANIC ROCKS: Mugford VOLCANIC ROCKS: Mugford VOLCANIC ROCKS: Mugford (~1.95 Ga); ?Ramah; ?Snyder ?Ramah; ?Snyder ?Ramah; ?Snyder ?Ramah; ?Snyder ?Ramah; ?Snyder
(Nain Prov.) REFREFREFREFREF.: .: .: .: .: #159 in [1]; Hamilton pers. comm., 2000
400 sq. km 1.2 km thick SETTING:SETTING:SETTING:SETTING:SETTING: ? Rifting
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TTTTTable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continued

7  1.90–1.88 G7  1.90–1.88 G7  1.90–1.88 G7  1.90–1.88 G7  1.90–1.88 Ga (in a (in a (in a (in a (in TTTTTrans Hrans Hrans Hrans Hrans Hudson and adjacent Rae-Hudson and adjacent Rae-Hudson and adjacent Rae-Hudson and adjacent Rae-Hudson and adjacent Rae-Hearne Cearne Cearne Cearne Cearne Craton)raton)raton)raton)raton)

7a  Sandy Bay7a  Sandy Bay7a  Sandy Bay7a  Sandy Bay7a  Sandy Bay VOLCANIC ROCKS: VOLCANIC ROCKS: VOLCANIC ROCKS: VOLCANIC ROCKS: VOLCANIC ROCKS: oceanic plateau (Sandy BaySandy BaySandy BaySandy BaySandy Bay), oceanic island basalts and ocean floor assemblages
(1.90 Ga) REFREFREFREFREF.:.:.:.:.:      #154 in [1]; Syme et al., 1999; Stern et al., 1999
(Flin Flon belt) (Trans Hudson Belt) SETTING:SETTING:SETTING:SETTING:SETTING: ? Plume (P6)

7b  Josland7b  Josland7b  Josland7b  Josland7b  Josland (1.88 Ga) SILLS: Josland LakeSILLS: Josland LakeSILLS: Josland LakeSILLS: Josland LakeSILLS: Josland Lake including MikanaganMikanaganMikanaganMikanaganMikanagan  (1.89–1.88 Ga)
(Amisk collage, Trans Hudson) REFREFREFREFREF.:.:.:.:.:  Stern et al. 1999; Zwanzig et al., 2001; Turek et al. 2000

SETTING:SETTING:SETTING:SETTING:SETTING: Back-arc (A2)

7c  Bravo Lake7c  Bravo Lake7c  Bravo Lake7c  Bravo Lake7c  Bravo Lake (1.90–1.88 Ga) VOLCANIC ROCKS AND SILLS: Bravo LakeVOLCANIC ROCKS AND SILLS: Bravo LakeVOLCANIC ROCKS AND SILLS: Bravo LakeVOLCANIC ROCKS AND SILLS: Bravo LakeVOLCANIC ROCKS AND SILLS: Bravo Lake (1.90–1.88 Ga)
(Piling-Penhryn Group, Rae Prov.) REFREFREFREFREF.:.:.:.:.: Jackson and Taylor, 1972; Scott et al., 2002

SETTING:SETTING:SETTING:SETTING:SETTING: Rift

7d Lake Harbour7d Lake Harbour7d Lake Harbour7d Lake Harbour7d Lake Harbour VOLCANIC ROCKS AND SILLS: Lake Harbour Group VOLCANIC ROCKS AND SILLS: Lake Harbour Group VOLCANIC ROCKS AND SILLS: Lake Harbour Group VOLCANIC ROCKS AND SILLS: Lake Harbour Group VOLCANIC ROCKS AND SILLS: Lake Harbour Group (~1.87 Ga)
(~1.87 Ga) REFREFREFREFREF.:.:.:.:.: St-Onge et al., 2000
(Lake Harbour Group, Rae Prov.) SETTING:SETTING:SETTING:SETTING:SETTING: Rifting and breakup of the “Meta Incognita microcontinent” from the northern Superior

Craton [St-Onge et al., 2000]

8  1.88-1.86 Ga (8  1.88-1.86 Ga (8  1.88-1.86 Ga (8  1.88-1.86 Ga (8  1.88-1.86 Ga (Circum-SuperiorCircum-SuperiorCircum-SuperiorCircum-SuperiorCircum-Superior events)events)events)events)events)

8a  New Quebec-Cycle 28a  New Quebec-Cycle 28a  New Quebec-Cycle 28a  New Quebec-Cycle 28a  New Quebec-Cycle 2 VOLCANIC ROCKS AND SILLS: ‘Cycle 2’VOLCANIC ROCKS AND SILLS: ‘Cycle 2’VOLCANIC ROCKS AND SILLS: ‘Cycle 2’VOLCANIC ROCKS AND SILLS: ‘Cycle 2’VOLCANIC ROCKS AND SILLS: ‘Cycle 2’
(1.88 Ga) SILLS: MontagnaisSILLS: MontagnaisSILLS: MontagnaisSILLS: MontagnaisSILLS: Montagnais (1.88–1.87 Ga)
(New Quebec orogen) REFREFREFREFREF.:.:.:.:.: #151 in [1]
[30,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Back Arc (A1)

8b  Chukotat8b  Chukotat8b  Chukotat8b  Chukotat8b  Chukotat VOLCANIC ROCKS: ChukotatVOLCANIC ROCKS: ChukotatVOLCANIC ROCKS: ChukotatVOLCANIC ROCKS: ChukotatVOLCANIC ROCKS: Chukotat (lower portion are komatiitic basalts) (1.87 Ga)
(1.89–1.87 Ga) SILLSSILLSSILLSSILLSSILLS: Katniq sills (1.92 or ~1.89 Ga)
(Cape Smith Belt, ne. Superior Prov.) REFREFREFREFREF.:.:.:.:.: #153 in [1]; N. Wodicka, pers. comm., 2004

SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P4)

8c  Molson–Thompson8c  Molson–Thompson8c  Molson–Thompson8c  Molson–Thompson8c  Molson–Thompson DYKES: Molson DYKES: Molson DYKES: Molson DYKES: Molson DYKES: Molson (1.88 Ga); Pickle Crow Pickle Crow Pickle Crow Pickle Crow Pickle Crow (1.88 Ga)
(1.88–1.86 Ga) SILLS:SILLS:SILLS:SILLS:SILLS:  Fox River Fox River Fox River Fox River Fox River (1.88 Ga); Thompson Nickel BeltThompson Nickel BeltThompson Nickel BeltThompson Nickel BeltThompson Nickel Belt magmatism
(Thompson Belt; nw. Superior Prov.) KKKKKOMAOMAOMAOMAOMATIITESTIITESTIITESTIITESTIITES: WWWWWinnipegosisinnipegosisinnipegosisinnipegosisinnipegosis (1.86 Ga)
[>30,000 sq. km] REFREFREFREFREF.: .: .: .: .: #150 in [1]; #85 and #98 in [2]; Hulbert et al., 1994; Buchan et al., 2003; Hulbert et al., 2004

SETTING:SETTING:SETTING:SETTING:SETTING: Plume (?P1, P4); Back-arc (A1)

8d  Hemlock8d  Hemlock8d  Hemlock8d  Hemlock8d  Hemlock VOLCANIC ROCKS: Hemlock FmVOLCANIC ROCKS: Hemlock FmVOLCANIC ROCKS: Hemlock FmVOLCANIC ROCKS: Hemlock FmVOLCANIC ROCKS: Hemlock Fm (1.87 Ga); Gunflint FmGunflint FmGunflint FmGunflint FmGunflint Fm. (1.88 Ga); Badwater GreenstoneBadwater GreenstoneBadwater GreenstoneBadwater GreenstoneBadwater Greenstone
(1.88 Ga) SILLS: KiernanSILLS: KiernanSILLS: KiernanSILLS: KiernanSILLS: Kiernan
(Animikie Basin - Marquette Range, Southern Prov.) REFREFREFREFREF.:.:.:.:.: Ueng et al., 1988; Schneider et al., 2002; Fralick et al., 2002

SETTING:SETTING:SETTING:SETTING:SETTING: Rifting or Foredeep

9  1.83–1.82 Ga9  1.83–1.82 Ga9  1.83–1.82 Ga9  1.83–1.82 Ga9  1.83–1.82 Ga

9a  Sparrow9a  Sparrow9a  Sparrow9a  Sparrow9a  Sparrow DYKES: SparrowDYKES: SparrowDYKES: SparrowDYKES: SparrowDYKES: Sparrow (1.83 Ga)
(1.83 Ga) GABBRGABBRGABBRGABBRGABBRO BODIES:O BODIES:O BODIES:O BODIES:O BODIES: In Wollaston-Mudjatik Transition zone (1.83–1.82 Ga)
(Rae Prov.) REFREFREFREFREF.:.:.:.:.: #146 in [1] &  #101 [2]; Annesley et al., 2003
[100,000 sq. km] COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Is there a link with Christopher IChristopher IChristopher IChristopher IChristopher Islandslandslandslandsland FmFmFmFmFm (Baker Lake basin) (Cousens et al., 2001;

Peterson et al., 2002)?
SETTING:SETTING:SETTING:SETTING:SETTING: ? Breakup (Rae Craton)

10  1.75–1.71 Ga10  1.75–1.71 Ga10  1.75–1.71 Ga10  1.75–1.71 Ga10  1.75–1.71 Ga

10a  Cleaver 10a  Cleaver 10a  Cleaver 10a  Cleaver 10a  Cleaver (1.75–1.74 Ga) DYKES: Cleaver DYKES: Cleaver DYKES: Cleaver DYKES: Cleaver DYKES: Cleaver (1.74 Ga); Hadley Bay Hadley Bay Hadley Bay Hadley Bay Hadley Bay (~1.75 Ga) and MacRae LakeMacRae LakeMacRae LakeMacRae LakeMacRae Lake (~1.75 Ga)
(Bear and Rae Prov.) REFREFREFREFREF.:.:.:.:.: #105–107 in [2]; Irving et al., 2004.
[three locations spanning an area of 300,000 sq. km] COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Is this event a precursor to Bonnet RivBonnet RivBonnet RivBonnet RivBonnet Rivererererer dykes and stocks, and SSSSSlablablablablab volcanics

(1.71 Ga), which have been linked with Wernecke Supergroup (Thorkelson et al., 2001)? Is there a
link to PPPPPitz Fmitz Fmitz Fmitz Fmitz Fm and NNNNNueltinueltinueltinueltinueltin IIIIIntrntrntrntrntrusivusivusivusivusive Se Se Se Se Suiteuiteuiteuiteuite of Baker Lake area (Turner et al., 2003; Peterson et al.,
2002)?
SETSETSETSETSETTING:TING:TING:TING:TING: ? Plume (P3) Breakup (preceeding breakup of nw. Laurentia)

10b  Winagami 10b  Winagami 10b  Winagami 10b  Winagami 10b  Winagami (?1.89–1.76 Ga) SUBSURFACE SHEETS: WinagamiSUBSURFACE SHEETS: WinagamiSUBSURFACE SHEETS: WinagamiSUBSURFACE SHEETS: WinagamiSUBSURFACE SHEETS: Winagami (1.89–1.76 Ga).
(Western Canada Basin) REFREFREFREFREF.:.:.:.:.:  #149 in [1]
[120,000 sq. km] COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Imaged seismically; possible link with CleavCleavCleavCleavCleavererererer dykes suggested by Ross and Eaton

(1997)
SETTING:SETTING:SETTING:SETTING:SETTING: ? Plume (P3)

11  1.64 Ga11  1.64 Ga11  1.64 Ga11  1.64 Ga11  1.64 Ga

11a  11a  11a  11a  11a  Melville BugtMelville BugtMelville BugtMelville BugtMelville Bugt     (ca. 1.64 Ga) DYKES: Melville BugtDYKES: Melville BugtDYKES: Melville BugtDYKES: Melville BugtDYKES: Melville Bugt (~1.64 Ga)
(w. Greenland) REFREFREFREFREF.:.:.:.:.:  #132 in [1]; Hamilton et al., 2004
[220,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: ?
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TTTTTable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continued

12  1.47–1.44 Ga12  1.47–1.44 Ga12  1.47–1.44 Ga12  1.47–1.44 Ga12  1.47–1.44 Ga

12a  12a  12a  12a  12a  MoyieMoyieMoyieMoyieMoyie     (1.47 Ga) SILLS: Moyie (Purcell)SILLS: Moyie (Purcell)SILLS: Moyie (Purcell)SILLS: Moyie (Purcell)SILLS: Moyie (Purcell)  (1.47 Ga)
(Belt-Purcell basin, Cordillera) VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS: PurcellPurcellPurcellPurcellPurcell
[120,000 sq. km dykes only] DDDDDYKES:YKES:YKES:YKES:YKES: TTTTTobacco Robacco Robacco Robacco Robacco Root  (oot  (oot  (oot  (oot  (WWWWWyyyyyoming Boming Boming Boming Boming Block-1)lock-1)lock-1)lock-1)lock-1) (1.46 Ga)

REFREFREFREFREF.:.:.:.:.: #124 in [1]; #117 in [2]
SETSETSETSETSETTING:TING:TING:TING:TING: Plume (P2); Breakup (w. or sc. Laurentia)

12b  Michael–Shabagamo 12b  Michael–Shabagamo 12b  Michael–Shabagamo 12b  Michael–Shabagamo 12b  Michael–Shabagamo (ca. 1.47 Ga) SHEETS: Michael Gabbro SHEETS: Michael Gabbro SHEETS: Michael Gabbro SHEETS: Michael Gabbro SHEETS: Michael Gabbro (~1.47 Ga); Shabagamo Shabagamo Shabagamo Shabagamo Shabagamo (~1.46, 1.45 Ga)
(ne. Grenville Prov.) REFREFREFREFREF.:.:.:.:.: Corrigan et al., 2000;     Krogh, 1993 in Gower and Krogh, 2002; #122 in [1]; #119-120 in [2]
[two regions spanning 50,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Back-arc (A1)

13  1.38 Ga13  1.38 Ga13  1.38 Ga13  1.38 Ga13  1.38 Ga

13a  Hart River–Salmon River Arch13a  Hart River–Salmon River Arch13a  Hart River–Salmon River Arch13a  Hart River–Salmon River Arch13a  Hart River–Salmon River Arch VOLCANIC ROCKS and SILLS: Hart RiverVOLCANIC ROCKS and SILLS: Hart RiverVOLCANIC ROCKS and SILLS: Hart RiverVOLCANIC ROCKS and SILLS: Hart RiverVOLCANIC ROCKS and SILLS: Hart River (1.38 Ga) of n. Cordillera; Salmon River ArchSalmon River ArchSalmon River ArchSalmon River ArchSalmon River Arch
(1.38 Ga) (1.38 Ga) of s. Belt Basin
(n. Cordillera and s. Belt Basin) REFREFREFREFREF.:.:.:.:.: entry in Table 4 of [1]; #121 in [2]

SETSETSETSETSETTING:TING:TING:TING:TING: ? Plume (P2) ? Breakup (nw. Laurentia)

14  1.28–1.27 Ga14  1.28–1.27 Ga14  1.28–1.27 Ga14  1.28–1.27 Ga14  1.28–1.27 Ga

14a  14a  14a  14a  14a  MackenzieMackenzieMackenzieMackenzieMackenzie     (1.27 Ga) DYKES: Mackenzie DYKES: Mackenzie DYKES: Mackenzie DYKES: Mackenzie DYKES: Mackenzie (radiating swarm) (1.27 Ga); Bear River Bear River Bear River Bear River Bear River (1.27 Ga); ‘305’‘305’‘305’‘305’‘305’
(Canadian Shield) VVVVVOLOLOLOLOLCANIC RCANIC RCANIC RCANIC RCANIC ROCKS:OCKS:OCKS:OCKS:OCKS: Coppermine;Coppermine;Coppermine;Coppermine;Coppermine; EEEEEkaluliakaluliakaluliakaluliakalulia; NNNNNauyatauyatauyatauyatauyat; HHHHHansenansenansenansenansen;     TTTTTwwwwweed Lakeeed Lakeeed Lakeeed Lakeeed Lake
[2,700,000 sq. km] SILLS:SILLS:SILLS:SILLS:SILLS: Christie BChristie BChristie BChristie BChristie Bayayayayay; TTTTTrrrrremblayemblayemblayemblayemblay; GGGGGoding Boding Boding Boding Boding Bayayayayay

LLLLLAAAAAYERED INTRYERED INTRYERED INTRYERED INTRYERED INTRUSIONS:USIONS:USIONS:USIONS:USIONS: MMMMMuskouskouskouskouskoxxxxx (1.27 Ga)
REFREFREFREFREF.:.:.:.:.: #107 in [1]; 140, 142, 143 in [2]; Sevigny et al., 1991; French et al., 2002; Schwab et al.,
2004
SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P1); Breakup (B1, n. Laurentia)

14b  Harp–Nain–Nutak–middle Gardar14b  Harp–Nain–Nutak–middle Gardar14b  Harp–Nain–Nutak–middle Gardar14b  Harp–Nain–Nutak–middle Gardar14b  Harp–Nain–Nutak–middle Gardar DYKES: Nain-LPDYKES: Nain-LPDYKES: Nain-LPDYKES: Nain-LPDYKES: Nain-LP (1.28 Ga); NutakNutakNutakNutakNutak (1.27 Ga); Nain-HPNain-HPNain-HPNain-HPNain-HP; HarpHarpHarpHarpHarp (1.27 Ga) Gardar-BD0Gardar-BD0Gardar-BD0Gardar-BD0Gardar-BD0
1.28 and 1.27 Ga (~1.28 Ga) Gardar-BD1Gardar-BD1Gardar-BD1Gardar-BD1Gardar-BD1
(North Altantic Craton) REFREFREFREFREF.:.:.:.:.: #108 in [1];  #132, #133, #137, #138, #139 and #141 in [2]
(Nain Prov. and s. Greenland) SETTING:SETTING:SETTING:SETTING:SETTING: ?Breakup (se. Laurentia)
[80,000 sq. km] COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: The anorthosites, diorites, granites, and troctolites of the 1.35–1.29 Ga Nain Plutonic

Suite [e.g. Ryan and James, 2004] which cover an area of 20,000 sq. km in Labrador, are unrelated

15  1.25–1.225 Ga (Grenville Province)15  1.25–1.225 Ga (Grenville Province)15  1.25–1.225 Ga (Grenville Province)15  1.25–1.225 Ga (Grenville Province)15  1.25–1.225 Ga (Grenville Province)

15a  Sudbury15a  Sudbury15a  Sudbury15a  Sudbury15a  Sudbury [dykes]  (1.24 Ga) DYKES: Sudbury DYKES: Sudbury DYKES: Sudbury DYKES: Sudbury DYKES: Sudbury (1.24 Ga)
(Superior and Grenville Prov.) REFREFREFREFREF.:.:.:.:.: #104 in [1]; #146 in [2]
[90,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P2); Back-arc (A1)

15b  Seal Lake–Mealy15b  Seal Lake–Mealy15b  Seal Lake–Mealy15b  Seal Lake–Mealy15b  Seal Lake–Mealy  (1.25 Ga) VOLCANIC ROCKS:  Seal LakeVOLCANIC ROCKS:  Seal LakeVOLCANIC ROCKS:  Seal LakeVOLCANIC ROCKS:  Seal LakeVOLCANIC ROCKS:  Seal Lake
(Grenville Prov.) SILLS: Naskaupi SILLS: Naskaupi SILLS: Naskaupi SILLS: Naskaupi SILLS: Naskaupi (1.25 and 1.22 Ga)
[20,000 sq. km] DDDDDYKES: MYKES: MYKES: MYKES: MYKES: Mealy ealy ealy ealy ealy (1.25 Ga) NNNNNorororororth th th th th WWWWWest Rivest Rivest Rivest Rivest Rivererererer.

REFREFREFREFREF.:.:.:.:.: #105 in [1]; #113, #144, & #144a in [2]
SETTING:SETTING:SETTING:SETTING:SETTING: Back-arc (A1)

16  1.18–1.14 Ga16  1.18–1.14 Ga16  1.18–1.14 Ga16  1.18–1.14 Ga16  1.18–1.14 Ga

16a  D16a  D16a  D16a  D16a  Davy Gavy Gavy Gavy Gavy Grrrrroup–Toup–Toup–Toup–Toup–Tshenukutish–Algonquinshenukutish–Algonquinshenukutish–Algonquinshenukutish–Algonquinshenukutish–Algonquin SILLS AND DSILLS AND DSILLS AND DSILLS AND DSILLS AND DYKES: DYKES: DYKES: DYKES: DYKES: Davy Gavy Gavy Gavy Gavy Grrrrroupoupoupoupoup in Wakeham rift (1.18 Ga); Lillian SLillian SLillian SLillian SLillian Suiteuiteuiteuiteuite
(1.18–1.16) CORCORCORCORCORONITIC GABBRONITIC GABBRONITIC GABBRONITIC GABBRONITIC GABBRO:O:O:O:O: in Baie du Nord segment of Tshenukutish domain (1.17 Ga)
(Grenville Prov.) METMETMETMETMETAAAAAGABBRGABBRGABBRGABBRGABBROS: Algonquin OS: Algonquin OS: Algonquin OS: Algonquin OS: Algonquin metagabbros in Central Gneiss Belt (~1.17 Ga)

DYKES: KingstonDYKES: KingstonDYKES: KingstonDYKES: KingstonDYKES: Kingston  (~1.16 Ga)
REFREFREFREFREF.:.:.:.:.: #97 in [1]; #145, #147 &  #149 in [2]
COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Widely separated events in Grenville Prov. of the same age
SETTING:SETTING:SETTING:SETTING:SETTING: Back-arc (A1)

16b  Late Gardar 16b  Late Gardar 16b  Late Gardar 16b  Late Gardar 16b  Late Gardar (1.16 Ga) DDDDDYKES: YKES: YKES: YKES: YKES: TTTTTugtutôq Gugtutôq Gugtutôq Gugtutôq Gugtutôq Giant Dykes iant Dykes iant Dykes iant Dykes iant Dykes (1.18 and 1.16 Ga)
(North Atlantic Craton, southern Greenland) REFREFREFREFREF.: .: .: .: .: Buchan et al., 2000; Upton et al., 2003

SETTING:SETTING:SETTING:SETTING:SETTING: Breakup (?)

16c  Abitibi16c  Abitibi16c  Abitibi16c  Abitibi16c  Abitibi [dykes]  (1.14 Ga) DYKES: AbitibiDYKES: AbitibiDYKES: AbitibiDYKES: AbitibiDYKES: Abitibi (1.14 Ga)
(Superior Prov.) REFREFREFREFREF.:.:.:.:.: #94 in [1]; #155 in [2]
[240,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P1); Breakup (? precursor to Keweenawan)

17  1.11-1.09 Ga17  1.11-1.09 Ga17  1.11-1.09 Ga17  1.11-1.09 Ga17  1.11-1.09 Ga

17a  17a  17a  17a  17a  KeweenawanKeweenawanKeweenawanKeweenawanKeweenawan (Mid-continent rift system) VOLCANIC ROCKS, SILLS AND DYKES: KeweenawanVOLCANIC ROCKS, SILLS AND DYKES: KeweenawanVOLCANIC ROCKS, SILLS AND DYKES: KeweenawanVOLCANIC ROCKS, SILLS AND DYKES: KeweenawanVOLCANIC ROCKS, SILLS AND DYKES: Keweenawan (1.11–1.09 Ga; main pulses, 1.107
(1.11–1.09 Ga; main pulses: 1.11, 1.10 Ga) and 1.097 Ga).
(Southern Prov.) REFREFREFREFREF.:.:.:.:.: #90 in [1]; #158-170 in [2]
[160,000 sq. km] COMMENTCOMMENTCOMMENTCOMMENTCOMMENT:  :  :  :  :  ?Relationship with S S S S Southwouthwouthwouthwouthwestern USA Destern USA Destern USA Destern USA Destern USA Diabase Piabase Piabase Piabase Piabase Prrrrrooooovince vince vince vince vince [#89 in [1]];     and

MooresMooresMooresMooresMoores Lake Lake Lake Lake Lake sills (1.11 Ga) in Athabasca basin [French et al., 2002].  ?Link with Umkondo Umkondo Umkondo Umkondo Umkondo event
of     Africa [#91 in [1]; Hanson et al., 2004]
SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P3) Breakup (attempted breakup of Laurentia)
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TTTTTable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continued
18  0.78 Ga18  0.78 Ga18  0.78 Ga18  0.78 Ga18  0.78 Ga

18a  18a  18a  18a  18a  GunbarrelGunbarrelGunbarrelGunbarrelGunbarrel  (0.78 Ga) SHEETSSHEETSSHEETSSHEETSSHEETS: HottahHottahHottahHottahHottah (sheets) (0.78 Ga)
 (Slave Prov.; Mackenzie Mtns. of n. Cordillera; Wyoming VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS: Huckleberry;Huckleberry;Huckleberry;Huckleberry;Huckleberry; Irene Irene Irene Irene Irene (ca. 0.76 Ga)
Prov.) SILLSSILLSSILLSSILLSSILLS: FFFFFaber Lakeaber Lakeaber Lakeaber Lakeaber Lake GGGGGabbrabbrabbrabbrabbrooooo (0.78); WWWWWolf Colf Colf Colf Colf Crrrrreek eek eek eek eek (0.78 Ga); MMMMMackenzie Mackenzie Mackenzie Mackenzie Mackenzie Mountainsountainsountainsountainsountains
[several areas spanning a distance of about 2500 km] DDDDDYKES YKES YKES YKES YKES (0.78 Ga)::::: MMMMMacDacDacDacDacDonaldonaldonaldonaldonald; MMMMMackenzie Mackenzie Mackenzie Mackenzie Mackenzie Mountainsountainsountainsountainsountains; TTTTTobacco Robacco Robacco Robacco Robacco Root-Goot-Goot-Goot-Goot-Grrrrroup Boup Boup Boup Boup B

REFREFREFREFREF.: .: .: .: .:  #63 in [1]; #178-181 in [2]; Harlan et al., 2003b
COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: ?Link with Windermere rifting [#77 in [1]]; Both South China and Australia have
been proposed as the rifted block(s)
SETSETSETSETSETTING:TING:TING:TING:TING: Plume (P1); Breakup (B1, w. Laurentia)

19  0.72 Ga19  0.72 Ga19  0.72 Ga19  0.72 Ga19  0.72 Ga

19a  19a  19a  19a  19a  Franklin–ThuleFranklin–ThuleFranklin–ThuleFranklin–ThuleFranklin–Thule (0.72 Ga) VOLCANIC ROCKS: NatkusiakVOLCANIC ROCKS: NatkusiakVOLCANIC ROCKS: NatkusiakVOLCANIC ROCKS: NatkusiakVOLCANIC ROCKS: Natkusiak
(Arctic Islands, mainly Baffin Island; DYKESDYKESDYKESDYKESDYKES: FranklinFranklinFranklinFranklinFranklin (0.72 Ga); ThuleThuleThuleThuleThule (of Greenland)
 also n. Superior Prov.) SILLS:SILLS:SILLS:SILLS:SILLS: (0.72 Ga) Minto Inlier Minto Inlier Minto Inlier Minto Inlier Minto Inlier; CoronationCoronationCoronationCoronationCoronation; DybbolDybbolDybbolDybbolDybbol; Banks IslandBanks IslandBanks IslandBanks IslandBanks Island; Steensby Land  Steensby Land  Steensby Land  Steensby Land  Steensby Land (of Greenland)
[1,100,000 sq. km for Canadian portion] REFREFREFREFREF.:.:.:.:.:  #58 in [1] and #185-186 in [2]

COMMENTCOMMENTCOMMENTCOMMENTCOMMENT:::::  Note 0.69 Ga GGGGGatagaatagaatagaatagaataga and HHHHHyland Gyland Gyland Gyland Gyland Grrrrroupoupoupoupoup volcanics of northern Cordillera [Ferri
et al., 1999; Colpron et al., 2002]. Do these represent subsequent rifting associated with the
Franklin-Thule event?
SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P1); ?Breakup (B1, n. Laurentia)

20  0.615–0.56 Ga (Laurentian margin, Appalachians)  20  0.615–0.56 Ga (Laurentian margin, Appalachians)  20  0.615–0.56 Ga (Laurentian margin, Appalachians)  20  0.615–0.56 Ga (Laurentian margin, Appalachians)  20  0.615–0.56 Ga (Laurentian margin, Appalachians)  Central IapetusCentral IapetusCentral IapetusCentral IapetusCentral Iapetus Event [Puffer 2002] Event [Puffer 2002] Event [Puffer 2002] Event [Puffer 2002] Event [Puffer 2002]

20a  Long Range20a  Long Range20a  Long Range20a  Long Range20a  Long Range (0.62 Ga) DYKES: Long RangeDYKES: Long RangeDYKES: Long RangeDYKES: Long RangeDYKES: Long Range (0.62 Ga)
(e. North America) VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS: Lighthouse CoveLighthouse CoveLighthouse CoveLighthouse CoveLighthouse Cove
[105,000 sq. km] REFREFREFREFREF.:.:.:.:.:  #54 in [1]; #192 in [2]

SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume ?Breakup (B2, e. Laurentia from Baltica)

20b  Grenville-Rideau20b  Grenville-Rideau20b  Grenville-Rideau20b  Grenville-Rideau20b  Grenville-Rideau (0.59 Ga) DYKES: Grenville DYKES: Grenville DYKES: Grenville DYKES: Grenville DYKES: Grenville (0.59 Ga)-Rideau-AdirondackRideau-AdirondackRideau-AdirondackRideau-AdirondackRideau-Adirondack (fanning swarm)
(e. North America) REFREFREFREFREF.:.:.:.:.:  #53 in [1]; #194–196 in [2]
[140,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P1); ?Breakup (B1, e. Laurentia from ?Amazonia)

20c  Sept-Îles–Catoctin20c  Sept-Îles–Catoctin20c  Sept-Îles–Catoctin20c  Sept-Îles–Catoctin20c  Sept-Îles–Catoctin (0.56 Ga) LLLLLAAAAAYERED INTRYERED INTRYERED INTRYERED INTRYERED INTRUSION: SUSION: SUSION: SUSION: SUSION: Sept-Îlesept-Îlesept-Îlesept-Îlesept-Îles (0.56 Ga)
(e. North America) VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS: Skinner CoveSkinner CoveSkinner CoveSkinner CoveSkinner Cove; CatoctinCatoctinCatoctinCatoctinCatoctin (in US Appalachians) (0.56 Ga)

REFREFREFREFREF.:.:.:.:.: #52 in [1]
SETSETSETSETSETTING:TING:TING:TING:TING: ?Plume (P3); ?Breakup ( e. Laurentia from Dashwoods Terrane)

21  0.62–0.55 Ga (Avalon terrane, Appalachians)21  0.62–0.55 Ga (Avalon terrane, Appalachians)21  0.62–0.55 Ga (Avalon terrane, Appalachians)21  0.62–0.55 Ga (Avalon terrane, Appalachians)21  0.62–0.55 Ga (Avalon terrane, Appalachians)

21a  Harbour Main21a  Harbour Main21a  Harbour Main21a  Harbour Main21a  Harbour Main VOLCANIC ROCKS: VOLCANIC ROCKS: VOLCANIC ROCKS: VOLCANIC ROCKS: VOLCANIC ROCKS: part of Harbour Main Group  Harbour Main Group  Harbour Main Group  Harbour Main Group  Harbour Main Group (0.63–0.59 Ga)
(ca. 0.62 Ga) INTRUSIONS: Holyrood INTRUSIONS: Holyrood INTRUSIONS: Holyrood INTRUSIONS: Holyrood INTRUSIONS: Holyrood granite suite     (0.62 Ga); Connaigre Bay Group  Connaigre Bay Group  Connaigre Bay Group  Connaigre Bay Group  Connaigre Bay Group (0.63 Ga); Simmons Simmons Simmons Simmons Simmons
(Avalon Zone, Appalachians) Brook suite Brook suite Brook suite Brook suite Brook suite (0.62 Ga); Cap au Miquelon Group  Cap au Miquelon Group  Cap au Miquelon Group  Cap au Miquelon Group  Cap au Miquelon Group (ca. >6.2 Ga); East Bay Hills Belt  East Bay Hills Belt  East Bay Hills Belt  East Bay Hills Belt  East Bay Hills Belt (ca. 0.62 Ga);

Coxheath Hills Belt Coxheath Hills Belt Coxheath Hills Belt Coxheath Hills Belt Coxheath Hills Belt (ca. 0.62 Ga)
REFREFREFREFREF.: .: .: .: .: Rabu et al., 1996; Bevier et al., 1993
SETTING: ?SETTING: ?SETTING: ?SETTING: ?SETTING: ?

21b  Marystown21b  Marystown21b  Marystown21b  Marystown21b  Marystown VOLCANIC ROCKS: Marystown Group VOLCANIC ROCKS: Marystown Group VOLCANIC ROCKS: Marystown Group VOLCANIC ROCKS: Marystown Group VOLCANIC ROCKS: Marystown Group (0.59–0.575 Ga); Long Harbour Group  Long Harbour Group  Long Harbour Group  Long Harbour Group  Long Harbour Group (0.57–
(0.59–0.55 Ga) 0.55 Ga); St. Pierre Group  St. Pierre Group  St. Pierre Group  St. Pierre Group  St. Pierre Group (0.58 Ga); Belle Riviere Group  Belle Riviere Group  Belle Riviere Group  Belle Riviere Group  Belle Riviere Group (0. 57 Ga);     part of Harbour Main Harbour Main Harbour Main Harbour Main Harbour Main
(Avalon Zone, Appalachians) Group Group Group Group Group (0.63-0.59 Ga); Coastal Belt  Coastal Belt  Coastal Belt  Coastal Belt  Coastal Belt (0.58 Ga)

REFREFREFREFREF.:.:.:.:.: p. 15, O’Brien et al., 1996; Rabu et al., 1996; Bevier et al., 1993; Fig. 3 in  McNamara et al.,
2001
SETTING:SETTING:SETTING:SETTING:SETTING: Arc/ back-arc

22  0.57–0.52 Ga (Cordillera)22  0.57–0.52 Ga (Cordillera)22  0.57–0.52 Ga (Cordillera)22  0.57–0.52 Ga (Cordillera)22  0.57–0.52 Ga (Cordillera)

22a  Hamill–Gog22a  Hamill–Gog22a  Hamill–Gog22a  Hamill–Gog22a  Hamill–Gog (0.57 Ga) VOLCANIC ROCKS: Hamill–Gog GroupVOLCANIC ROCKS: Hamill–Gog GroupVOLCANIC ROCKS: Hamill–Gog GroupVOLCANIC ROCKS: Hamill–Gog GroupVOLCANIC ROCKS: Hamill–Gog Group (0.57 Ga)
(SE Canadian Cordillera) REFREFREFREFREF.:.:.:.:.:  Colpron et al., 2002

SETTING:SETTING:SETTING:SETTING:SETTING: ?Breakup

22b  Selwyn Basin22b  Selwyn Basin22b  Selwyn Basin22b  Selwyn Basin22b  Selwyn Basin (0.54–0.45 Ga) SILLS:  PSILLS:  PSILLS:  PSILLS:  PSILLS:  Post-Host-Host-Host-Host-Hyland Gyland Gyland Gyland Gyland Grrrrroup oup oup oup oup (0.52 Ga)
(Cordillera, n. of and within Selwyn Basin) VOLCANIC ROCKS: VOLCANIC ROCKS: VOLCANIC ROCKS: VOLCANIC ROCKS: VOLCANIC ROCKS: Alkali and potassic mafic volcanism

REFREFREFREFREF.:.:.:.:.:  #218 in [2]; Goodfellow et al., 1995; Abbott, 1997
SETTING:SETTING:SETTING:SETTING:SETTING: Selwyn Basin rifting

23  0.47- 0.42 Ga (Appalachians)23  0.47- 0.42 Ga (Appalachians)23  0.47- 0.42 Ga (Appalachians)23  0.47- 0.42 Ga (Appalachians)23  0.47- 0.42 Ga (Appalachians)

23a  M23a  M23a  M23a  M23a  Middle Oiddle Oiddle Oiddle Oiddle Orrrrrdododododovician ‘Ovvician ‘Ovvician ‘Ovvician ‘Ovvician ‘Overstepersteperstepersteperstep’ S’ S’ S’ S’ Sequenceequenceequenceequenceequence VOLCANIC ROCKS: Middle OrdovicanVOLCANIC ROCKS: Middle OrdovicanVOLCANIC ROCKS: Middle OrdovicanVOLCANIC ROCKS: Middle OrdovicanVOLCANIC ROCKS: Middle Ordovican ‘Overstep Sequence’ ‘Overstep Sequence’ ‘Overstep Sequence’ ‘Overstep Sequence’ ‘Overstep Sequence’ includes bimodal magmatism (in
(0.47–0.45 Ga) Exploits subzone of Newfoundland, Bathurst area of New Brunswick, Maine, and United Kingdom)
(Gander Zone–Dunnage Zone) (0.47–0.45 Ga)

REFREFREFREFREF.:.:.:.:.:  van Staal et al., 1996
COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Coeval DDDDDunn Punn Punn Punn Punn Pointointointointoint bimodal volc. (0.46 Ga) occur in the Avalon terrane, Nova Scotia
(Hamilton and Murphy, 2004)
SETTING:SETTING:SETTING:SETTING:SETTING: Back-arc
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TTTTTable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continued

23b  Late Ordovician–Silurian magmatism23b  Late Ordovician–Silurian magmatism23b  Late Ordovician–Silurian magmatism23b  Late Ordovician–Silurian magmatism23b  Late Ordovician–Silurian magmatism GANDER ZONE–DUNNAGE ZONE (of New Brunswick, Quebec and Maine) (0.43–0.41 Ga)GANDER ZONE–DUNNAGE ZONE (of New Brunswick, Quebec and Maine) (0.43–0.41 Ga)GANDER ZONE–DUNNAGE ZONE (of New Brunswick, Quebec and Maine) (0.43–0.41 Ga)GANDER ZONE–DUNNAGE ZONE (of New Brunswick, Quebec and Maine) (0.43–0.41 Ga)GANDER ZONE–DUNNAGE ZONE (of New Brunswick, Quebec and Maine) (0.43–0.41 Ga)
of Atlantic Canada of Atlantic Canada of Atlantic Canada of Atlantic Canada of Atlantic Canada (0.44–0.41 Ga) VVVVVOLOLOLOLOLCANIC RCANIC RCANIC RCANIC RCANIC ROCKS: OCKS: OCKS: OCKS: OCKS: TTTTTobique obique obique obique obique and P P P P Piscataquis iscataquis iscataquis iscataquis iscataquis volcanic belts
(c. Newfoundland and Maritimes) REFREFREFREFREF.: .: .: .: .: Keppie and Dostal, 1994

AAAAAVVVVVALALALALALON ZON ZON ZON ZON ZONE (of Nfld. and NONE (of Nfld. and NONE (of Nfld. and NONE (of Nfld. and NONE (of Nfld. and New Bew Bew Bew Bew Brrrrrunswick) (0.44–0.43 Gunswick) (0.44–0.43 Gunswick) (0.44–0.43 Gunswick) (0.44–0.43 Gunswick) (0.44–0.43 Ga)a)a)a)a)
SILLS: Cape SSILLS: Cape SSILLS: Cape SSILLS: Cape SSILLS: Cape St. Mt. Mt. Mt. Mt. Marararararyyyyy’’’’’s s s s s (0.44 Ga)
VVVVVOLOLOLOLOLCANIC RCANIC RCANIC RCANIC RCANIC ROCKS: BOCKS: BOCKS: BOCKS: BOCKS: Bayswater Gayswater Gayswater Gayswater Gayswater Grrrrroup oup oup oup oup (0.44 Ga); Coastal Coastal Coastal Coastal Coastal VVVVVolcanic Bolcanic Bolcanic Bolcanic Bolcanic Belteltelteltelt (0.43–0.42 Ga)
DDDDDYKES: Kingston YKES: Kingston YKES: Kingston YKES: Kingston YKES: Kingston TTTTTerrane errane errane errane errane dyke complex (0.44–0.41 Ga); P P P P Passamaquoddy Bassamaquoddy Bassamaquoddy Bassamaquoddy Bassamaquoddy Bayayayayay
REFREFREFREFREF.:.:.:.:.: Van Wagoner et al., 2001; Barr et al., 1999; Hodych and Buchan, 1998

MEGUMA ZONE (of Nova Scotia) (0.44 Ga)MEGUMA ZONE (of Nova Scotia) (0.44 Ga)MEGUMA ZONE (of Nova Scotia) (0.44 Ga)MEGUMA ZONE (of Nova Scotia) (0.44 Ga)MEGUMA ZONE (of Nova Scotia) (0.44 Ga)
VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS:VOLCANIC ROCKS: White RockWhite RockWhite RockWhite RockWhite Rock FmFmFmFmFm (0.44 Ga)
INTRUSIONINTRUSIONINTRUSIONINTRUSIONINTRUSION: BrentonBrentonBrentonBrentonBrenton monzogranite (0.44 Ga)
REFREFREFREFREF.:.:.:.:.: MacDonald et al., 2002; Keppie and Krogh, 2000

OVERSTEP SEQUENCE OF NEWFOUNDLAND (0.43–0.42 Ga)OVERSTEP SEQUENCE OF NEWFOUNDLAND (0.43–0.42 Ga)OVERSTEP SEQUENCE OF NEWFOUNDLAND (0.43–0.42 Ga)OVERSTEP SEQUENCE OF NEWFOUNDLAND (0.43–0.42 Ga)OVERSTEP SEQUENCE OF NEWFOUNDLAND (0.43–0.42 Ga)
VOLCANIC ROCKSVOLCANIC ROCKSVOLCANIC ROCKSVOLCANIC ROCKSVOLCANIC ROCKS: bimodal volc. such as King George IVKing George IVKing George IVKing George IVKing George IV (0.43 Ga); SpringdaleSpringdaleSpringdaleSpringdaleSpringdale (0.42 Ga),
and Botwood Botwood Botwood Botwood Botwood groups; and mainly felsic volc. such as SSSSSops Armops Armops Armops Armops Arm and La PLa PLa PLa PLa Poileoileoileoileoile groups
INTRINTRINTRINTRINTRUSION:USION:USION:USION:USION: TTTTTaylor Baylor Baylor Baylor Baylor Brrrrrookookookookook (0.43 Ga); MMMMMain Gain Gain Gain Gain Gututututut (0.43 Ga)
REFREFREFREFREF.:.:.:.:.: Chandler et al., 1987; Heaman et al., 2002
SETTINGSETTINGSETTINGSETTINGSETTING: ?

24  0.36–0.32 Ga24  0.36–0.32 Ga24  0.36–0.32 Ga24  0.36–0.32 Ga24  0.36–0.32 Ga

24a  Magdalen (Maritimes) Basin24a  Magdalen (Maritimes) Basin24a  Magdalen (Maritimes) Basin24a  Magdalen (Maritimes) Basin24a  Magdalen (Maritimes) Basin INTRUSIONS:INTRUSIONS:INTRUSIONS:INTRUSIONS:INTRUSIONS:  magmatic underplate underlying entire Magdalen (Maritimes) Basin, interpreted
(0.36–0.32 Ga) from gravity; WWWWWentworentworentworentworentworththththth and WWWWWyvyvyvyvyvernernernernern gabbros
(Maritimes) VOLCANIC ROCKS: Cape au Diable;VOLCANIC ROCKS: Cape au Diable;VOLCANIC ROCKS: Cape au Diable;VOLCANIC ROCKS: Cape au Diable;VOLCANIC ROCKS: Cape au Diable; Fountain Lake Fountain Lake Fountain Lake Fountain Lake Fountain Lake (mafic to felsic)

DYKESDYKESDYKESDYKESDYKES: widespread
REFREFREFREFREF.:.:.:.:.: Pe-Piper and Piper, 1998; Murphy et al., 1999
SETTING:SETTING:SETTING:SETTING:SETTING: Plume

25  0.27–0.20 Ga (Cordillera)25  0.27–0.20 Ga (Cordillera)25  0.27–0.20 Ga (Cordillera)25  0.27–0.20 Ga (Cordillera)25  0.27–0.20 Ga (Cordillera)

25a  Cache Creek25a  Cache Creek25a  Cache Creek25a  Cache Creek25a  Cache Creek VVVVVOLOLOLOLOLCANIC RCANIC RCANIC RCANIC RCANIC ROCKS:OCKS:OCKS:OCKS:OCKS: Late Triassic volcanics interpreted to represent oceanic plateau (Tardy et al.,
(Late Triassic and mid-Permian) (Cordillera) 2001). Overlies mid-Permian magmatism interpreted to represent underlying Permian Crust
[~1500 km long, 50–100 km wide] Alternative, more complex model suggested by Struik et al. (2001)

REFREFREFREFREF.:.:.:.:.:  #38 in [1]
SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (?P6)

25b  25b  25b  25b  25b  WWWWWrangelliarangelliarangelliarangelliarangellia (0.23 Ga) (Cordillera) VOLCANIC ROCKS: Karmutsen;VOLCANIC ROCKS: Karmutsen;VOLCANIC ROCKS: Karmutsen;VOLCANIC ROCKS: Karmutsen;VOLCANIC ROCKS: Karmutsen; NikolaiNikolaiNikolaiNikolaiNikolai
[1,000,000 cu. km] INTRUSIONS:INTRUSIONS:INTRUSIONS:INTRUSIONS:INTRUSIONS: KluaneKluaneKluaneKluaneKluane

SILLS:SILLS:SILLS:SILLS:SILLS: Maple CreekMaple CreekMaple CreekMaple CreekMaple Creek (0.23 Ga)
REFREFREFREFREF.: .: .: .: .: #34 in [1];  #303-304 in [2]
SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P6)

25c  25c  25c  25c  25c  Ramparts GroupRamparts GroupRamparts GroupRamparts GroupRamparts Group (0.21 Ga) SILLS AND VOLCANIC ROCKS:SILLS AND VOLCANIC ROCKS:SILLS AND VOLCANIC ROCKS:SILLS AND VOLCANIC ROCKS:SILLS AND VOLCANIC ROCKS: Ramparts GroupRamparts GroupRamparts GroupRamparts GroupRamparts Group (0.21 Ga)
(Alaska) REFREFREFREFREF.:.:.:.:.: #306 in [2]
[100,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: ?

26  0.20 Ga26  0.20 Ga26  0.20 Ga26  0.20 Ga26  0.20 Ga

26a  26a  26a  26a  26a  ENAENAENAENAENA     (Eastern North America) portion of VOLCANIC ROCKS: North Mountain Basalt;VOLCANIC ROCKS: North Mountain Basalt;VOLCANIC ROCKS: North Mountain Basalt;VOLCANIC ROCKS: North Mountain Basalt;VOLCANIC ROCKS: North Mountain Basalt; Grand MananGrand MananGrand MananGrand MananGrand Manan
CAMPCAMPCAMPCAMPCAMP (Central Atlantic Magmatic Province) (0.20 Ga) DYKES:DYKES:DYKES:DYKES:DYKES: ENAENAENAENAENA (0.20 Ga)
(Atlantic Canada) COMMENTCOMMENTCOMMENTCOMMENTCOMMENT:::::  Rest of CAMP event is located along east coast of US and also in Europe, NW Africa
[7,000,000 sq. km for entire event] and South America

REFREFREFREFREF.:.:.:.:.: #32 in [1]; #307 in [2]
SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P1); Breakup (B1, forming Atlantic Ocean)

27  0.14–0.09 Ga27  0.14–0.09 Ga27  0.14–0.09 Ga27  0.14–0.09 Ga27  0.14–0.09 Ga

27a  New England–Québec27a  New England–Québec27a  New England–Québec27a  New England–Québec27a  New England–Québec (NEQ); Monteregian) INTRUSIONS AND PLUTONS:INTRUSIONS AND PLUTONS:INTRUSIONS AND PLUTONS:INTRUSIONS AND PLUTONS:INTRUSIONS AND PLUTONS: Monteregian HillsMonteregian HillsMonteregian HillsMonteregian HillsMonteregian Hills intrusions of Quebec and related plutons of
(0.14–0.11 Ga) New England) (0.14–0.11 Ga)
[60,000 sq. km] REFREFREFREFREF.:.:.:.:.: #323 in [2]

SETTING:SETTING:SETTING:SETTING:SETTING: Hotspot

27b  27b  27b  27b  27b  TTTTTrapraprapraprap (sw. Greenland) DDDDDYKES:YKES:YKES:YKES:YKES: TTTTTrapraprapraprap (0.14 Ga)
[20,000 sq. km] REFREFREFREFREF.:.:.:.:.: #30 in [1]; #322 in [2]

SETTING:SETTING:SETTING:SETTING:SETTING: ? Breakup (B2, Linked to subsequent breakup of Greenland from Laurentia to form
Labrador Sea)
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27c  27c  27c  27c  27c  Sverdrup Basin Magmatic ProvinceSverdrup Basin Magmatic ProvinceSverdrup Basin Magmatic ProvinceSverdrup Basin Magmatic ProvinceSverdrup Basin Magmatic Province VOLCANIC ROCKS AND SILLS: VOLCANIC ROCKS AND SILLS: VOLCANIC ROCKS AND SILLS: VOLCANIC ROCKS AND SILLS: VOLCANIC ROCKS AND SILLS:  including Strand FiordStrand FiordStrand FiordStrand FiordStrand Fiord FmFmFmFmFm (0.13–0.09 Ga; major pulse
(part of High Arctic Large Igneous Province; HALIP) at 0.095 Ga); Alpha RidgeAlpha RidgeAlpha RidgeAlpha RidgeAlpha Ridge
(0.13–0.09 Ga) (Arctic Islands) DYKES:DYKES:DYKES:DYKES:DYKES: Queen Elizabeth Islands Queen Elizabeth Islands Queen Elizabeth Islands Queen Elizabeth Islands Queen Elizabeth Islands (inludes Hazen Strait Hazen Strait Hazen Strait Hazen Strait Hazen Strait); Lightfoot River Lightfoot River Lightfoot River Lightfoot River Lightfoot River
[550,000 sq. km] INTRINTRINTRINTRINTRUSIONS:USIONS:USIONS:USIONS:USIONS: WWWWWoottonoottonoottonoottonootton (0.092 Ga)

REFREFREFREFREF.:.:.:.:.: #12 in  [1]; #325 in [2]; Tarduno et al., 1998; Trettin and Parrish, 1987
COMMENTCOMMENTCOMMENTCOMMENTCOMMENT: Part of Large Igneous Province that includes Svalbard and Franz Josef Land (Maher,
2001)
SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P1); Breakup

28  0.07–0.05 Ga28  0.07–0.05 Ga28  0.07–0.05 Ga28  0.07–0.05 Ga28  0.07–0.05 Ga

28a  Carmacks28a  Carmacks28a  Carmacks28a  Carmacks28a  Carmacks VOLCANIC ROCKS: CarmacksVOLCANIC ROCKS: CarmacksVOLCANIC ROCKS: CarmacksVOLCANIC ROCKS: CarmacksVOLCANIC ROCKS: Carmacks (0.07 Ga)
(n. Cordillera) REFREFREFREFREF.:.:.:.:.:  #9 in [1]
[63,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (? P6)

28b  Crescent28b  Crescent28b  Crescent28b  Crescent28b  Crescent (0.06–0.05 Ga) VVVVVOLOLOLOLOLCANIC RCANIC RCANIC RCANIC RCANIC ROCKSOCKSOCKSOCKSOCKS: CCCCCrrrrrescent escent escent escent escent TTTTTerraneerraneerraneerraneerrane  (“Coast Range BCoast Range BCoast Range BCoast Range BCoast Range Basalt Pasalt Pasalt Pasalt Pasalt Prrrrrooooovincevincevincevincevince”) (0.06–0.05 Ga)
(western margin of North America) REFREFREFREFREF.:.:.:.:.: #339 in [2]; Murphy et al., 2003

SETTING:SETTING:SETTING:SETTING:SETTING: Plume (? P6)

28c  28c  28c  28c  28c  North Atlantic Igneous Province (NAIP)North Atlantic Igneous Province (NAIP)North Atlantic Igneous Province (NAIP)North Atlantic Igneous Province (NAIP)North Atlantic Igneous Province (NAIP) VVVVVOLOLOLOLOLCANIC RCANIC RCANIC RCANIC RCANIC ROCKS: Cape DyOCKS: Cape DyOCKS: Cape DyOCKS: Cape DyOCKS: Cape Dyererererer;     WWWWWest Gest Gest Gest Gest Grrrrreenlandeenlandeenlandeenlandeenland
(0.06 Ga) DDDDDYKES:YKES:YKES:YKES:YKES: Cape SCape SCape SCape SCape Searleearleearleearleearle;     WWWWWest Gest Gest Gest Gest Grrrrreenlandeenlandeenlandeenlandeenland
(Baffin Island, w. Greenland) REFREFREFREFREF.:.:.:.:.: #334 and 335 in [2];  #5 in [1]
[1,300,000 sq. km for entire NAIP event] COMMENTCOMMENTCOMMENTCOMMENTCOMMENT: : : : : Part of North Atlantic Igneous Province of Greenland, United Kingdom (0.062–

0.052 Ga), and linked to present-day Iceland hotspot
SETTING:SETTING:SETTING:SETTING:SETTING: Plume Breakup (Europe from Greenland)

29  0.025–0.015 Ga29  0.025–0.015 Ga29  0.025–0.015 Ga29  0.025–0.015 Ga29  0.025–0.015 Ga

29a  B29a  B29a  B29a  B29a  Behm Canalehm Canalehm Canalehm Canalehm Canal (Tertiary ‘Lamprophyre’ Province) DYKES: Behm CanalDYKES: Behm CanalDYKES: Behm CanalDYKES: Behm CanalDYKES: Behm Canal (0.023-005 Ga)
(ca. 0.023–0.005 Ga) REFREFREFREFREF.:.:.:.:.: #348 in [2]
(c. British Columbia) COMMENTCOMMENTCOMMENTCOMMENTCOMMENT: alkalic lamprophyres
[25,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Hotspot (H1)

29b  29b  29b  29b  29b  Columbia River Basalt GroupColumbia River Basalt GroupColumbia River Basalt GroupColumbia River Basalt GroupColumbia River Basalt Group VOLCANIC ROCKS, DYKES AND SILLS: Columbia River Basalt GroupVOLCANIC ROCKS, DYKES AND SILLS: Columbia River Basalt GroupVOLCANIC ROCKS, DYKES AND SILLS: Columbia River Basalt GroupVOLCANIC ROCKS, DYKES AND SILLS: Columbia River Basalt GroupVOLCANIC ROCKS, DYKES AND SILLS: Columbia River Basalt Group (CRBG)
(mainly 0.017–0.0150 Ga) (nw. US) REFREFREFREFREF.:.:.:.:.: #1 in [1]
[165,000 sq. km] SETTING:SETTING:SETTING:SETTING:SETTING: Plume (P1, P7)

29c  Chilcotin29c  Chilcotin29c  Chilcotin29c  Chilcotin29c  Chilcotin  (Neogene-Paleogene; mainly Miocene) VOLCANIC ROCKS: Chilcotin GroupVOLCANIC ROCKS: Chilcotin GroupVOLCANIC ROCKS: Chilcotin GroupVOLCANIC ROCKS: Chilcotin GroupVOLCANIC ROCKS: Chilcotin Group basalts; AnahimAnahimAnahimAnahimAnahim volcanic belt; Cheslatta LakeCheslatta LakeCheslatta LakeCheslatta LakeCheslatta Lake suite;
(c. and sc. British Columbia) MassetMassetMassetMassetMasset FmFmFmFmFm
[25,000 sq. km] REFREFREFREFREF.:.:.:.:.: Anderson et al., 2001

COMMENTCOMMENTCOMMENTCOMMENTCOMMENT: : : : : Nearby     to and potentially linked to Columbia RivColumbia RivColumbia RivColumbia RivColumbia River Ber Ber Ber Ber Basalt Gasalt Gasalt Gasalt Gasalt Grrrrroupoupoupoupoup
SETTING:SETTING:SETTING:SETTING:SETTING: Hotspot (H1) Back-arc (partial melting)

TTTTTable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continuedable 1 Continued

margin of Laurentia at this time. The
conjugate margin may have been
Baltica, which has a remarkably similar
age range of magmatism (e.g. Heaman,
1997; Buchan et al., 2000), or the
Hearne craton (Bleeker, 2004). Addi-
tional units in eastern and southwestern
Laurentia, the 2.505     Ga Ptarmigan
dykes [#1a, unit not displayed in Fig. 1]
and the 2.408 Ga Du Chef dykes [#1a,
unit not displayed in Fig. 1] have
uncertain relationship with the events in
the southeastern and southern parts of
the Superior Province.

Elsewhere in Canada, there are
additional events falling in this age
range. These include the Kaminak dykes
[#1c] in the Hearne Province, and the
Mirond Lake dykes [#1d] in the Sask
craton of the Trans Hudson orogen.

2.24–2.21 G2.24–2.21 G2.24–2.21 G2.24–2.21 G2.24–2.21 Ga:a:a:a:a: The next burst of
activity in Laurentia was widespread in

the North Atlantic (Nain), Superior,
and Slave cratons [#2a-d]. The 2.235 Ga
Kikkertavak swarm [#2a] has been
linked with breakup along the southern
margin of the North Atlantic Craton
(lower Aillik Group) at 2.178 Ga
(Ketchum et al., 2001) although the long
interval between emplacement of the
swarm and breakup 57 Ma later is
problematic.  The 2.21 Ga BN1 (and
possibly correlative MD1) dykes [#2b]
of western Greenland are also likely
linked with North Atlantic Craton
breakup.

Superior Province elements of
this age include the 2.217–2.210 Ga
Ungava giant radiating swarm [#2c] that
spans the entire eastern half of the
Superior Province (Buchan et al. 1998).
The convergence point marks a plume
centre and possible breakup of a
continental fragment from the eastern

margin of the Superior Province.
Buchan et al. (1998) proposed that the
Nipissing sills [#2c] of the Southern
Province were fed laterally via the
Ungava radiating swarm from the plume
centre region >1000 km to the north-
east.

The Slave Province is another
node of activity in this age interval. The
2.23 Ga Malley and 2.21 Ga MacKay
dyke swarms [#2d] are both roughly
linear, and crosscut at a shallow angle. If
they represent rift-parallel swarms
(Fig. 3c) then they could be linked to
breakup along the southeastern margin
of the Slave Province (LeCheminant et
al., 1996). However, if they represent
an aulacogen (failed-arm) type swarm
(Fig. 3b), then the plume centre and
locus of breakup would have to lie at
one end of the swarms; i.e., either on
the east or southwest margins of the
Slave Province.
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FFFFFigurigurigurigurigure 1e 1e 1e 1e 1   Distribution of mafic units discussed in the text. Numbers correspond to entries in Tables 1 and 2. Colours have no age significance;
they are simply used to allow different magmatic events to be distinguished.
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Event nameEvent nameEvent nameEvent nameEvent name Magmatic components Magmatic components Magmatic components Magmatic components Magmatic components (Age)
(Age) (Location)

A1  3.11–2.98 GaA1  3.11–2.98 GaA1  3.11–2.98 GaA1  3.11–2.98 GaA1  3.11–2.98 Ga

A1a  Hunt RiverA1a  Hunt RiverA1a  Hunt RiverA1a  Hunt RiverA1a  Hunt River GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS:S:S:S:S: HHHHHunt Rivunt Rivunt Rivunt Rivunt Rivererererer (3.11 Ga)
(3.11 Ga) REFREFREFREFREF.:.:.:.:.: James et al., 2002
(Hopedale block, North Atlantic Craton) COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Includes komatiites

SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P4)

A1b  Florence LakeA1b  Florence LakeA1b  Florence LakeA1b  Florence LakeA1b  Florence Lake GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS:S:S:S:S: FFFFFlorlorlorlorlorence Lakeence Lakeence Lakeence Lakeence Lake (2.99–2.98 Ga)
(2.99–2.98 Ga) REFREFREFREFREF.:.:.:.:.: James et al., 2002
(Hopedale block, North Atlantic Craton) COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Includes komatiites

SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P4)

A1c  North CaribouA1c  North CaribouA1c  North CaribouA1c  North CaribouA1c  North Caribou GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS:S:S:S:S: BBBBBalmer Assemblagealmer Assemblagealmer Assemblagealmer Assemblagealmer Assemblage (RRRRRed Lakeed Lakeed Lakeed Lakeed Lake greenstone belt) (2.99 Ga)
(2.99 Ga) REFREFREFREFREF.:.:.:.:.: #256 in [2]; Tomlinson et al., 1998; Hollings et al., 1999 “plume related rifting”
(n. Caribou Terrane, nw. Superior Prov.) COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Includes komatiites

SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P4)

A2  2.93–2.92 GaA2  2.93–2.92 GaA2  2.93–2.92 GaA2  2.93–2.92 GaA2  2.93–2.92 Ga

A2a  A2a  A2a  A2a  A2a  WWWWWestern Sestern Sestern Sestern Sestern Superioruperioruperioruperioruperior GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS:S:S:S:S: SSSSSteep Rteep Rteep Rteep Rteep Rockockockockock; FFFFFinlaysoninlaysoninlaysoninlaysoninlayson; NNNNNorororororth Rim Uth Rim Uth Rim Uth Rim Uth Rim Unit nit nit nit nit of M M M M McGcGcGcGcGrrrrruer Assemblageuer Assemblageuer Assemblageuer Assemblageuer Assemblage (2.93 Ga)
(2.93 Ga) Lumby Lake Lumby Lake Lumby Lake Lumby Lake Lumby Lake 2963–2898 Ma, ? Heaven Lake  Heaven Lake  Heaven Lake  Heaven Lake  Heaven Lake [U 2954 Ma]
(Wabigoon subprov., w. Superior Prov.) REFREFREFREFREF.:.:.:.:.: #252 in [1]

COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Includes komatiites.  Rifting or impingement of plume in subduction setting (Hollings et al. 1999)
SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P4) Back-arc (A2)

A3  2.86 GaA3  2.86 GaA3  2.86 GaA3  2.86 GaA3  2.86 Ga

A3a  Pickle CrowA3a  Pickle CrowA3a  Pickle CrowA3a  Pickle CrowA3a  Pickle Crow GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS:S:S:S:S: PPPPPickle Cickle Cickle Cickle Cickle Crrrrrooooow Assemblagew Assemblagew Assemblagew Assemblagew Assemblage  (~2.86 Ga)
(2.86 Ga) REFREFREFREFREF.:.:.:.:.: #244 in [1]
(Uchi subprov., nw. Superior Prov.) COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Includes komatiites

SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P4)

A4  2.79–2.78  GaA4  2.79–2.78  GaA4  2.79–2.78  GaA4  2.79–2.78  GaA4  2.79–2.78  Ga

A4a  VizienA4a  VizienA4a  VizienA4a  VizienA4a  Vizien GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS:S:S:S:S: VVVVVizien izien izien izien izien (2.79 Ga)
(2.79 Ga) REFREFREFREFREF.:.:.:.:.: #236 in [1]
(Minto Block, ne. Superior Prov.) COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Includes komatiites

SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P4, P6)

A4b  FA4b  FA4b  FA4b  FA4b  Faribault–Thuraribault–Thuraribault–Thuraribault–Thuraribault–Thuryyyyy GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS:S:S:S:S: greenstone belt remnants in FFFFFaribault–Thuraribault–Thuraribault–Thuraribault–Thuraribault–Thury Complexy Complexy Complexy Complexy Complex (~2.88–2.71 Ga)
(ca. 2.88–2.71 Ga) REFREFREFREFREF.:.:.:.:.: Maurice et al., 2003
(Minto Block, ne. Superior Prov.) SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P4)

A4c  FourbayA4c  FourbayA4c  FourbayA4c  FourbayA4c  Fourbay GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS:S:S:S:S: FFFFFourbayourbayourbayourbayourbay SSSSSequenceequenceequenceequenceequence in SSSSSavavavavavant Lakeant Lakeant Lakeant Lakeant Lake and SSSSSturgeon Laketurgeon Laketurgeon Laketurgeon Laketurgeon Lake (2.78 Ga)
(2.78 Ga) REFREFREFREFREF.:.:.:.:.: Sanborn-Barrie and Skulski, 1999
(Wabigoon subprov, w. Superior Prov.) COMMENTCOMMENTCOMMENTCOMMENTCOMMENT: Possible oceanic plateau setting

SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P6)

A5  2.75–2.70 GaA5  2.75–2.70 GaA5  2.75–2.70 GaA5  2.75–2.70 GaA5  2.75–2.70 Ga

A5a  PA5a  PA5a  PA5a  PA5a  Prince Alberrince Alberrince Alberrince Alberrince Alberttttt–WWWWWoodburnoodburnoodburnoodburnoodburn GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS: S: S: S: S:  (~2.73 Ga): PPPPPrince Alberrince Alberrince Alberrince Alberrince Albert Gt Gt Gt Gt Grrrrroupoupoupoupoup; WWWWWoodburn Goodburn Goodburn Goodburn Goodburn Grrrrroupoupoupoupoup; MMMMMararararary Rivy Rivy Rivy Rivy River Ger Ger Ger Ger Grrrrroupoupoupoupoup,,,,,
(2.73 Ga) ?Murmac Bay Group?Murmac Bay Group?Murmac Bay Group?Murmac Bay Group?Murmac Bay Group
(Rae Prov.) REFREFREFREFREF.:.:.:.:.: #220 in [1]; Schau, 1997; Aspler et al., 1999; Zaleski et al., 2001; Hartlaub     et al., 2002; ; ; ; ; Skulski et al.,
[>1000 km. long belt] 003a,b.

COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Includes komatiites
SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P4) ?Breakup Rae Craton

A5b  KamA5b  KamA5b  KamA5b  KamA5b  Kam VOLCANIC ROCKS and DYKES:VOLCANIC ROCKS and DYKES:VOLCANIC ROCKS and DYKES:VOLCANIC ROCKS and DYKES:VOLCANIC ROCKS and DYKES: Kam GroupKam GroupKam GroupKam GroupKam Group and early dykes (2.73–2.70 Ga).
(2.73–2.70 Ga) REFREFREFREFREF.:.:.:.:.: #227 in [1]
(Slave Prov.) COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Widespread tholeiitic cover sequence

SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (?P3)

A5c  AbitibiA5c  AbitibiA5c  AbitibiA5c  AbitibiA5c  Abitibi GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS:S:S:S:S: includes komatiites: PPPPPacaudacaudacaudacaudacaud (2750–2735 Ma); SSSSStoughton-Rtoughton-Rtoughton-Rtoughton-Rtoughton-Roquemauroquemauroquemauroquemauroquemaureeeee
(2.75–2.70 Ga) (2725–2720 Ma); Kidd-MunroKidd-MunroKidd-MunroKidd-MunroKidd-Munro (2718–2710 Ma); TisdaleTisdaleTisdaleTisdaleTisdale (2710–2703 Ma)
(Abitibi belt, Superior Prov.) REFREFREFREFREF.:.:.:.:.: #224 in [1]; Ayer et al., 2002; Sproule et al., 2002

COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Includes komatiites
SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P4); Back-arc (A2)

A5d  A5d  A5d  A5d  A5d  WWWWWawaawaawaawaawa GREENSTGREENSTGREENSTGREENSTGREENSTONE BELONE BELONE BELONE BELONE BELTTTTTS:S:S:S:S: SchrSchrSchrSchrSchreiber-Heiber-Heiber-Heiber-Heiber-Hemlo-White Rivemlo-White Rivemlo-White Rivemlo-White Rivemlo-White River-Der-Der-Der-Der-Dayayayayayohessarahohessarahohessarahohessarahohessarah (2.75–2.74 Ga)
(2.75–2.74 Ga) REFREFREFREFREF.:.:.:.:.: #230 in [1]
(Wawa belt, Superior Prov.) COMMENTCOMMENTCOMMENTCOMMENTCOMMENT::::: Includes komatiites

SETTING:SETTING:SETTING:SETTING:SETTING: ?Plume (P4)

TTTTTable 2able 2able 2able 2able 2   Archean greenstone belts in Canada interpreted to have a plume origin (i.e. tholeiitic sequences containing komatiites and/ or those
interpreted as oceanic plateaus).  Details and full referencing on most events is available in compilations [1] (=Ernst and Buchan 2001) and [2]
(=Buchan and Ernst 2004), and Tomlinson and Condie (2001), or in the additional cited references. “REFREFREFREFREF.:” = key reference(s). SETSETSETSETSETTINGTINGTINGTINGTING
codes are explained in Table 3.
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Figure 2aFigure 2aFigure 2aFigure 2aFigure 2a Aerial photograph (centred
approximately at 67°18’N, 112°26’W) of
1.27 Ga Mackenzie dykes cutting the
Recluse Group and other units of the Tree
River fold belt, Wopmay Orogen. The
dykes are up to 50 m wide and are exposed
as prominent ridges because of differential
erosion.

FFFFFigurigurigurigurigure 2b  e 2b  e 2b  e 2b  e 2b   The 1.109 Ga Logan diabase sills of the Keweenawan magmatic event, shown
here from an 1869 sketch by Robert Bell of the Geological Survey of Canada (Bell 1879),
occur widely in the vicinity of Lake Superior and Lake Nipigon. Bell (1870) noted that “… the
Inner Barn with its sides of columnar trap, rises like a great castle in the middle of the bay, to a
height upwards of 600 feet, and appears to be the highest point around Lake Nipigon.”

Figure 3 Figure 3 Figure 3 Figure 3 Figure 3    LIP setting determined from
dyke swarm geometry and relationship to
cratonic edge.  These and other settings are
described in Table 1. Star locates mantle
plume center. a.a.a.a.a. Dyke swarm radiating from
coeval cratonic margin (focus identifies
plume centre) Type P1 and B1 of Table 3.
b.b.b.b.b. Linear swarm perpendicular to nearby
coeval cratonic margin (failed arm type of
Fahrig, 1987). If a swarm extends across the
craton to another margin, it is ambiguous as
to which margin the dykes are related.  Type
P2 of Table 3. c.c.c.c.c. Linear swarm parallel to
coeval breakup margin (passive margin type
of Fahrig, 1987). Type B2 of Table 3. d.d.d.d.d.
Linear swarm parallel to subducting margin.
Type A1 of Table 3.

LabelLabelLabelLabelLabel CriteriaCriteriaCriteriaCriteriaCriteria

MANTLE PLUME LINK

P1 Radiating dyke swarm
P2 Linear dyke swarm (or belt of mafic magmatism) perpendicular to cratonic

margin (failed-arm type of Fahrig, 1987; could also be called aulacogen-type).
P3 Large event, distal from cratonic boundary
P4 Presence of high-Mg rocks, e.g. komatiites in Archean greenstone belts
P5 Geochemistry: OIB or FOZO signature
P6 Accreted oceanic plateaus
P7 Link to present-day hotspot

BREAKUP LINK

B1 Radiating swarm or failed-arm type swarm (Fahrig, 1987) with convergence point near cratonic
margin of similar age

B2 Linear dyke swarm, parallel to and nearby cratonic margin of similar age. This is termed passive
margin type swarm by Fahrig (1987)

B3 LIP situated nearby cratonic margin of similar age

ARC LINK

A1 Location in a back-arc setting relative to concurrent orogenic activity. However, this does not
necessarily require back-arc extension processes. (See Note 1, below)

A2 Coexisting with arc magmatism

HOTSPOT (OF UNSPECIFIED ORIGIN)

H1 Small (sub-LIP scale) region of anomalous intraplate mafic volcanism

Note 1: The Keweenawan rift activity is arguably in a back-arc setting with respect to the
Grenville orogen, yet it is generally viewed that the Keweenawan magmatism is plume-related
(see discussion in text).

TTTTTable 3 able 3 able 3 able 3 able 3   Selected criteria for interpreting origin and setting of LIPs and smaller intraplate
mafic events.
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2.19–2.17 Ga:2.19–2.17 Ga:2.19–2.17 Ga:2.19–2.17 Ga:2.19–2.17 Ga: Widespread
activity occurred during this age inter-
val. The oldest activity is represented by
the 2.19 Ga Dogrib dyke swarm [#3a]
in the Slave Province and the similar
age Tulemalu-MacQuoid swarm [#3b] in
the Hearne Province. While a connec-
tion would seem likely based on the age
match, preliminary paleomagnetic data
indicate that the Slave and Rae cratons
were not in their present relative
positions at this time (LeCheminant et
al., 1997). Globally, a stage of Birimian
magmatic activity in Western Africa has
this age (event #187 in Ernst and
Buchan, 2001). Magmatic activity in
the Slave Craton continues to 2.18 Ga,
the age of the Duck Lake sill [#3a, unit
not displayed in Fig. 1].

The 2.17 Ga Biscotasing dyke
swarm [#3c] is one of the most wide-
spread in Canada, extending throughout
much of the southern and central
Superior Craton. Similar age activity
[#3d] is present as the Payne River
dykes in northern Ungava (Cape Smith
Belt) and Cramolet Lake sills (part of
“Cycle 1” magmatism) in the Labrador
Trough. It seems unlikely that all these
elements are part of a single event, but
the association of Payne River dykes
and “Cycle 1” magmatism in the
Labrador Trough suggests a link to
breakup along the eastern Superior
Province. Globally, an identical age has
also been obtained from a quartz diorite
dyke in the Wyoming Province, al-
though paleomagnetic data are inconclu-
sive regarding the relative locations of
the Wyoming and Superior provinces at
this time (Harlan et al., 2003a).

2.12–2.07 Ga:2.12–2.07 Ga:2.12–2.07 Ga:2.12–2.07 Ga:2.12–2.07 Ga: In the Superior
Province there are several distinct stages
of activity during this time interval. The
2.12–2.10 Ga Marathon dyke swarm
[#4a] is a broadly linear swarm that cuts
northward across the Superior Province
from Lake Superior. This is an
aulacogen-type swarm, and therefore
could be associated with a breakup
margin at the end of the swarm. Since
the swarm may reach the cratonic
margin on its north end as well as its
south end (c.f. Fig. 3b), then the
applicable breakup margin may also be
at either end, either to the north in
Hudson Bay or to the south in Lake
Superior.

Slightly younger is the 2.09–2.07
Ga Cauchon swarm [#4b], which has
been linked with breakup along the
northwest margin of the Superior
Province (e.g. Halls and Heaman,
2000). Two other events are also of this
age: the 2.077 Ga Fort Frances (Kenora-
Kabetogama) dykes [#4c] that are linked
with breakup along the southern margin
of the Superior Province, and the 2.069
Ga Lac Esprit swarm [#4d] located east
of James Bay. There are no obvious
connections between these widely
separated but coeval 2.07 Ga events.
However, future identification of
additional dykes of this age in interven-
ing areas could suggest a link.

In the Hearne Province, the
widespread 2.111 Ga Griffin gabbros
(formerly Hurwitz gabbros) [#4e] are
presumably linked to breakup along the
Trans-Hudson margin (Aspler et al.,
2002).

Finally, the Napaktok swarm
[#4f ] trends perpendicular to and
extends along the Labrador coast for at
least 200 km. These dykes have an
uncertain age between 2.50 and 2.10
Ga, and uncertain tectonic setting.
Although more than one age of dykes
may be present, at least part of this
activity is dated by the 2.121 Ga age for
the Tikkigatsiagak dyke.

2.052.052.052.052.05–––––2.02 Ga:2.02 Ga:2.02 Ga:2.02 Ga:2.02 Ga:  In the Nain
Province, the 2.045 Ga Iglusuataliksuak
dyke [#5a, unit not displayed in Fig. 1]
is coeval with the Kangâmuit swarm
[#5a] of adjacent southern Greenland.
The combined 2.04–2.05 Ga event
would be areally significant, and may
represent a breakup event associated
with the northern margin of the North
Atlantic Craton. Korak sills associated
with the lower Povungnituk sequence
[#5b] in the Cape Smith Belt of the
northeastern Superior Province are of
the same age as the Iglusuataliksuak
dyke. However, given that the North
Atlantic Craton had not yet docked at
this time, two independent events are
probable. The younger Upper
Povungnituk sequence [#6c] is discussed
below in the next section.

The third locus of activity of this
age is in the Slave Craton. The 2.038
Ga Hearne dykes [#5c] parallel the
southern Slave margin, possibly repre-
senting breakup along that margin (c.f.

with evidence discussed above for an
earlier 2.23–2.21 Ga breakup along that
margin associated with the Malley/
MacKay swarms [#2d]). In contrast, the
younger 2.030–2.023 Ga Lac de Gras
swarm [#5d] is not easily linked to any
margin. It is centred in the Slave
province and slightly converges to the
north toward the similar-aged Booth
River Complex in the Kilohigok sedi-
mentary basin. LeCheminant et al.
(1996) suggest that the Lac de Gras
swarm is coeval with rifting on the
western margin of the Slave Province.

2.00–1.95 Ga:2.00–1.95 Ga:2.00–1.95 Ga:2.00–1.95 Ga:2.00–1.95 Ga:  Magmatism of
this age range is distributed along the
circum-Superior margin (e.g. Baragar
and Scoates 1987).

In the Belcher Islands there are
two main volcanic suites, the Eskimo
[#6a] and overlying Flaherty [#6b]
volcanics. Based on paleomagnetic
correlations, the Eskimo volcanics may
be linked with Richmond Gulf,
Persillon, Pachi and Nastapoka Group
volcanics (Chandler and Schwarz, 1980;
Schwarz and Fujiwara, 1981), and with
1.998 Ga Minto dykes (Buchan et al.,
1998). The Minto dykes and correlated
suites are also coeval and perhaps
cogenetic with the precisely dated Watts
Group ophiolite.  The Eskimo volcanics
have been linked geochemically with the
western Povungnituk [#6c] (Legault et
al., 1994), but this link is now doubtful
based on more extensive recent
geochemical study (Modeland et al.,
2003).

The overlying Flaherty Group
[#6b] is essentially undated except for a
very uncertain Pb-Pb age of 1960+/-80
Ma. However, paleomagnetic data
suggest a link with the Haig and Sutton
Inlier sills (Schwarz and Fujiwara,
1981).     Geochemical correlations
indicate that the Flaherty Group may be
linked with the upper (eastern)
Povungnituk [#6c] (Legault et al., 1994).

The Cape Smith Belt includes
the tectonically juxtaposed 1.998 Ga
Watts Group, 2.04–1.96 Ga
Povungnituk suites [#5b & #6c], and ca.
1.87 Ga Chukotat Group volcanics
[#8b]. (Note that the older 2.04 Ga
portion of the Povungituk sequence
[#5b] was discussed in the previous
section.)



116

Additional magmatism in this
age interval is present in the Nain
Province. A 1.95 Ga plateau basalt
sequence in the Mugford Mountains of
Labrador [#6d] represents a rifting
event (Wardle et al., 2002) that may be
more widespread in the North Atlantic
Craton based on possible correlations
with the Ramah and Snyder groups.

1.90–1.88 G1.90–1.88 G1.90–1.88 G1.90–1.88 G1.90–1.88 Ga (a (a (a (a (TTTTTrans Hrans Hrans Hrans Hrans Hudsonudsonudsonudsonudson
Orogen and Rae-Hearne Craton):Orogen and Rae-Hearne Craton):Orogen and Rae-Hearne Craton):Orogen and Rae-Hearne Craton):Orogen and Rae-Hearne Craton):
Several non-arc packages are associated
with the Trans Hudson during this age
interval. These include the Sandy Bay
assemblage of the Flin Flon Belt [#7a],
which contains accreted oceanic crust
of various affinities, including an
oceanic plateau. In addition there are
the Josland and related sills [#7b] in the
Lynn Lake Belt of the Amisk collage,
and the mafic magmatism in the Piling-
Penhryn [#7c], and Lake Harbour [#7d]
groups     on Baffin Island.

1.88–1.86 Ga (Circum-Supe-1.88–1.86 Ga (Circum-Supe-1.88–1.86 Ga (Circum-Supe-1.88–1.86 Ga (Circum-Supe-1.88–1.86 Ga (Circum-Supe-
rior Province): rior Province): rior Province): rior Province): rior Province): 1.88–––––1.87 Ga mafic
magmatism     surrounds the Superior
Province on all sides except the south-
east where, if originally present, it has
been obscured by the Grenville
allochthon. This magmatism is present
in the Labrador Trough (Montagnais
sills belonging to New Quebec Orogen
Cycle 2 [#8a]), Cape Smith Belt
(Chukotat Group [#8b]), northwest
Superior province (Fox River sill,
Molson dykes, Thompson Nickel Belt,
and Winnipegosis komatiites [#8c]),
and the Animikie Basin and Marquette
Range Supergroup of the southern
Province (Hemlock and Gunflint
formations and associated Kiernan sills
[#8d]). The 1.88 Ga event or events are
of particular importance because they
represent a metallotect; the major Ni-
Cu-PGE sulphide ores of both the
Thompson Nickel Belt and the Raglan
deposits of the Cape Smith Belt appear
to be associated with this age of
magmatism (e.g. Hulbert et al., 2004
for TNB; Wodicka, pers. comm. 2004
for Raglan).

1.88 Ga magmatism in the Cape
Smith belt and Labrador Trough has
been linked to rifting and possible
separation of a microcontinent (St-Onge
et al., 2000).  However, the magmatism
in both the Thompson belt and
Animikie basin occurs within a broad

period of  ocean closure, and therefore
may represent back-arc rifting.          The
recent discovery of a major ca. 1.88 Ga
dyke, the NW-trending Pickle Crow
dyke [#8c] crossing the interior of
western Superior Province provides a
link between the Animikie Basin and
Thompson Belt magmatic activity, and
may suggest a mantle plume model for
the western part of the 1.88 Ga event
(Buchan et al., 2003).

1.83–1.82 G1.83–1.82 G1.83–1.82 G1.83–1.82 G1.83–1.82 Gaaaaa: The Sparrow
dyke swarm [#9a] of the western Rae
Province is as yet uncorrelated with any
volcanic sequences. Other units of
similar age but uncertain relationship
are 1) a meta-gabbro and two
monzogabbros with U-Pb ages of 1.83–––––
1.82 Ga in the Close Lake, Wollaston-
Mudjatik Transition zone [#9a, unit not
displayed in Fig. 1], and 2) the wide-
spread Christopher Island formation
volcanics of the Baker Basin region
[#9a, unit not displayed in Fig. 1].

1.75–1.71 G1.75–1.71 G1.75–1.71 G1.75–1.71 G1.75–1.71 Ga: a: a: a: a: The Cleaver
dykes in the Great Bear Magmatic
Zone, the Hadley Bay sills on Victoria
Island and MacRae Lake dykes in the
northern Rae Province are coeval in age
[#10a], suggesting a widespread event in
northwestern Canada. This large region
of 1.75 Ga activity could be associated
with the generation of Wernecke
sediments in the northwestern
Cordillera, and the approximately 40
Ma younger 1.71 Ga Bonnet Plume
River mafic magmatism [#10a; unit not
displayed in Fig. 1]. The Wernecke
sediments are inferred to represent the
earliest rift stage of activity associated
with the Cordilleran margin (Cook et
al. in Percival et al., 2004). The Pitz
formation felsic volcanics and Nueltin
felsic intrusive suite [#10a, units not
displayed in Fig. 1] of the Baker Basin
region are similar in age.

Subhorizontal seismic reflectors
interpreted as sills are present over a
huge region (about 120,000 sq. km) in
the basement underlying the Western
Canada Basin. These Winagami sills
[#10b] are roughly bracketed in age
between 1.89 and 1.76 Ga, and have
been tentatively linked with the Cleaver
dykes by Ross and Eaton (1997).

1.64 G1.64 G1.64 G1.64 G1.64 Ga: a: a: a: a: The 1000 km long
Melville Bugt swarm [#11a] is located in
western Greenland. Although close to

Baffin Island and other Canadian Arctic
islands in a reconstructed Greeenland –
North America configuration, Melville
Bugt dykes have not yet been recognized
in Canada.

1.47–1.44 G1.47–1.44 G1.47–1.44 G1.47–1.44 G1.47–1.44 Ga:a:a:a:a: There are two
nodes of activity with this age. The Belt
Basin of the western Cordillera contains
extensive Moyie-Purcell sills and
associated Purcell volcanics [#12a].
These may have been generated when a
continent (perhaps Australia) was rifted
from the western margin of Laurentia.
It is also interesting that in the Wyo-
ming Province there is an extensive
linear dyke swarm (Tobacco Root –
Group B; [#12a]) of the same age.
Assuming that the dykes fed the
volcanics and sills, we can infer that the
magma source area was either on the
western margin of Laurentia in the
vicinity of the Belt Basin, or far to the
southeast on the southern margin of
Laurentia with magma being trans-
ported laterally via the dykes to the Belt
Basin.  Long distance feeding of a sill
province has been described above for
the 2.22 Ga Ungava event, and may be
a not uncommon consequence of the
lateral flow pattern in giant dyke swarms
(e.g. Ernst and Buchan, 1997).

A second node of this age is
located in southeastern Laurentia. The
Michael and Shabagamo gabbros [#12b]
have an approximate age of 1.47–1.46
Ga and represent a significant event in
the southeastern Laurentia. They are
located in a back-arc setting to the
evolving Grenville Orogen (Rivers et al.
in Percival et al., 2004).

1.38 Ga:1.38 Ga:1.38 Ga:1.38 Ga:1.38 Ga: Hart River volcanic
rocks and sills, and coeval sills from the
Belt Basin region [#13a], may represent
rift sequences (Abbott, 1997;
Thorkelson et al., 2003).

1.28–1.27 Ga:1.28–1.27 Ga:1.28–1.27 Ga:1.28–1.27 Ga:1.28–1.27 Ga: One of the
largest magmatic events in Canada
occurred at 1.267 Ga [#14a]. Most
prominently this event consists of the
Mackenzie giant radiating dyke swarm.
Mackenzie dykes (Fig. 2a) fan over an
arc of 100° and cover almost 3 million
sq. km of the Canadian Shield. Coeval
Coppermine volcanics and the Muskox
Intrusion are situated near the plume
center, but additional volcanic and sill
packages are distributed throughout the
swarm and are inferred to be fed via
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lateral flow along dykes originating from
near the plume center (e.g. Ernst and
Baragar, 1992; Baragar et al., 1996).
This LIP is presumed to be linked with
continental breakup and formation of a
northern ocean, which has been termed
the Poseidon Ocean (G. Jackson cited
in Fahrig, 1987). However, the missing
rift block(s) has not yet been identified,
although Siberia has been a repeated
suggestion (see summary in Ernst et al.,
2000; cf. Sears et al., 2004).

The North Atlantic Craton of
North America and Greenland is
another locus of magmatic activity
during this time period [#14b]. The
1.280–1.277 Ga Nain-LP dykes of
Labrador are correlative with the BD0
dykes of Greenland (Buchan et al.,
1996). Also the 1.273 Ga Harp dykes of
Labrador may be linked with Gardar
(BD1, BD2, BD3) dykes of Greenland
(Baragar, 1977). The setting of this
1.28–1.27 Ga activity is unknown, but
it is clearly distinct in location, dyke-
trend, and probably in origin from the
coeval Mackenzie event. Also wide-
spread in Labrador are the anorthosites,
granites, diorites and troctolites of the
older and probably unrelated 1.35–1.29
Ga Nain plutonic suite (Ryan and
James, 2004 and references therein).

Coeval activity of this age is
represented globally by the Central
Scandinavian Dolerite Complex (sills) of
the Baltic Shield. Paleomagnetic data
and geological evidence suggest a
reconstructed location east of Greenland
(Buchan et al., 2000, and references
therein), which is supported by geologi-
cal evidence (Bingen et al., 2002).
Given its great spatial separation from
Canada in this reconstruction, the
Central Scandinavian Dolerite Complex
of Baltica must represent a separate
event from the coeval Mackenzie (and
also possibly the Nain Province) activ-
ity. The occurrence of multiple inde-
pendent LIPs has been considered
evidence for plume cluster events (Ernst
and Buchan, 2002).

1.25–1.22 G1.25–1.22 G1.25–1.22 G1.25–1.22 G1.25–1.22 Ga:a:a:a:a: The Grenville
Province and adjacent Superior Prov-
ince contain widely separated packages
of similar-aged magmatism. From
southwest to northeast, these include
1.235 Ga Sudbury dykes [#15a], 1.25–––––
1.225 Ga Seal Lake volcanic rocks and

Naskaupi sills [#15b], and the 1.250 Ga
Mealy dykes [#15b].....  These 1.25–––––1.22
Ga events along the Grenville Orogen
have not been previously linked to each
other and more work is required to
assess whether they represent disparate
elements of the same event.  They are
situated in a back-arc setting with
respect to the evolving Grenville orogen
(e.g. Rivers and Corrigan, 2000; Rivers
et al. in Percival et al., 2004). However
a plume origin should not be ruled out.
The Seal Lake suite has previously been
considered analogous to a flood basalt
sequence (“plateau basalt” is the term
used in Baragar, 1977), and the
aulacogen type geometry of the Sudbury
dykes suggests derivation from a
spreading center located to the south-
east of the swarm (Fahrig, 1987).

1.18–1.14 Ga:1.18–1.14 Ga:1.18–1.14 Ga:1.18–1.14 Ga:1.18–1.14 Ga: Widely separated
but possibly linked nodes of mafic
magmatism of 1.18 Ga are distributed
along the Grenville Orogen. Specifically,
toward the northeast end of the
Grenville Province the Davy Group sills
and dykes [#16a] in the Wakeham
Group have an age of 1.177 Ga. Similar
ages are found in coronitic gabbros
[#16a] in the Baie du Nord segment of
Tshenukutish domain. Finally, the same
age but with larger uncertainties applies
to Algonquin metagabbros [#16a] in the
Central Gneiss Belt, southwestern
Grenville Province.

Late Gardar magmatism in
South Greenland ranges in age from
1.18–––––1.14 Ga [#16b], and includes the
1.18 and 1.163 Ga Giant Tugtutôq
Dykes.

The sparsely distributed 1.141
Ga Abitibi dyke swarm [#16c] of the
Central Superior Province has a width
of 400 km and extends for nearly 700
km across the southern and eastern
Superior Province. This event has long
been considered as a precursor to the
1.109–1.085 Ga Keweenawan event
[#17a] located at the southwest end of
the swarm (next entry). However, the
broadly linear pattern of the Abitibi
swarm does not eliminate a possible
source at the other (northeast end) of
the swarm.

1.11–1.08 Ga: 1.11–1.08 Ga: 1.11–1.08 Ga: 1.11–1.08 Ga: 1.11–1.08 Ga: One of the most
dramatic flood basalt events in Canada
and the United States is arguably the
Keweenawan magmatism [#17a] of the

Mid-Continent Rift (e.g. Ojakangas et
al., 2001). It comprises at least 2 x 106

cubic km of volcanic rocks and possibly
an equal volume of intrusive rocks (Fig.
2b). The Mid-Continent Rift (and
subsurface lavas) can be traced eastward
through Michigan and southwestward
into the central United States. A similar
age of activity is found in the “South-
western USA Diabase Province”, and in
the Moores Lake sills of the Athabasca
Basin (1000 km to the northwest). The
Keweenawan activity consists of main
pulses of activity at 1.109–––––1.105 Ga
and 1.100–1.094 Ga, but activity is
continuous to 1.085 Ga. Emplacement
of the Keweenawan LIP is similar in age
to that of terminal collision of the
Grenville orogen (Rivers et al. in
Percival et al., 2004). Although a back-
arc rifting origin linked to the coeval
Grenville orogeny has been suggested,
the most widely accepted model links
the event to a mantle plume on the basis
of the great volume of tholeiitic magma
generated in an intraplate setting (e.g.
Ojakangas et al., 2001).

0.78 G0.78 G0.78 G0.78 G0.78 Ga:a:a:a:a: The Gunbarrel mag-
matic event [#18a] is distributed over a
distance of 2400 km in western North
America. Precise 0.780 Ga ages are
found in the Hottah sheets of the Slave
Province, the Mackenzie Mountains
dykes and sills, the MacDonald dykes,
and the Tobacco Root- Group B and
Wolf Creek sills of the Wyoming
Province (Harlan et al., 2003b). The
Irene and Huckleberry volcanics of
northwestern USA are also inferred to
be of this age. The dykes define a
radiating swarm with a convergence
point in the southern Cordillera near
Vancouver Island, indicating a mantle
plume origin for this 0.78 Ga LIP (Park
et al., 1995). The Windermere sedimen-
tary/volcanic sequence starting at about
0.75 Ga may represent a passive margin
associated with this 0.78 Ga plume.
Both South China and Australia also
contain magmatism dated at 0.78 Ga
(events #67 and #64 in Ernst and
Buchan, 2001, respectively) and both
have been proposed as the rifted
block(s).

0.72 Ga: 0.72 Ga: 0.72 Ga: 0.72 Ga: 0.72 Ga: Another major     LIP
event is represented by the Franklin
dyke swarm [#19a] which extends
throughout the southern Arctic Islands,
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but is most significant on Baffin Island,
and also on reconstructed Greenland as
the Thule swarm [#19a]. The conver-
gence point marking the plume centre
for this event is located north or north-
west of Banks Island. Natkusiak
volcanics, and Minto Inlier and Coro-
nation sills [#19a] are also part of the
Franklin event and are generally concen-
trated toward the plume centre region.
The Franklin event may be linked with
separation of an as yet unidentified
continent.

Another possible locus of
similar-aged activity is the Appalachi-
ans. A very approximate Rb-Sr age of
0.735 Ga has been suggested for coast-
parallel dykes in basement inliers of the
Appalachians of the United States (event
#72 in Ernst and Buchan, 2001). This
activity can been linked with additional
magmatism and a stage of rifting along
the Laurentian margin in the southern
Appalachians (Aleinikoff et al., 1995).

0.62–0.56 Ga (Laurentian0.62–0.56 Ga (Laurentian0.62–0.56 Ga (Laurentian0.62–0.56 Ga (Laurentian0.62–0.56 Ga (Laurentian
margin, Amargin, Amargin, Amargin, Amargin, Appalachians): ppalachians): ppalachians): ppalachians): ppalachians): The formation
of the Iapetus Ocean was preceded by
several distinct major magmatic events
along the eastern margin of Laurentia.
These include the 0.615 Ga Long Range
dykes [#20a], the 0.590 Ga Grenville-
Adirondack fanning swarm [#20b] and
the 0.563 Ga Sept Îles layered intrusion
[#20c]. The latter is roughly coeval with
the Catoctin flood basalts [#20c, unit
not displayed in Fig. 1] situated in the
southern Appalachians of the United
States. Other basaltic units and syenitic
intrusions with ages 0.56 to 0.55 Ga are
widely distributed (Puffer, 2002;
Higgins and van Breemen, 1998).

The oldest event, the 0.615 Ga
dykes [#20a] may have been linked to
similar-aged magmatism in Baltica,
which is represented by the aulacogen-
type Egersund dykes (Bingen et al.,
1998) and the coast-parallel
Baltoscandian breakup swarm (event
#55 in Ernst and Buchan, 2001). Two
younger rifting events are also recorded
in Laurentia: an early separation of
Amazonia, and a later separation of the
peri-Laurentian Dashwoods
microcontinent (Waldron and van Staal,
2001; cf. Cawood et al., 2001). Within
this context, the 0.590 Ga radiating
swarm [#20b] (associated with the St.
Lawrence rift system) may presage the

separation of Amazonia from Laurentia
at 0.57 Ga to form the Iapetus Ocean,
and the magmatism at 0.563 Ga [#20c]
may similarly be linked to the separa-
tion of the Dashwoods terrane at
0.550–0.540 Ga.

0.62–0.55 G0.62–0.55 G0.62–0.55 G0.62–0.55 G0.62–0.55 Ga (Aa (Aa (Aa (Aa (Avvvvvalon zalon zalon zalon zalon zone,one,one,one,one,
AAAAAppalachians): ppalachians): ppalachians): ppalachians): ppalachians): The     ca. 0.62 Ga Har-
bour Main [#21a] and the 0.585–0.555
Ga Marystown events [#21b] are
recorded in the Avalon zone, which had
an uncertain relationship with Laurentia
during this period and subsequently
drifted with Gondwana before closure
of the Iapetus Ocean in the early
Paleozoic.

 0.57–0.52 G0.57–0.52 G0.57–0.52 G0.57–0.52 G0.57–0.52 Ga (Cora (Cora (Cora (Cora (Cordillera): dillera): dillera): dillera): dillera): The
0.57 Ga Hamill-Gog Group magmatism
[#22a] in the southern Cordillera has
been linked with a breakup along this
Laurentian margin (Colpron et al.,
2002).

In the northern Cordillera lower
Paleozoic alkalic and potassic mafic
magmatism [#22b] is linked with rifting
of the Selwyn Basin (Goodfellow et al.,
1995). This magmatism includes the
Demster, Menzie Creek, Niddery
volcanics, and younger Fossil Creek
volcanics. The only precise age is a
0.518 Ga U-Pb age from a Post-Hyland
Group sill, probably representing a
widespread set of sills (Abbott, 1997).
However, a range of volcanic ages from
Lower Cambrian to Early Devonian is
suggested on biostratrigraphic grounds
(Goodfellow et al., 1995; Abbott, 1997).

0.47–0.41 Ga (Dunnage,0.47–0.41 Ga (Dunnage,0.47–0.41 Ga (Dunnage,0.47–0.41 Ga (Dunnage,0.47–0.41 Ga (Dunnage,
GGGGGanderanderanderanderander, A, A, A, A, Avvvvvalon and Malon and Malon and Malon and Malon and Meguma zeguma zeguma zeguma zeguma zones,ones,ones,ones,ones,
Appalachians): Appalachians): Appalachians): Appalachians): Appalachians): In Atlantic Canada
several important mafic (and bimodal)
magmatic suites include the 0.46 Ga
Dunn Point [#23a], and 0.44–0.43 Ga
Bayswater and Cape St. Mary’s suites of
the Avalon zone [#23b], the Middle
Ordovician Overstep Sequence of the
Gander and Dunnage zones [#23a], the
0.44 Ga White Rock formation of the
Meguma zone [#23b], and the early
Silurian Overstep Sequence [#23b] of
central Newfoundland (mainly in the
Dunnage Zone). Much of this
magmatism has been emplaced in a
back-arc setting. During this period the
Iapetus Ocean was closing, but the
spatial relationship between these
Iapetan terranes is still under debate.

0.36–0.32 G0.36–0.32 G0.36–0.32 G0.36–0.32 G0.36–0.32 Ga: a: a: a: a: The Carbonifer-
ous Magdalen (or Maritimes) Basin is
thought to have been underplated by a
layer of mafic magma with an average
thickness of 13 km based on geophysi-
cal modelling [#24a] (Marillier and
Verhoef, 1989). In addition, volcanic
rocks and intrusions of this age are
distributed widely around the western
and southern perimeter of the basin.
The Magdalen Basin magmatic event
[#24a] has been inferred to represent
the final breakthrough of a plume that
had been trapped beneath a subducting
slab (Murphy et al., 1999).

0.27–0.21 G0.27–0.21 G0.27–0.21 G0.27–0.21 G0.27–0.21 Ga (Cora (Cora (Cora (Cora (Cordillera):  dillera):  dillera):  dillera):  dillera):  The
mid-Permian to upper Jurassic (ca.
0.27–0.20 Ga)     Cache Creek terrane of
the Cordillera may include some
oceanic plateau and hotspot material
[#25a], but this remains controversial
(cf. Tardy et al., 2001 and Struik et al.,
2001).

Wrangellia is an important
accreted terrane of the Cordilleran
orogen [#25b], consisting of Karmutsen
and Nikolai volcanics and associated
0.232 Ga Maple Creek sills. These units
originated as an oceanic plateau possi-
bly formed atop an island arc before
being accreted onto the Cordilleran
orogen (e.g. Richards et al., 1991).

Note that the Wrangell Lavas
(0.065–0.002 Ga) (event #331 in
Buchan and Ernst 2004), which extend
from the Yukon into Alaska for a
distance of ~430 km, are distinct from
the much older Wrangellia flood basalts,
despite the similar names. The extensive
Wrangell lavas are not catalogued in
Table 1 because they are linked to
subduction along the Aleutian arc.

Ramparts Group magmatism
[#25c] of Alaska is poorly dated (ca.
0.21 Ga). It is located in the Tozitna
Belt of Alaska and is explained as a
“parautochthonous rift assemblage”
(p. 190, Dover, 1994).

0.20 G0.20 G0.20 G0.20 G0.20 Ga:a:a:a:a: The largest magmatic
event on Earth in terms of areal distri-
bution is the Central Atlantic Magmatic
Province (CAMP) [#26a]. Found in
North America, Europe, Africa and
South America, it covers an area of
nearly 7 million sq. km. It mainly
consists of a giant radiating dyke swarm
centred near Florida that was the
precursor to the     0.175 Ga opening of
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the central Atlantic Ocean. Extensive sill
provinces and volcanic packages are
also found on all formerly adjacent
blocks. In Atlantic Canada, this event is
represented by several major dykes, as
well as the North Mountain and Grand
Manan volcanics [#26a].

A plume origin seems most
likely based on the large scale and short
duration of the event as well as presence
of a giant radiating dyke swarm. How-
ever, a model involving  “edge convec-
tion” has also been advocated mainly on
the basis of ‘non-plume’ chemistry, and
the suggestion that the dykes represent a
superposition of distinct linear swarms
rather than an overall single radiating
swarm (e.g. several papers in Hames et
al., 2003).

0.14–0.09 G0.14–0.09 G0.14–0.09 G0.14–0.09 G0.14–0.09 Ga: a: a: a: a: From     0.14 to
0.11 Ga there was extensive NEQ (New
England-Quebec) magmatic activity
[#27a] in the eastern United States and
Quebec. The Monteregian Hills plutons
and dykes of this magmatic event have
been linked to a plume tail (the Great
Meteor hotspot track) associated with
the New England seamount chain
(Heaman and Kjarsgaard, 2000).
Problems with a plume origin for this
magmatic province have been discussed
by McHone (1996).

Another node of activity at this
time is represented by the 400 km long
Trap dyke swarm [#27b], which was
emplaced along the southwestern coast
of Greenland at 0.138 Ga. Given the
proximity of Greenland to Labrador at
this time, we would expect a continua-
tion of this extensive magmatic event
into eastern Canada.  Globally, similar-
aged magmatism is linked with two
plume centres associated with the
breakup of South America and Africa
(Fig. 8 in Ernst and Buchan, 2002).

Magmatism on the Queen
Elizabeth Islands [#27c] is part of the
High Arctic Large Igneous Province
(HALIP) [#27c]. This event is also
present in northern Greenland, Svalbard
and Franz Josef Land, as well as off-
shore (Tarduno et al., 1998; Maher,
2001). Precise dates of 0.095–0.092 Ga
apply to both the Strand Fiord volcanics
and the Wootton intrusion (Tarduno et
al., 1998). However K-Ar and Rb-Sr
dating as well as biostratigraphic control
suggests that the magmatism may have

begun at ca. 0.13 Ga.  While a con-
tinuum of activity may be present,
Maher (2001) interprets two pulses of
activity, at ca. 0.13 and ca. 0.09 Ga.
The identification of a radiating dyke
swarm suggests a plume origin with a
plume centre located near the Alpha
Ridge (Embry and Osadetz, 1988; Ernst
and Buchan, 1997; Maher, 2001).

0.07–0.05 G0.07–0.05 G0.07–0.05 G0.07–0.05 G0.07–0.05 Ga:a:a:a:a: The 0.070 Ga
Carmacks volcanics [#28a] of the
northern Cordillera have a slightly more
potassic composition than most of the
other events discussed in this paper, but
they have a large areal extent (about
60,000 sq. km) and were apparently
emplaced in a short duration. The
slightly younger 0.06–0.05 Ga Crescent
Terrane volcanics [#28b] consist of
thick basaltic sequences distributed over
a ca. 600 km distance along the Coast
Ranges of western North America. They
are inferred to represent accreted
seamounts. Both the Carmacks
volcanics [#28a] as well as the Crescent
Terrane volcanics     [#28b]     have been
interpreted as originating from earlier
stages of the Yellowstone plume, prior
to its main expression as the Columbia
River LIP at 0.017 Ga (see next entry,
[#29b])  (e.g. Johnston et al., 1996;
Murphy et al., 2003).

The North Atlantic Igneous
Province (NAIP) [#28c] is most volumi-
nous     in eastern Greenland and the UK,
and adjacent offshore regions. Minor
activity at Cape Dyer and Cape Searle
on Baffin Island, as well as more
substantial magmatism in west Green-
land are linked with the NAIP. The
NAIP LIP is linked to the present-day
Icelandic hotspot.

0.025–0.015 Ga: 0.025–0.015 Ga: 0.025–0.015 Ga: 0.025–0.015 Ga: 0.025–0.015 Ga: An important
intraplate event is the widespread Behm
Canal event [#29a] of the Cordillera,
which is also known as the Tertiary
Lamprophyre Province. It consists of
alkaline lamprophyres that are consid-
ered volatile-enriched equivalents of
alkali basalts (Rock, 1991, p. 11-12,
122).

The voluminous Columbia River
Basalt Group (CRBG) LIP [#29b] of the
northwestern United States was mainly
erupted from 0.017 to 0.015 Ga. It has
been linked to the Yellowstone plume.
The coeval Chilcotin Group volcanics
[#29c] are located a short distance to

the north in Canada, and although they
are areally extensive they are
volumetrically minor.

Archean
Archean greenstone belts represent
deformed and fragmented volcanic
suites, and are of two main affinities:
calc-alkaline and tholeiitic (e.g. de Wit
and Ashwal, 1997; Condie, 2001;
Bleeker, 2002). The calc-alkaline suites
are considered to be of arc origin
whereas the tholeiitic suites, particularly
those containing komatiites, are not.
The presence of komatiites satisfies one
requirement for the identification of
LIPs, i.e. that they not be produced by
subduction. In addition, greenstone
belts with komatiites are probably not
produced by normal spreading ridge
processes because komatiites indicate
source region temperatures higher than
those associated with normal spreading
ridges. There is some controversy on
this point since the Archean geotherm
was hotter.  The scale of Archean LIP
candidates is also uncertain. In most
cases deformation and faulting prevents
the recognition of Archean tholeiite-
komatiite greenstone belts over LIP-
scale distances. So the Archean LIP
history, discussed below and summa-
rized in Table 2 and Figure 1, remains
speculative. Events are included in Table
2 on the basis of either the presence of
komatiites, and/or inferred oceanic
plateau setting.

3.11–2.98 G3.11–2.98 G3.11–2.98 G3.11–2.98 G3.11–2.98 Ga: a: a: a: a: The oldest known
period of potential LIP activity is
represented by komatiite-bearing
greenstone belts (3.105 Ga Hunt River
[#A1a] and 2.99–2.98 Ga Florence
Lake [#A1b] belts) located in the
Hopedale block of the Nain Province of
the North Atlantic Craton. Another
important magmatic event is associated
with the ca. 2.99 Ga rifting [#A1c] of
the ancient Archean nucleus in the
western Superior Province comprising
the North Caribou, Central Wabigoon
and Marmion blocks (Tomlinson et al.,
1999; Tomlinson and Condie, 2001).

2.93–2.92 Ga: 2.93–2.92 Ga: 2.93–2.92 Ga: 2.93–2.92 Ga: 2.93–2.92 Ga: A subsequent
stage of komatiite-bearing greenstone
belts [#A2a] at about 2.93–2.92 Ga is
also widespread in the western Superior
Province, but the setting and link with
associated arc-type greenstone belts is
unclear.
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2.86 G2.86 G2.86 G2.86 G2.86 Ga: a: a: a: a: The Pickle Crow
greenstone belt [#A3a] in the Uchi
subprovince is approximately dated at
2.86 Ga and contains komatiites.

2.79–2.77 G2.79–2.77 G2.79–2.77 G2.79–2.77 G2.79–2.77 Ga: a: a: a: a: The 2.786 Ga
Vizien greenstone belt [#A4a] of north-
ern Quebec contains komatiites and has
been linked with formation of an
oceanic plateau. Greenstone belt
fragments (containing komatiites)
within the Faribault-Thury Complex
[#A4b] are also situated in northern
Quebec, and are bracketed in age
between 2.785 and 2.710 Ga. (Note
that if future dating determines an age
closer to the younger end of the age
bracket, then the Faribault-Thury
Complex event would be grouped in the
next entry.)

The 2.775 Ga Fourbay sequence
[#A4c] of the western Superior Province
lacks komatiites, but is included in this
LIP compilation because of its inferred
oceanic plateau origin.

2.75–2.70 Ga:2.75–2.70 Ga:2.75–2.70 Ga:2.75–2.70 Ga:2.75–2.70 Ga: In various
portions of the Canadian Shield there
was widespread mafic magmatism
falling in the age range 2.75–2.70 Ga.
This is discussed in terms of three
regional groupings.

It has been suggested that the
Prince Albert Group [#A5a] can be
correlated with the Woodburn and
Mary River groups, thus defining a
single event in the Rae Province of
northern Canada, which is distributed
over a lateral distance of nearly 1000
km. The magmatism which includes
komatiites is interpreted to have
initiated at 2.73 Ga and may be associ-
ated with plume-generated continental
breakup.

The Kam Group [#A5b] has
been traced across large parts of the
Slave Province through a complicated
deformation pattern (Bleeker, 2003, and
references therein).  The magmatism of
the Kam Group ranges from 2.734–
2.700 Ga, and was particularly volumi-
nous from 2.72–2.70 Ga.

Magmatism in the Abitibi
greenstone belt [#A5c] of the central
Superior Province is widespread and
consists of four distinct stages of
komatiite-associated magmatism
emplaced during the interval 2.75–2.70
Ga (e.g. Sproule et al., 2002). The
interspersed calc-alkaline magmatism

suggests a plume arc association (e.g.
Wyman, 1999). The Schreiber-Hemlo-
White River-Dayohessarah packages
found in the Wawa greenstone belt
[#A5d], also contain significant
komatiite-bearing tholeiitic magmatism
with ages between 2.75 and 2.73 Ga.
The Wawa belt is on strike with and is
probably the continuation of the Abitibi
belt.

DISCUSSION
As described above, Canada has a rich
LIP history consisting of at least 80
possible events (Fig. 1, Tables 1 and 2).
They range from Archean greenstone
belts (containing komatiites) such as the
Prince Albert Group and probable
correlatives, which may extend for
>1000 km along the Rae Province,
through Proterozoic giant radiating
dyke swarms, such as the Mackenzie
swarm that covers nearly 3,000,000 sq.
km of the Canadian Shield, to young
flood basalts, such as the rift-related
Keweenawan Group and the accreted
oceanic plateau, Wrangellia, in the
Cordillera.  LIPs are key to resolving a
number of important geological issues
and processes. Here we apply our
database of Canadian LIPs to several
frontier issues.

Plume vs. Non-plume Origins
As mentioned earlier, there is currently
an intense debate about plume versus
non-plume origins for LIPs. This debate
is occurring both on the web (e.g.
www.mantleplumes.org;
www.largeigneousprovinces.org) and in
the scientific literature (e.g. Anderson,
2001; Foulger and Natland, 2003;
DePaolo and Manga, 2003; Ernst et al.,
2004).  The Canadian LIP database can
contribute to this debate in various
ways. Giant radiating dyke swarms are
strongly indicative of mantle plumes
(e.g. Ernst and Buchan, 1997). Using
this criteria, plumes would be inferred
at 2.45, 1.27, 0.78, 0.72, 0.20 Ga.
Furthermore, many Canadian swarms
have a failed-arm (aulacogen setting)
(Fig. 3b, Table 3), which also suggests
plume involvement. In addition,
Archean greenstone belts, which contain
komatiites, are arguably plume-related.
Finally, recognition of additional mantle
plumes may also derive from studies of

regional uplift patterns (see below). On
the other hand, some LIPs having a
linear distribution, such as those in a
back-arc setting, may be consistent with
non-plume origins. Those along a
breakup margin may be generated by
decompression melting accompanying
rifting.  Some LIPs may consist of two
pulses, an initial burst of magmatism
associated with plume arrival and a
second caused by the onset of decom-
pression melting associated with
breakup.

Precise Time Markers for
Stratigraphic Correlation
The wide distribution (potentially over
millions of sq. km) and the typically
short duration of events makes them
ideal as precise stratigraphic markers
(e.g. LeCheminant and Heaman, 1989;
Harlan et al., 2003b).  For instance,
recognition of the same magmatic event
within widely separated sedimentary
sequences represents an ideal marker
for inter-basin correlation. In Canada,
the 1.27 Ga Mackenzie, 0.78 Ga
Gunbarrel, and 0.72 Ga Franklin LIPs
represent particularly good markers.

Reconstruction of Continents
Globally there is a clear link between
young LIPs and breakup margins (e.g.
Courtillot et al., 1999). The Canadian
landmass preserves a history of conti-
nental breakup, and subsequent
reassembly marked by sutures. There-
fore, the Canadian LIP record is fertile
ground for exploring links with breakup
events. Archean continental fragments
each contain a particular age distribu-
tion of mafic events (mostly Proterozoic
dyke swarms) that represent a distinct
“bar code” (Bleeker, 2003, 2004).
Comparison of the “bar code” from the
approximately 35 different Archean
continental fragments (at least eight of
which are in Canada) represents a key
tool for proposing reconstructions
between these fragments.  Reconstruc-
tions can be tested by comparing the
paleomagnetism of coeval mafic units
on the different continental fragments
(Buchan et al., 2000). In addition,
linear (Fig. 4a) and radiating (Fig. 4b)
dyke swarms can be used to constrain
the reconstruction geometry. Some
suggested correlations are given in
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Figure 4Figure 4Figure 4Figure 4Figure 4   Use of giant dyke swarms for
continental reconstruction a.a.a.a.a. Giant linear
dyke swarms used as piercing points. b.b.b.b.b.
Giant radiating swarms.

Tables 1 and 2, and in the accompany-
ing text.

Exploration (Ni-Cu-PGEs and
Diamonds)
Ni-Cu-PGE deposits are commonly
associated with LIPs. Notable examples
include the Siberian Traps and the
Bushveld Complex (e.g. Naldrett, 1999;
Pirajno, 2000; Diakov et al., 2002;
Hulbert, 2002). Ernst and Hulbert
(2003) carried out a preliminary analy-
sis of background PGE levels in about
60 Canadian LIPs and other intraplate
mafic events in order to assess which
are more likely to host such deposits.
Events with elevated background PGE
levels (>10 ppb Pt and Pd) are thought
to have greater potential for enrichment
during magmatic emplacement. Ernst
and Hulbert (2003) found that events
with high background levels include the
2.50–2.45 Ga Matachewan, 2.22–2.21
Ga Ungava-Nipissing, 1.27 Ga Macken-
zie, 0.72 Ga Franklin, 0.59 Ga
Grenville and portions of the 1.11–1.09
Ga Keweenawan and 0.13–0.09 Ga
Sverdrup Basin events.

Some studies have proposed a
direct link between kimberlites and
underlying plumes (Haggerty, 1999;

in Canada, where it has been associated
with 1.27 Ga Mackenzie, 0.72 Ga
Franklin, and 0.615–0.555 Ga Central
Iapetus events (e.g. Rainbird and Ernst,
2001).  It is hoped that the LIP data-
base for Canada will stimulate further
investigation of regional uplift patterns.

EXPANDING THE LIP DATABASE TO
ADDRESS FRONTIER ISSUES
The frontier issues discussed above can
only be fully addressed using a more
robust LIP record. Although an exten-
sive database is presented in this paper,
many major mafic and ultramafic units
remain undated and poorly character-
ized. Rapid improvement in the LIP
database can be achieved only through a
concerted campaign of geochronology
integrated with other fields such as
paleomagnetism and geochemistry, as is
being proposed for Canada by Bleeker
(2004) and internationally by Ernst et al.
(2004).
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