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SUMMARY
Current Ediacaran–Cambrian, paleo-
geographic reconstructions place Aval-
onia, Carolinia and Ganderia (Greater
Avalonia) at high paleolatitudes off
northwestern Gondwana (NW Africa
and/or Amazonia), and locate NW
Gondwana at either high or low paleo-
latitudes. All of  these reconstructions

are incompatible with 550 Ma Avalon-
ian paleomagnetic data, which indicate
a paleolatitude of  20–30ºS for Greater
Avalonia and oriented with the pres-
ent-day southeast margin on the north-
west side. Ediacaran, Cambrian and
Early Ordovician fauna in Avalonia are
mainly endemic, which suggests that
Greater Avalonia was an island micro-
continent. Except for the degree of
Ediacaran deformation, the Neopro-
terozoic geological records of  mildly
deformed Greater Avalonia and the
intensely deformed Bolshezemel block
in the Timanian orogen into eastern
Baltica raise the possibility that they
were originally along strike from one
another, passing from an island micro-
continent to an arc-continent collision-
al zone, respectively. Such a location
and orientation is consistent with: (i)
Ediacaran (580–550 Ma) ridge-trench
collision leading to transform motion
along the backarc basin; (ii) the
reversed, ocean-to-continent polarity
of  the Ediacaran cratonic island arc
recorded in Greater Avalonia; (iii) deri-
vation of  1–2 Ga and 760–590 Ma
detrital zircon grains in Greater Avalo-
nia from Baltica and the Bolshezemel
block (NE Timanides); and (iv) the
similarity of  840–1760 Ma TDM model
ages from detrital zircon in pre-
Uralian–Timanian and Nd model ages
from Greater Avalonia. During the
Cambrian, Greater Avalonia rotated
150º counterclockwise ending up off
northwestern Gondwana by the begin-
ning of  the Ordovician, after which it
migrated orthogonally across Iapetus
to amalgamate with eastern Laurentia
by the Late Ordovician–Early Silurian. 

SOMMAIRE
Les reconstitutions paléogéographiques
courantes de l’Édiacarien–Cambrien
placent l’Avalonie, la Carolinia et la
Ganderia (Grande Avalonie) à de
hautes paléolatitudes au nord-ouest du
Gondwana (N-O de l’Afrique et/ou de
l’Amazonie), et placent le N-O du
Gondwana à de hautes ou de basses
paléolatitudes.  Toutes ces reconstitu-
tions sont incompatibles avec des
données avaloniennes de 550 Ma, les-
quelles indiquent une paléolatitude de
20–30ºS pour la Grande Avalonie et
orientée à la marge sud-est d’aujour-
d’hui sur le côté nord-ouest.  Les
faunes édicacariennes, cambriennes et
de l’Ordovicien précoce dans l’Avalo-
nie sont principalement endémiques, ce
qui permet de penser que la Grande
Avalonie était une île de microconti-
nent.  Sauf  pour le degré de déforma-
tion édiacarienne, les registres géolo-
giques néoprotérozoïques d’une Gran-
de Avalonie légèrement déformée et
ceux du bloc intensément déformé de
Bolshezemel dans l’orogène Timanian
dans l’est de la Baltica soulèvent la pos-
sibilité qu’ils aient été à l’origine de
même direction,  passant d’une île de
microcontinent à une zone de collision
d’arc continental, respectivement.  Un
tel emplacement et une telle orienta-
tion sont compatibles avec: (i) un
contexte de collision crête-fosse à l’É-
diacarien (580–550 Ma) se changeant
en un mouvement de transformation le
long du bassin d’arrière-arc; (ii) l’inver-
sion de polarité de marine à continen-
tale, de l’arc insulaire cratonique édica-
rien observé dans la Grande Avalonie;
(iii) la présence de grains de zircons
détritiques de 1 à 2 Ga et 760–590 Ma
de la Grande Avalonie issus de la Balti-
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ca et du bloc Bolshezemel (N-E des
Timanides); et (iv) la similarité des âges
modèles de 840–1760 Ma TDM de zir-
cons détritiques pré-ourallien-timanien,
et des âges modèles Nd de la Grande
Avalonie.  Durant le Cambrien, la
Grande Avalonie a pivoté de 150° dans
le sens antihoraire pour se retrouver au
nord-ouest du Gondwana au début de
l’Ordovicien, après quoi elle a migré
orthogonalement à travers l’océan
Iapetus pour s’amalgamer à la bordure
est de la Laurentie à la fin de l’Ordovi-
cien–début du Silurien.

INTRODUCTION
Current models for the transfer of
Avalonia, Ganderia and Carolinia (col-
lectively grouped as Greater Avalonia
throughout this paper) from Gond-
wana to Laurentia mainly favour
orthogonal transport across the Iape-
tus Ocean (Fig. 1) (e.g. Keppie et al.
1996; Golonka 2000; Scotese 2001 and
references therein; Stampfli et al. 2002,
2011; Murphy et al. 2006; Pollock et al.
2012). Orthogonal models generally
assume Greater Avalonia originated on
the northern margin of  Gondwana
(Amazonia–NW Africa) in the Edi-
acaran, passed through a transtensional
rift stage in the Cambrian, drifted in
the Ordovician, docked softly with
Baltica at the Ordovician–Silurian
boundary, and accreted to the eastern
margin of  Laurentia in the mid-Silurian
(Fig. 1a; Murphy et al. 2006). Mecha-
nisms for the transfer of  Avalonia are
inferred to have started by slab pull
towards a subduction zone on the mar-
gin of  Laurentia, however once the
Rheic mid-ocean ridge had formed,
ridge push could have become a factor
(Fig. 1a; Murphy et al. 2006), with slab
rollback on the Gondwanan margin-
induced opening of  a backarc basin
that became the Rheic Ocean behind
Greater Avalonia as it departed (Fig.
1b; Stampfli et al. 2002, 2011). 

A lateral transfer model was
developed to explain the present SE to
NW, ocean to continent polarity in the
Precambrian basement across Avalonia
and Ganderia observed in the Nd iso-
topic signature (Keppie et al. 2003,
2012). This lateral transfer model
involved collision of  an Ediacaran
mid-ocean ridge with Avalonia fol-
lowed by penetration of  the ridge into
the peri-Gondwanan margin, leading to
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Figure 1. Transfer of  Avalonia from Gondwana to Laurentia: (a) orthogonally by
slab pull (Murphy et al. 2006); and (b)  laterally by ridge-trench collision followed
by lateral intrusion and slab pull (Keppie 2004): Abbreviations: Ca =  Carolina; Cd
= Cadomia; Ch = Chortis; E = Exploits; EA = East Avalonia; F = Florida; G =
Gander; I = Iberia; M = Meguma; Mx = Mixteca; O = Oaxaquia; R =  Rockall;
SM = Sierra Madre; WA = West Avalonia; Y = Yucatan.
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transtensional rifting of  Avalonia from
Gondwana, with clockwise rotation of
Greater Avalonia followed by reversal
of  subduction polarity that ultimately
culminated in accretion to Laurentia
(Keppie et al. 1996, 2003; Keppie and
Dostal 1998; Keppie and Ramos 1999;
Keppie 2004).

The geological records of
Iapetus and Avalonia have been exten-
sively reviewed recently (Hibbard et al.
2002, 2007; Keppie et al. 2003; Land-
ing 1996a; Nance et al. 2008; van Staal
et al. 2009; Murphy et al. 2010; Pollock
et al. 2012; Landing et al. 2013a, b),
and so only data bearing on the origin
of  Avalonia and its transfer to Lauren-
tia, such as paleolatitude, faunal
provinciality, rifting, drifting and accre-
tion, are described in this paper. Avalo-
nia, Ganderia, and Carolinia are gener-
ally regarded as either separate terranes
with large bounding faults derived
from different locations on the margin
of  Gondwana (e.g. van Staal et al.
1998; van Staal and Hatcher 2010), or
as part of  one ‘superterrane’ where the
Avalonia–Carolinia microcontinent is
bounded on either side by the Gander
and Meguma zones/terranes (Keppie
et al. 2003, 2012; Murphy et al. 2004,
2008). Paleomagnetic data for Carolinia
are limited to the Late Ordovician and
suggest that it docked with eastern
Laurentia at ca. 460 Ma (Vick et al.
1987; Hibbard 2000): earlier paleomag-
netic data are lacking making it impos-
sible to tell if  Carolinia had a distinct
polar wander path prior to 450 Ma.
Post-accretion dispersion tends to
mask pre-docking configurations. So
Avalonia, Ganderia and Carolinia are
collectively designated Greater Avalo-
nia to distinguish them from Avalonia
sensu stricto. 

PALEOMAGNETIC DATA
Paleomagnetic data determine the pale-
olatitude by using inclination data and
paleo-orientation is given by relative
declination data, but provides no con-
straints on absolute paleolongitude.
Evans (2003) and Mitchell et al. (2011)
have identified an episode of  True
Polar Wander (TPW) in the Laurentian
Apparent Polar Wander (APW) path
between 615 and 565 Ma when the
magnetic pole rotated through 90º and
back. A similar TPW excursion appears
to be recorded in both Baltica (one of

the alternative apparent polar wander
paths of  Cocks and Torsvik 2005) and
in Avalonia, which only shows a ca. 45º
excursion (Pisarevsky et al. 2012). This
renders the use of  paleomagnetic data
for reconstruction during the 615–565
Ma interval very difficult, so only post
565 Ma paleomagnetic data are used
herein.

The paleomagnetism and pale-
ogeography of  the major continental
blocks have recently been extensively
reviewed by a number of  authors,
including Cocks and Torsvik (2002,
2005, 2006, 2007, 2011), Meert and
Torsvik (2003), Torsvik and Cocks
(2004, 2013), Torsvik et al. (2012), and
Meert (2013), who combined paleo-
magnetic, faunal and geological con-
straints. Here, we use paleomagnetic
apparent polar wander paths (APWPs)
for major blocks provided by Torsvik
et al. (2012) back to 530 Ma for Baltica
and Laurentia and to 550 Ma for East
Gondwana. 

For Baltica at 550 Ma, we use
the inclination-corrected pole provided
by Meert (2013, f-corrected pole using
uncorrected pole of  Popov et al. 2005),
who oriented Baltica 50º counterclock-
wise of  its present orientation. Previ-
ously, Hartz and Torsvik (2002) pro-
posed that Baltica lay ‘upside-down’
(i.e. rotated 180º about a vertical axis)
at 550 Ma based on paleomagnetic data
at 750 and 500 Ma. More recently,
Walderhaug et al. (2007) acquired pale-
omagnetic data from the 616 Ma
Egersund dykes in Baltica, which sug-
gest Baltica lay 50º clockwise from its
present orientation at that time.

For Laurentia at 550 Ma, we
used the pole provided for the Skinner
Cove volcanic rocks by McCausland
and Hodych (1998), but note that the
Skinner Cove pole is ambiguous for
both paleo-orientation and absolute
longitude relative to the Laurentian
craton (McCausland and Hodych 1998;
Hodych et al. 2004). Use of  the Skin-
ner Cove pole therefore permits
diverse implementations including: (i)
the assumption that Laurentia spun
about a vertical axis between ca. 550
Ma and ca. 530 Ma, (ii) the assumption
that the Skinner Cove tectonic slice
spun about a vertical axis after ca. 550
Ma, and/or (iii) the possibility that
Laurentia lay to the north of  the equa-
tor (a paleolatitude of  15°N) rather

than to the south as is generally imple-
mented (e.g. McCausland and Hodych
1998). Here, we adopt the third possi-
bility listed, principally for conven-
ience, because it allows the direct use
of  the published pole without specu-
lating about components of  vertical
axis rotations for Laurentia or the
Skinner Cove tectonic slice. Validation
of  this choice requires further consid-
eration, but it allows us to include Lau-
rentia in our model in a reproducible
way back to 550 Ma. The eastern mar-
gin of  Laurentia lay at 15–30ºS
between 535–430 Ma paleolatitudes
(Fig. 2; Cocks and Torsvik 2011). In
contrast, Amazonia/São Francisco is
constrained by very few paleomagnetic
data from poorly dated rocks (Fig. 2;
Trindade et al. 2004, 2006). Baltica
appears to have lain between 30º and
60ºS from 550 to 460 Ma (Cocks and
Torsvik 2006; Meert 2013). 

For Greater Avalonia, we sup-
plement the paleomagnetic poles given
by Torsvik et al. (2012) with those in
Table 1. In general, paleomagnetic data
show that Avalonia migrated from ca.
15–25ºS through 60ºS and back to
25ºS between 550 and 430 Ma, but are
insufficient to independently locate dif-
ferent parts of  Avalonia (Fig. 2). We
assume East Avalonia traveled with
West Avalonia prior to 420 Ma (e.g.
Landing 1996a, 2004) and with Balti-
ca/Europe after 320 Ma. Paleolatitudes
for Avalonia in Canada and New Eng-
land are estimated to be (Fig. 2): (i) 49
± 11°S in the Middle Cambrian (John-
son and Van der Voo 1985), (ii) 65 ±
12°S at 490 Ma (Thompson et al.
2010a), and (iii) ca. 42°S at 460 ± 3 Ma
(Van der Voo and Johnson 1985).
Accretion to Laurentia is estimated to
have occurred at 430–422 Ma (van
Staal et al. 2008). We assume Avalonia
traveled with Laurentia after 420 Ma. 

Paleomagnetic data for Car-
olinia indicate a paleolatitude of  ca.
22°S at 450–455 Ma (Vick et al. 1987;
Noel et al. 1988). Hibbard (2000) has
proposed initial docking of  Carolinia
to eastern Laurentia occurred at 460
Ma followed by sinistral transpression.
We assume Carolinia traveled with
Avalonia prior to 490 Ma and with
Avalonia–Laurentia after 420 Ma. 

FAUNAL PROVINCIALITY
Faunal provinciality has been used to



help determine the paleoposition of
Avalonia, however the analyses com-
monly focus on the faunal affinities
with major continents, such as Lauren-
tia, Baltica and Gondwana. In this
paper, faunal endemism and its impli-
cations for paleogeography, are more
closely examined using papers pub-
lished by paleontologists. 

The similarity of  the Edi-
acaran–Early Ordovician platformal
successions throughout Avalonia sug-
gests they form an overstep sequence
(Keppie 1985), and they are dominated
by marine siliciclastic rocks, with minor
limestone, that were deposited in a
series of  pull-apart basins (Woodcock
1984; Landing and Benus 1988; Land-
ing 1996a; Landing et al. 2013a, b).

The stratigraphic record progresses
upwards from: (a) Ediacaran–lower
Lower Cambrian red bed units and
marine sandstone, through (b) platfor-
mal middle Lower Cambrian units, (c)
shoaling upward, shelf  to peri-tidal,
shale-carbonate sequences, (d) an
upper Lower Cambrian sandstone-
mudstone sequence, (e) Middle Cam-
brian mudstone-ash-limestone-sand-
stone sequence, to (f) an upper Middle
Cambrian–lowest Ordovician
(Tremadocian) shale-siltstone-sand-
stone sequence (Landing 1996b).

The Ediacaran and benthic
Lower Cambrian ‘Avalonian’ fauna is
predominantly endemic and distinct
from that of  Gondwana (Theokritoff
1985; Landing 1996a; Wagonner 2003;

Álvaro et al. 2003; Landing et al.
2013a). Parsimony analysis of
endemism in Ediacaran biota shows
the Avalonian assemblage to be a dis-
tinctive, endemic assemblage (Wag-
goner 2003). In the Middle Cambrian,
21% of  the British Avalonian trilobite
fauna (excluding agnostid genera) are
mainly endemic, with the rest showing
connections with many regions, princi-
pally Baltica and Gondwana (Fig. 3a:
Cocks and Fortey 2009). Two Middle
Cambrian trilobite species and three or
four genera are comparable with Baltic
fauna, and three species show affinities
with the Ossa Moreno zone in Iberia
(marginal Gondwana) (Álvaro et al.
2003). The hundred Upper Cambrian
trilobite taxa recorded in British Avalo-
nia contrasts with the rare trilobite
fauna in Morocco (lacking common
genera) (Álvaro et al. 2003), which may
be related to facies: dysoxic mudstones
in Avalonia versus oxygenated sand-
stone in Morocco (Landing et al.
2013a). Trilobite and brachiopod
endemism in Avalonia decreased dur-
ing the Ordovician from 44% through
29% and 20% to 12%, which was con-
current with an increasing share of
genera between Avalonia and Baltica (8
to 10.5 to 25 to 33.5%), and Avalonia
and Laurentia (6 to 12 to 20 to 29%)
(Fig. 4). On the other hand, genera
shared between Avalonia and West
Gondwana are relatively constant
throughout the Ordovician (Fig. 3b).
Together, the biota, trilobites and bra-
chiopods indicate a progression from
mainly endemic Ediacaran–Cambrian
forms in Avalonia to increasing genera
shared with Baltica and Laurentia
through the Ordovician, which has
been interpreted in terms of  the
approach of  Avalonia to both Baltica
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Figure 2. Paleolatitudes of  Laurentia, Baltica, Avalonia, Carolinia, and Amazonia
based on paleomagnetic data (see text for sources).

Table 1. Virtual Geomagnetic Poles (VGPs) used to reconstruct various blocks at different times that supplement the APWPs
provided for Laurentia, Baltica and Gondwana in Torsvik et al. (2012). The opposite pole to the VGP directly reported in the
associated source is indicated in brackets where used. Listed absolute ages either correspond to radiometric geochronology or
our estimates of  a corresponding absolute age from the relative age descriptions given in the associated sources.

Block Age (Ma) Latitude Longitude 95% Source

Baltica 550 40.3 296 5.7 Meert (2013) f-corrected pole
Laurentia 550 15 (-15) 157 (337) 9 McCausland and Hodych (1998)
Avalonia 460 -2 (2) 136 (316) 4.1 Van der Voo and Johnson (1985)

490 34 320 7.2 Thompson et al. (2012)
505 -21 (21) 160 (340) 12 Johnson and Van der Voo (1985)
550 55.8 183.8 17.7 Pisarevsky et al. (2012)

Carolinia 450 29.6 (-29.6) 122.1 (302.1) 5.0 Vick et al. (1987)



and Laurentia. Conodont and ostracod
fauna show similar trends (Landing et
al. 2013a, c). Amalgamation of  Avalo-
nia to Baltica and Laurentia has been
estimated to have occurred at ca. 443
Ma and 425 Ma, respectively (Torsvik
and Rehnström 2003; Cocks and
Torsvik 2005, 2011; Cocks and Fortey
2009). In conclusion, the faunal data
suggest that Avalonia was an island
microcontinent from the Ediacaran to
the Late Ordovician, when combined
Baltic+Laurentian fauna in Avalonia
exceeded the combined endemic+
Gondwanan fauna (Fig. 3b).

DETRITAL ZIRCON AND TDM MODEL
AGES
Provenance of  detrital zircon has also
been used in paleogeographic recon-
structions assuming local sources, how-
ever, long distance transport of  zircon
by ancient and modern large rivers,
such as the Mississippi and Amazon,
renders this method difficult to assess
(e.g. Rainbird et al. 1992; Meinhold et
al. 2013). Nd isotopic data in igneous
rocks may allow the nature of  the
basement to be compared, but has to
be used judiciously due to the potential
of  mixing magma sources.

Detrital zircon ages in Greater
Avalonia were used in the 1990s to
suggest an Amazonian provenance
(Keppie and Krogh 1990; Keppie et al.
1998). Thompson et al. (2012) have
proposed SW Baltica (Sveconorwegian
orogen) as an alternative source for
900–2200 Ma detrital zircon grains in
Neoproterozoic rocks of  Greater Aval-
onia, however, they retained the loca-
tion for Greater Avalonia adjacent to
NW Gondwana, which allows Amazo-
nia to be a potential source. Although
it is very difficult to discriminate
between Baltic and Amazonian
sources, the 800–900 Ma Goiás arc in
Amazonia appears to be unique (Kep-
pie et al. 2008). As 800–900 Ma detrital
zircon grains are absent or rare from
Avalonia (Willner et al. 2013 and refer-
ences therein), a Baltic source is
favoured, although a river system that
does not pass through the Goiás arc is
still possible. A source for Ediacaran
detrital zircon in Greater Avalonia may
be found in the 620–550/500 Ma,
Timanian orogen located along the
northeastern and eastern margins of
Baltica (Fig. 4b) (Maslov and Isher-

skaya 2002; Siedlecka et al. 2004;
Kuznetsov et al. 2010). 

The Neoproterozoic Timanian
orogen has been divided along the
N–S collisional, Baltica–Bolshezemel
suture (Gee and Pease 2004; Moczyd-
lowska et al. 2004). The western part
of  the Timanian orogen (SW
Timanides) record Mesoproterozoic
rifting followed by deposition of  latest
Mesoproterozoic to early Neoprotero-
zoic passive margin rocks that were
deformed by the 630–535 Ma Timan-
ian orogeny (Roberts and Siedlecka
2002). The eastern part consists of
subduction-related igneous rocks of
the Bolshezemel block that have yield-
ed many detrital zircon grains with
ages of  590–760 Ma and a single detri-
tal zircon grain of  1143 Ma
(Kuznetsov et al. 2010). Within the

Bolshezemel block, the Manyukuyakha
serpentinitic mélange has been inter-
preted as a forearc basin (Scarrow et al.
2001). The Timanian orogeny has been
interpreted as the result of  accretion of
an island arc complex (Bolshezemel
block) to the northeastern Baltic mar-
gin (Fig. 4; Dovzhikova et al. 2004). 

The Nd isotopic data in Neo-
proterozoic rocks across Avalonia in
Newfoundland have TDM ages of
0.745–1.12 Ga in the east to 0.74–1.65
Ga in the west (Keppie et al. 2012).
These ages are similar to those from
Avalonia in the United Kingdom: TDM
ages of  1.0–1.3 Ga in the southeast
and 1.25–1.53 Ga in the northwest
(Keppie et al. 2012). Nd isotopic data
from Ganderia have generally yielded
similar TDM ages, whereas those from
Carolinia range from 0.75 to 1.1 Ga
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Figure 3. Analysis of  trilobite affinities of  Avalonian Lower Paleozoic fauna: (a)
distribution of  closest relatives of  Welsh, Avalonian, Middle Cambrian, non-agnos-
tid trilobite species in other terranes (modified from Cocks and Fortey 2009); (b)
statistical analysis of  Ordovician trilobite and brachiopod affinities (data from Lees
et al. 2002).
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Figure 4. Neoproterozoic–Cambrian relationships between Avalonia and Baltica: (a) paleogeographic reconstruction at 550 Ma
(this paper - see Fig. 5 for colour codes.); (b) map showing the distribution of  the Timanian orogen in eastern Baltica (after Gee
and Pease 2004); (c) comparison of  detrital zircon and TDM ages from the Bolshezemel and Greater Avalonia terranes (for
sources of  data see text); (d) Neoproterozoic–Cambrian geological record of  Avalonia (modified after Murphy et al. 2008); and
(e) plate tectonic interpretation of  the Timanian orogen (modified from Dovzhikova et al. 2004).



(Keppie et al. 2012). Similar TDM ages
in Baltica occur in the post-tectonic
granite in the 0.9–1.2 Ga Sveconorwe-
gian orogenic belt of  SW Scandinavia,
which yielded TDM ages of  1.03–1.69
Ga. (Andersen et al. 2001). In the Bol-
shezemel block (eastern Timanides),
176Lu/177Hf  ratios of  detrital zircon
yielded 0.84–1.76 Ga TDM model ages
(Kuznetsov et al. 2010) that are similar
to those of  Greater Avalonia (0.73 to
1.9 Ga; Keppie et al. 2012). Further-
more, the island arc-related, Neopro-
terozoic geological records of  Avalonia
and the Bolshezemel block are almost
identical only differing in the inference
that the Bolshezemel block was
involved in an arc–continent collision
with Baltica (Dovzhikova et al. 2004),
whereas Avalonia is relatively mildly
deformed. The similarity of  Avalonia
and the eastern Timanides has been
noted by several other authors who
either rotate Baltica through 180º,
which places the Timanides adjacent to
Avalonia, Armorica and northern
Gondwana (Hartz and Torsvik 2002;
Cocks and Torsvik 2006; Kuznetsov et
al. 2010; Corfu et al. 2010), or roughly
in its present relative orientation, which
leads to the inference that Neoprotero-
zoic subduction zones lay around the
periphery of  Rodinia (Scarrow et al.
2001; Amato et al. 2009), and subduc-
tion may have started during Rodinia
breakup. 

PALEOGEOGRAPHIC 
RECONSTRUCTIONS AND PLATE
TECTONIC INTERPRETATIONS
Laurentia, Baltica, NW and NE Africa,
the Amazonia and Colorado blocks in
South America, and Greater Avalonia
were digitized (Fig. 5). Apparent Polar
Wander Paths (APWPs) were plotted
using poles from Torsvik et al. (2012)
supplemented by those from other
authors as described above (Fig. 6 and
figure caption). Figure 6 shows the
APWPs used in making the paleogeo-
graphic reconstructions. Figure 6a
shows APWPs derived from local data
in a local reference frame (i.e. a Lau-
rentian APWP in a Laurentian refer-
ence frame). Figure 6b shows APWPs
derived from local data rotated into a
common South African/Gondwanan
reference frame. Figure 6c shows the
simplified APWP tree that results if
Master Path segments are adopted for

Laurussia and Pangea from Torsvik et
al. (2012) (i.e. Laurentia and Baltica
share a common Laurussian Master
APWP for 430 Ma to 320 Ma, and
Laurentia, Baltica, and Gondwana
share a common Pangean Master
APWP for 320 Ma to 0 Ma). Figure 6d
shows the simplified APWP tree that
results when all APWPs are rotated
into the common South African/
Gondwanan reference frame: this is
depicted diagrammatically at the bot-
tom of  Figure 6. The APWPs plotted
in Figure 6d underlie the reconstruc-
tions shown in Figure 7, which addi-
tionally reflect choices for paleolongi-
tude of  the various blocks that are
either consistent with previous studies
or reflecting new interpretations dis-
cussed here. Figure 7 shows ten recon-
structions from 550 Ma to 415 Ma in
15 Ma intervals. 

Curiously, published late Edi-
acaran and Early–Middle Cambrian
positions of  Avalonia generally ignore

the low paleolatitudes recorded by
paleomagnetic data, and instead place
Avalonia at high latitudes (e.g. Torsvik
et al. 2012, and references therein).
Similarly, a latest Ediacaran–Early
Cambrian paleogeographic map based
on fauna and facies places Avalonia at
high latitudes and Gondwana strad-
dling the Equator (Landing et al.
2013a), both of  which are inconsistent
with Avalonian paleomagnetic data. A
more recent 540 Ma reconstruction
based on paleomagnetic data (Li et al.
2013) is consistent with low latitudes
for deposition of  carbonate and evap-
orite units in the major continental
blocks, nevertheless, Avalonia is still
placed at high paleolatitudes of
40–70ºS, not the 20–30ºS paleolati-
tudes documented by the paleomagnet-
ic data. The 580 Ma Gaskiers tillite in
the Newfoundland Avalon is generally
cited as evidence of  deposition at a
high latitude, however, they are associ-
ated with humid, temperate climate
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Figure 5. Present-day base map showing digitized blocks used in this paper. The
Timan–Pechora block corresponds to the Bolshezemel terrane.



paleosols, which has led to their inter-
pretation as glacial moraines deposited
in the forearc basin, similar to Japan
(Retallack 2013).

550–500 Ma (Late Ediacaran –
Middle Cambrian) Reconstructions
At 550 Ma, Greater Avalonia lay at ca.
25ºS and rotated 150º anticlockwise
about a vertical axis with a long axis
parallel to paleolatitude (Fig. 7: 550
Ma): the Timanian/Uralian margin of
Baltica lay at a slightly higher paleolati-
tude. In this location, Avalonia may be
traced along strike into the northeast-
ern Timanides. The Neoproterozoic,
600–540 Ma, geological record of
Avalonia is interpreted as an island arc
complex, which may be correlated with
an Ediacaran arc complex in the Bol-
shezemel block of  the northeastern
Timanides both in time, space, and
detrital zircon and model ages (Fig. 4;
Scarrow et al. 2001; Kuznetsov et al.
2010). The main difference between
these complexes is the degree of  latest
Ediacaran deformation, mild in Avalo-
nia and polyphase in the Bolshezemel
block, which may be interpreted in
terms of  isolation of  the Avalonia
microcontinent versus collisional
between Baltica and the arc-related
Bolshezemel block in the Timanides,
respectively. In Maritime Canada, the
dip of  the Ediacaran Benioff  zone
deduced from geochemistry and Nd
isotopes indicates a north-dipping
Benioff  zone in present coordinates
(Keppie and Dostal 1991; Dostal et al.
1996, which is consistent with the
ocean to continent transition observed
in Greater Avalonia (Keppie et al.
2012). The dip direction of  the Benioff
zone becomes south-dipping when
rotated 150º counterclockwise. At 590
Ma, a mid-oceanic ridge offset by a
major transform fault collided with the
trench resulting in migration of  two
ridge–trench–transform fault (R–T–F)
triple junctions (figure 7 in Keppie et
al. 2003). One R–T–F triple junction
starts in Brunia and Britain at ca. 585
Ma (van Breemen et al. 1982; Finger et
al. 2000; Pharaoh and Carney 2000)
and migrated to Atlantic Canada by ca.
550–570 Ma. The other R–T–F triple
junction started at Boston at 590 Ma
(Thompson et al. 2010a, b, 2012) and
migrated to Carolinia by 550 Ma (Hib-
bard et al. 2002). Migration of  these
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Figure 6. Apparent Polar Wander Paths (APWPs) for Laurentia, Baltica, Gond-
wana, Avalonia and Carolinia in various reference frames: (a) local Apparent Polar
Wander Paths in local frame; (b) local Apparent Polar Wander Paths in common
framework; (c) Master Apparent Polar Wander Paths in local frameworks; and (d)
Master Apparent Polar Wander Paths in common framework, which leads to the
simple reconstruction tree shown at bottom. Post-530 Ma poles for Gondwana,
Laurentia and Baltica are from Torsvik et al. (2012). 530 Ma poles for Laurentia
and Gondwana are also used for 530–550 Ma, whereas, the 550 Ma pole for Baltica
is the f-corrected pole of  Meert (2013) who corrected for inclination shallowing in
the Popov et al. data (2005). Avalonia poles are from Pisarevsky et al. (2008, 2012),
Thompson et al. (2010a, 2012), Johnson and Van der Voo (1985), and Van der Voo
and Johnson (1985): the 490 Ma pole was also used for 500 Ma. Carolinia poles are
from Vick et al. (1987) and Noel et al. (1988).
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Figure 7. Reconstructions from 550–415 Ma at 15 m.y. intervals showing the migration of  Greater Avalonia from Baltica to
Gondwana between 550 and 490 Ma and from Gondwana to eastern Laurentia between 490 and 415 Ma. Note that paleolongi-
tude is unconstrained by paleomagnetic data. (see Fig. 5 for colour codes).



triple junctions gradually replaced the
trench with a transform fault (Keppie
et al. 2003). Sinistral motion on the
transform fault led to movement of
Avalonia westwards away from Baltica. 

The Avalonian arc complex
was amalgamated before deposition of
the latest Ediacaran–Cambrian over-
step sequence (Keppie 1985). The
endemism of  the Ediacaran–lower
Lower Cambrian fauna in Avalonia
(Landing 1996b, 2013a, b; Waggoner
2003) indicates that Avalonia was an
insular microcontinent at this time and
suggests there was an ocean basin
between Avalonia and Baltica. Between
550 and 500 Ma, Greater Avalonia
rotated counterclockwise through ca.
150º about a pole of  rotation at ca.
45ºS, which brought Greater Avalonia
off  NW Africa at a paleolatitude of
65–75ºS and placing the former Edi-
acaran trench on the Gondwanan side.
A latest Cambrian–lowest Ordovician
hiatus without associated deformation
in Avalonia suggests that collision with
Gondwana did not take place. This
counterclockwise rotation appears to
have been synchronous with the east-
ward motion of  Baltica relative to
northern Gondwana. A modern analog
for such synchronous motions may be
provided by the relative eastward
migration of  the Caribbean arc leading
to counterclockwise rotation of  the
Chortis and Yucatan block into the
trailing edge of  the Caribbean Plate
(Keppie 2012; Keppie and Keppie
2012). Arc magmatism is largely absent
during this counterclockwise motion
suggesting that the movement of
Greater Avalonia was parallel to a
bounding transform fault.

The partially endemic, Early
Ordovician, Avalonian fauna suggests
that Avalonia was separated from NW
Africa by an ocean basin, which may
have become a backarc basin when
subduction beneath Greater Avalonia
started at ca. 510 Ma. Synchronous
onset of  subduction on the eastern
Laurentian margin at 510 Ma (van Staal
et al. 2007) suggests plate reorganisa-
tion that initiated the closure of  Iape-
tus. In SE–NW transects across the
Ganderian margin, one passes from a
passive margin bordering a backarc
basin into volcanic arcs (ca. 510–485
Ma Penobscot and ca. 480–450 Ma
Victoria arcs): the intervening 485–480

Ma Penobscot orogeny is inferred to
represent closure of  a backarc basin
(Zagorevski et al. 2007, 2010; Schulz et
al. 2008; van Staal et al. 2009; Johnson
et al. 2012).

490–420 Ma (Ordovician – Middle
Silurian) Reconstructions
Between 490 and 420 Ma, Greater
Avalonia migrated orthogonally across
Iapetus from NW Africa to eastern
Laurentia, which is consistent with
existing models. It is suggested that an
offset between Carolinia and the rest
of  Avalonia originated during the plate
reorganisation, which led to the dock-
ing of  Carolinia with southeastern
Laurentia at 460 Ma followed by sinis-
tral relative motion (Hibbard 2000).
Trilobite and brachiopod affinities sug-
gest that the eastern tip of  Avalonia
approached Baltica at 460–450 Ma
(Torsvik and Rehnström 2003) fol-
lowed by docking with eastern Lauren-
tia at 420 Ma. Closure of  Iapetus is
reflected in the gradual replacement of
endemic Avalonian trilobites and bra-
chiopods by Baltic and Laurentian
fauna (Fig. 3).

The new paleogeographic
model provides a solution to the
apparent contradiction between the SE
to NW ocean to continental polarity
observed in the Nd isotopic data (Kep-
pie et al. 2012) and the orthogonal
transfer of  Greater Avalonia across
Iapetus where the reverse polarity
would be expected (Murphy et al.
2006). This is reconciled in the new
model, where 180º counterclockwise
rotation of  Greater Avalonia during
the Cambrian (550–490 Ma) was fol-
lowed by orthogonal transfer across
Iapetus during the Ordovician.
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