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SUMMARY
Central America has recently been an
important focus area for investigations
into the complex processes occurring
in subduction zones.  Here we review
some of  the new findings concerning
subduction input, magma production
and evolution, and resultant volcanic
output.  In the Nicaraguan portion of
the subduction zone, subduction input
is unusually wet, likely caused by exten-

sive serpentinization of  the mantle
portion of  the incoming plate associat-
ed with bending-related faulting sea-
ward of  the Middle America trench.
The atypical influx of  water into the
Nicaraguan section of  the subduction
zone ultimately leads to a regional
maximum in the degree of  mantle
melting.  In central Costa Rica, subduc-
tion input is also unusual in that it
includes oceanic crust flavored by the
Galapagos plume.  Both of  these exot-
ic subduction inputs are recognizable
in the compositions of  magmas erupt-
ed along the volcanic front.  In addi-
tion, Nicaraguan magmas bear a strong
chemical imprint from subducting
hemipelagic sediments.  The high-field-
strength-element depletions of  mag-
mas from El Salvador through Costa
Rica are related to local variations in
the depth to the subducting Cocos
plate and, therefore, to segmentation
of  the volcanic front.  Minor phases,
probably amphibole or rutile, control
these variable depletions. Silicic mag-
mas erupted along the volcanic front
exhibit the same along-arc geochemical
variations as their mafic brethren.  This
and their mantle-like radiogenic iso-
topic compositions suggest the pro-
duction of  juvenile continental crust all
along the Central American subduction
zone.  Punctuated times of  enhanced
magmatic input from the mantle may
aid in crustal development.

SOMMAIRE 
L’Amérique centrale a récemment été
le lieu de recherches sur les processus
complexes se produisant dans les zones
de subduction.  Ici nous passons en
revue certaines découvertes sur nature

des intrants de subduction, la produc-
tion et l’évolution des magmas, ainsi
que les extrants volcaniques résultants.
Dans le segment nicaraguayen de la
zone de subduction, les intrants de
subduction sont exceptionnellement
humides, probablement à cause de la
serpentinisation généralisée de la por-
tion mantélique de la plaque en sub-
duction, fissurée par flexure dans partie
marine de la fosse océanique de
l’Amérique centrale.  L'afflux atypique
en eau dans le segment nicaraguayen
de la zone de subduction induit ultime-
ment un maximum régional de la pro-
portion de fusion du manteau.  Dans la
portion centrale du Costa Rica l’intrant
de subduction est lui aussi atypique en
ce qu’il comprend une croûte
océanique teintée par le panache des
Galápagos.  Ces deux intrants de sub-
duction atypiques sont répercutés dans
la composition des magmas éjectés le
long du front volcanique.  En outre, les
magmas nicaraguayens affichent une
forte empreinte chimique héritée des
sédiments hémipélagiques en subduc-
tion.  Les appauvrissements en élé-
ments à fortes liaisons atomiques des
magmas, du El Salvador jusqu’au Costa
Rica, sont liés à des variations local-
isées de la profondeur de la plaque en
subduction de Cocos, et donc, à la seg-
mentation du front volcanique.  Des
phases mineures, probablement amphi-
bole et rutile, déterminent ces appau-
vrissements variables.  Les magmas sil-
iceux éjectés le long du même front
volcanique montrent les mêmes varia-
tions géochimiques le long de l’arc que
leur contrepartie mafique.  De plus, les
compositions radiogéniques de leurs
contreparties mantéliques évoquent la
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production d’une croûte continentale
juvénile le long de la zone de subduc-
tion de l’Amérique centrale.  Des
épisodes d’accroissements ponctuels
des intrants magmatiques du manteau
peuvent contribuer au développement
d’une croûte.

INTRODUCTION
The Central American subduction
zone is awash with volcanologic and
petrologic diversity over its 1100 km-
long length (McBirney 1969; Carr et al.
1982, 2003, 2007a, b; Carr 1984; van
Wyk de Vries et al. 2007).  Over the
past decade and a half, encouraged in
part by relative political stability, this
diversity has been examined in finer
detail, yielding considerable new and
important insights into magmatic and
volcanic processes occurring in the
Central American subduction zone.
Recognizing and understanding the
intricacies of  this subduction zone is
crucial, as all of  Central America’s
population is at risk from earthquakes
and volcanic eruptions (Ewert and
Harpel 2004; Witham 2005; Dilley et
al. 2005; Auker et al. 2013).  In this
brief  review, we will summarize some
of  the newer insights concerning Cen-
tral American magmatism and volcan-
ism with the aim of  stimulating future
research along this fascinating conver-
gent margin.  We acknowledge that this
review is in no way comprehensive, but
it does provide an overall view of  the
efforts to understand Central American
magma genesis.  There have also been
many recent, significant studies con-
cerning other aspects of  the Central
American subduction zone and its vol-
canoes, including neotectonics, erup-
tion dynamics, tephra fallout, volatile
emissions, volatile cycling, volcanic
stratigraphy, groundwater – volcano
interactions, volcanic surveillance, and
hazard assessments.

TECTONIC, GEOLOGIC, AND 
VOLCANIC FRAMEWORK
In this paper we will restrict the
boundaries of  the Central American
subduction zone (CASZ) to the region
that is experiencing subduction of  the
Cocos Plate beneath the Caribbean
Plate, i.e. from the Guatemala – Mexi-
co border to central Costa Rica (Fig.

1).  The rate of  Cocos – Caribbean
convergence slightly increases south-
eastward along the trench from about
6 to 9 cm/yr (DeMets 2001; Syracuse
and Abers 2006) and slab dips below
the active volcanoes are variable, with
the steepest dips beneath Nicaragua
(Carr 1984; Protti et al. 1995; Syracuse
and Abers 2006; Syracuse et al. 2008;
MacKenzie et al. 2010).  Slab depths
are also greatest beneath Nicaragua
(Syracuse and Abers 2006).  Oceanic
crust formed at the East Pacific Rise
(ca. 25 Ma), with a normal mid-ocean
ridge basalt composition, subducts
from Guatemala to northern Costa
Rica, whereas 15–20 Ma oceanic crust
that formed at the Cocos – Nazca
Spreading Center and was overprinted
by Galapagos hotspot tracks, subducts
in central Costa Rica (Werner et al.
1999; O’Connor et al. 2007).  There is
no evidence of  sediment accretion
along the CASZ, so all sediments are
assumed to be subducted into the
mantle (Aubouin et al. 1984; Ranero
and von Huene 2000; Moritz et al.
2000).  The total thickness of  subduct-

ing sediments is similar all along the
CASZ, as is their lithologic architec-
ture, which consists of  an overlying
sequence of  hemipelagic muds under-
lain by carbonate oozes (von Huene et
al. 1980; Plank and Langmuir 1993,
1998; Kimura et al. 1997; Patino et al.
2000).  The presence of  the North
American – Caribbean plate boundary
transecting Guatemala (Fig. 1) adds an
appreciable level of  complexity to the
tectonics of  the northern CASZ
(Burkart and Self  1985; Guzmán-
Speziale 2001; Lyon-Caen et al. 2006;
Rogers and Mann 2007; Álvarez-
Goméz et al. 2008; Rodriguez et al.
2009; Walker et al. 2011).  

Although Cocos – Caribbean
convergence has a much longer history
(Mann et al. 2007; Gazel et al. 2009,
2011; Alvarado and Gans 2012), in this
review we will restrict discussion to
Quaternary volcanism, focusing on the
volcanic front where volcanism has
been overwhelmingly concentrated
during the Quaternary (Carr et al.
1982, 2003, 2007a).  Crustal thickness
below the volcanic front is shallowest

Figure 1.  Simplified tectonic framework for Central America.  Red triangles are
Quaternary volcanic complexes of  the volcanic front.  Arrows point to discontinu-
ities (segment boundaries) in the volcanic front after Carr et al. (2007b).  Arrows
also indicate estimated convergence directions (from Syracuse and Abers 2006).
Numbers in parentheses are calculated convergence rates also from Syracuse and
Abers (2006).  CNA is the Caribbean – North American plate boundary.
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in Nicaragua (ca. 25–30 km) and thick-
ens to ca. 35–45 km toward the
extremities of  the CASZ (Carr 1984;
Carr et al. 1990, 2003; Sallarès et al.
2001; MacKenzie et al. 2010; Lücke et
al. 2010).  According to Rogers et al.
(2007), much of  the volcanic front,
from southeastern Guatemala through
Nicaragua, has been built on the south-
ern Chortis terrane, which is floored
by a post-Paleozoic arc-type or ocean-
crust basement (Geldmacher et al.
2008).  The northwestern portion of
the volcanic front in central and north-
western Guatemala, by contrast, is like-
ly underlain, at least in part, by rocks
of  the central Chortis terrane, which
has a continental Paleozoic to Precam-
brian substrate (Dengo 1985; Rogers et
al. 2007).  The crustal character below
the other end of  the volcanic front, in
Costa Rica, is also distinctive, being
thickly anchored by rocks of  the
Caribbean Large Igneous Province,
interpreted as a product of  the Galapa-
gos plume head (Hauff  et al. 1997,
2000; Sallarès et al. 2001).

Magmas erupted along the
volcanic front range from basalts to
rhyolites that largely exhibit the charac-
teristic elemental signatures of  a sub-
duction zone origin (Carr et al. 1982,
2003, 2007b; Carr 1984; Walker 1989;
Leeman et al. 1994; Patino et al. 2000;
Sadofsky et al. 2008).  Along most of
the CASZ there is a bimodal distribu-
tion of  compositions with peaks in
basalt – basaltic andesite and rhyolite
(Vogel et al. 2006).

THE VOLCANIC FRONT – ARE ALL
SEGMENTS EQUALLY CREATED?
The Central American volcanic front is
thought to be among the world’s most
active volcanic belts (Bluth and Rose
2002).  The application of  high preci-
sion 40Ar/39Ar dating to a larger num-
ber of  volcanic rocks associated with
Quaternary volcanism in Central
America (Rose et al. 1999; Vogel et al.
2004; Carr et al. 2007a; Escobar-Wolf
et al. 2010; Singer et al. 2011; Alvarado
and Gans 2012) has allowed renewed
appraisals of  extrusive and magmatic
fluxes along the volcanic front.  Carr et
al. (2007a) estimate that extrusion rates
along the Nicaraguan and Costa Rican
segments of  the front are roughly

equivalent within error.  In contrast,
Bolge et al. (2009) calculate raw erup-
tive volumes along the volcanic front
in Costa Rica that are substantially larg-
er than those in Nicaragua, consistent
with earlier inferences that Costa Rica
has had a greater volcanic flux than
Nicaragua (Carr 1984; Carr et al. 1990).
For their volume estimates, Bolge et al.
(2009) incorporate important new data
from Kutterolf  et al. (2008b) on
tephras erupted along the CASZ over
the past 322,000 years.  According to
Kutterolf  et al. (2008b), these Plinian

products account for approximately
65% of  the total magmatic output in
the CASZ.  Moreover, their analysis
indicates that the overall magma fluxes
have been greatest in the northern half
of  the CASZ (Kutterolf  et al. 2008b;
Fig. 2a).  If, however, the volume esti-
mates of  Bolge et al. (2009) are taken
as a simple reflection of  overall mag-
matic flux, then Costa Rica emerges as
the most magmatically productive por-
tion of  the CASZ (Fig. 2b).  

All of  the investigations sum-
marized in this section so far have

Figure 2. a. Estimates of  magma flux in four portions of  the Central American
volcanic front from Kutterolf  et al. (2008b).  b. Estimates of  the volumes of  vol-
canic centers for same four portions of  the Central American volcanic front from
Bolge et al. (2009).



been regional in scope.  Singer et al.
(2011) instead focus on a single vol-
cano – Santa María in Guatemala –
and employ an extensive collection of
40Ar/39Ar age determinations, mostly
from Escobar-Wolf  et al. (2010).
Their results indicate that this proto-
typical composite cone was construct-
ed in four stages spanning approxi-
mately 75 kyr.  The magma flux calcu-
lated by Singer et al. (2011) for build-
ing of  the Santa María cone, based in
part by energy-constrained recharge,
assimilation, and fractional crystalliza-
tion (EC–RAxFC) modeling (Bohrson
and Spera 2007), is impressive – ca.
46 660 g/s, about 4 times the rate esti-
mated by Kutterolf  et al. (2008b).
Moreover, Singer et al. (2011) point
out that this magmatic input is also
several times greater than those
assumed in  thermal models of  the
interaction between mantle-derived
melts and the crust (Dufek and
Bergantz 2005; Annen et al. 2006).
Singer et al. (2011) also estimate a
regional extrusion flux for Guatemala
during cone construction at Santa
María of  5–9 km3km–1Myr–1, which is
comparable to those reported by Carr
et al. (2007a) for Nicaragua and Costa
Rica.

NICARAGUA – WET INPUT AND
OUTPUT?
Ranero et al. (2001) first report the
occurrence of  extensive bending-relat-
ed faulting in the incoming Cocos
Plate at the outer rise offshore
Nicaragua.  This structural control
would lead to deep and widespread
serpentinization of  the mantle portion
of  the approaching plate, and hence an
anomalously wet subduction input
(Rüpke et al. 2002; Ranero et al. 2003).
Subsequent geophysical investigations
off  Nicaragua lend support to this
hypothesis (Grevemeyer et al. 2005,
2007; Ivandic et al. 2008, 2010;  Lefeldt
et al. 2009; Key et al. 2012).  Greve-
meyer et al. (2005) document lower
than expected heat flow in the sub-
ducting Cocos Plate, which they attrib-
ute to enhanced hydrothermal circula-
tion associated with bending-related
faulting.  A series of  studies document
slow seismic velocities in the outer rise
offshore Nicaragua, suggesting

15–30% serpentinization of  Cocos
Plate mantle to at least a few kilome-
tres below the Moho (Grevemeyer et
al. 2007; Ivandic et al. 2008, 2010; Van
Avendonk et al. 2011).  Van Avendonk
et al. (2011) estimate that the incoming
Cocos slab is about 2.5 times wetter
offshore Nicaragua versus offshore
Costa Rica, and like all of  the previous
geophysical investigations, attribute this
to widespread serpentinization of  the
mantle portion of  the incoming Cocos
Plate.  

Onshore, Abers et al. (2003)
find unusually slow seismic velocities at
the top of  subducting Cocos Plate
beneath Nicaragua, suggesting an
anomalously wet slab.  In a more
detailed study, Syracuse et al. (2008)
also report anomalously low seismic
velocities in the upper part of  the sub-
ducting Cocos plate, extending 20–30
km below the slab surface, i.e. well into
the mantle lithosphere.  The observed
velocity anomalies are consistent with
10–20% serpentinization of  the sub-
ducting Cocos mantle.  Therefore,
compelling evidence exists on both
sides of  the trench for an uncommonly
wet input into the Nicaraguan portion
of  the CASZ.

The consequences of  this
unusual hydrous influx have also been
seismically imaged.  In the Nicaraguan
mantle wedge, Syracuse et al. (2008)
distinguish a vertically extensive region
having high ratios of  primary to sec-
ondary wave velocities (VP/VS),
thought to outline melt generated by
the large water additions from the slab.
Rychert et al. (2008), in a related inves-
tigation, show that the Nicaraguan
mantle wedge exhibits a relatively wide
zone of  high shear wave attenuation
that would indicate considerable wedge
melting, hydration, excess tempera-
tures, or some combination of  all
three.  Hence, both studies provide
convincing evidence for unusually large
amounts of  melting in the Nicaraguan
mantle wedge that can be linked to an
anomalously wet, serpentinized sub-
ducting plate.     

There are a number of  geo-
chemical indicators that support the
geophysical picture of  an arc segment
with enhanced melt production linked
to an amplified delivery of  water from

the subducting Cocos plate.  The first
is that Nicaraguan mafic magmas and
olivine-hosted melt inclusions define a
regional minimum in La/Yb along the
CASZ (Fig. 3a; Carr et al. 1990, 2003,
2007b; Sadofsky et al. 2008; Bolge et
al. 2009). Carr et al. (1990, 2003,
2007b) attribute this to higher degrees
of  wedge melting which, in turn,
implies a greater hydrous flux from the
subducted slab, since flux-melting is
generally thought to be the predomi-
nant means of  magma production in
subduction zones (Ringwood 1974;
Ulmer 2001; Wallace 2005; Grove et al.
2012).  Higher degrees of  wedge melt-
ing in Nicaragua are also consistent
with the lower Na2O contents of  mafic
magmas and olivine-hosted melt inclu-
sions erupted in Nicaragua compared
with those emitted elsewhere along the
CASZ (Carr 1984; Plank and Langmuir
1988; Eiler et al. 2005; Syracuse and
Abers 2006; Carr et al. 2007b; Sadof-
sky et al. 2008).  Sadofsky et al. (2008)
conclude that (western) Nicaragua has
a wetter mantle wedge and erupts
somewhat wetter magmas than
Guatemala and Costa Rica, based on
water analyses of  olivine-hosted melt
inclusions (they had no data for El Sal-
vador).  Finally, Eiler et al. (2005) find
that olivine phenocrysts from
Nicaraguan lavas have unusually low
δ18O, both for the CASZ and for sub-
duction zones worldwide (Fig. 3b). The
Nicaraguan olivines also have anom-
alously low δ18O relative to normal
mid-ocean ridge basalts and mantle
peridotites (Fig. 3b).  These distinctive-
ly low values are ascribed to an aque-
ous fluid component from hydrother-
mally altered rocks deep within the
subducting Cocos plate, possibly sub-
ducted serpentinites (Eiler et al. 2005).
According to the modeling results of
Eiler et al. (2005), this hydrous compo-
nent has a much reduced to non-exis-
tent influence elsewhere along the
CASZ.  

Other geochemical proxies of
water involvement in Nicaraguan
magma genesis are more problematic
or fail to single out Nicaraguan mag-
mas.  The first is the somewhat iconic
regional peak in Ba/La exhibited by
(western) Nicaraguan mafic lavas (Fig.
4a).  Because a number of  experimen-
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tal studies have demonstrated that Ba
is mobile during slab dehydration,
whereas La is not (Tatsumi et al. 1986;
Keppler 1996; Martin et al. 2011),
Ba/La, like Ba/Nb and Ba/Th, is com-

monly employed as a proxy for a slab
fluid component (Woodhead and John-
son 1993; Woodhead et al. 1998; Walk-
er et al. 2000; Sadofsky et al. 2008;
Bolge et al. 2009).  However, the

regional variation of  Ba/La in mafic
output in the CASZ actually reflects
regional variability in La, not Ba (Carr
et al. 1990, 2007a), as may be the case
on a global scale (Morris and Hart
1983), and thus is more difficult to
directly relate to a variable fluid flux.
In addition, as first pointed out by Carr
et al. (1990), and subsequently high-
lighted by others (Leeman et al. 1994;
Jicha et al. 2010),  the regional peak in
Ba/La corresponds with a regional
peak in a less ambiguous geochemical
proxy, 10Be (Fig. 4b).  10Be is a clear
tracer of  the recycling of  young sub-
ducting sediment (Tera et al. 1986;
Morris et al. 1990), which in Central
America would pinpoint source contri-
butions from the upper sequence of
hemipelagic sediments (Leeman et al.
1994; Patino et al. 2000).  Since sub-
ducting sediments in the CASZ are dis-
tinctly enriched in Ba (Plank and Lang-
muir 1993; Leeman et al. 1994; Patino
et al. 2000) and Ba/La (Patino et al.
2000), the Nicaraguan peak in Ba/La
most likely reflects an increased slab
signal from subducted (hemipelagic)
sediments (Jicha et al. 2010).  An
enhanced flux from subducted
(hemipelagic) sediments can also
explain the along-arc peaks in B/La,
U/Th, Ba/Th, and (230Th/232Th) seen
in Nicaragua (Leeman et al. 1994; Pati-
no et al. 2000; Carr et al. 2003; Walker
et al. 2007; Sadofsky et al. 2008; Jicha
et al. 2010). The He – CO2 relation-
ships and the  δ15N ratios of  volcanic
and geothermal fluids in Nicaragua
also suggest elevated contributions
from subducted sediments (Shaw et al.
2003; Elkins et al. 2006), although δ15N
ratios in Nicaragua are similar to those
in Guatemala (Fischer et al. 2002;
Elkins et al. 2006).   Jicha et al. (2010)
point out that 238U excesses do not
peak in Nicaragua, as might be expect-
ed if  fluid input is maximized in this
segment of  the CASZ.  Although 238U
excess is considered to be a robust
indicator of  the addition of  U+6 as part
of  a fluid component from subducting
lithosphere (Gill 1981; Allègre and
Condomines 1982; Turner et al. 2003),
it is a function of  the fractionation of
U from Th in aqueous fluids and not
necessarily a measure of  the overall
water flux.  The fact that 238U excesses
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Figure 3.  Variations of  La/Yb (a) and δ18O (b) in mafic volcanic rocks (45–55
wt% SiO2) erupted along the Central American volcanic front.  Data from
RU_CAGeochem2013 database (http://rci.rutgers.edu/~carr/) supplemented with
data from La Femina et al. (2004) and Singer et al. (2011).  Shaded band represents
δ18O for most mantle peridotites and normal mid-ocean ridge basalts (Eiler et al.
2005).  



extend from Guatemala to Costa Rica
is, however, an important observation
as it indicates that a fluid component
of  some sort is involved in magma
genesis all along the CASZ.

An additional problem with
the idea that wedge melting is maxi-

mized beneath the Nicaraguan portion
of  the CASZ is that, no matter the
means of  estimation, extrusive fluxes
in Nicaragua do not stand out, as sum-
marized above.  In other words, the
logical expectation is that with more
melting there would be greater surface

volcanism, particularly given that
Nicaragua has the thinnest crust in the
CASZ (Carr 1984; Carr et al. 1990,
2003).  This discrepancy was first
addressed by Carr et al. (1990), who
attribute it to the steeper slab dip
beneath Nicaragua.  With a steep dip,
water influx from the subducted Cocos
plate is focused into a tighter volume,
producing smaller quantities of  high
percentage partial melts that possess a
more concentrated slab signal (Carr et
al. 1990, 2003; Feigenson and Carr
1993). 

We think a coupling of  the
models by Carr et al. (1990) and Eiler
et al. (2005) best links the compelling
evidence for an unusually wet input
into the Nicaraguan segment of  the
CASZ and its equally distinctive vol-
canic output.  The model of  Carr et al.
(1990) reconciles a regionally large
degree of  melting in the mantle wedge
with a non-distinctive volcanic output.
The enhanced degree of  melting in
Nicaragua is directly related to an
anomalously wet input from the sub-
ducting Cocos plate, likely from ser-
pentinites formed in the outer rise
(Ranero et al. 2001, 2003; Rüpke et al.
2002; Eiler et al. 2005).  In the model
of  Eiler et al. (2005), this wet addition
is provided by their water-rich, low
δ18O component.  As demonstrated by
Eiler et al. (2005), a second slab com-
ponent, required in Nicaragua to pro-
vide the necessary enhancements of
10Be , Ba, B, U and other trace ele-
ments, must be subducted hemipelagic
sediments (Morris et al. 1990; Plank
and Langmuir 1993; Leeman et al.
1994; Patino et al. 2000; Rüpke et al.
2002; Shaw et al. 2003; Eiler et al.
2005; Elkins et al. 2006; Jicha et al.
2010).  Eiler et al. (2005), following the
current consensus (e.g. Elliott 2003),
suggests that this second component is
a sediment melt, although they provide
it with very un-sedimentary Sr and Nd
isotopic compositions.  Leeman et al.
(1994), on the other hand, favor addi-
tion of  the sediment signal via fluid
transport.  The agent transporting the
sedimentary component in Nicaragua
remains an open question and may
hinge on the relative mobilities of  trace
elements, particularly Be, Sr, Nd, and
Hf, in various slab fluids (Tatsumi and
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Figure 4.  Variations of  Ba/La (a) and 10Be/9Be (b) in mafic volcanic rocks (45–55
wt % SiO2) erupted along the Central American volcanic front.  Sources of  data as
in Figure 3.



Isoyama 1988; You et al. 1994, 1996;
Johnson and Plank 1999; Woodhead et
al. 2001; Eiler et al. 2005; Marschall et
al. 2007). 

CENTRAL COSTA RICA – INPUT
FROM THE GALAPAGOS PLUME 
As shown in Figure 3a, volcanic rocks
erupted in central Costa Rica have
notably elevated La/Yb (Carr et al.
1990, 2003, 2007b; Herrstrom et al.
1995).  Higher La/Yb implies a lower
degree of  partial melting or derivation
from an enriched magma source.  As
shown in Figure 5, central Costa Rican
volcanic rocks also have unusually
enriched Pb isotopic compositions
indicative of  an enriched mantle source
(Feigenson et al. 2004; Hoernle et al.
2008; Gazel et al. 2009, 2011).  The
overall correlation between La/Yb and
Pb isotope ratios indicates that
enriched magma sources are present
where La/Yb is >10 (Gazel et al. 2009,
2011).  The low Zr/Nb in central
Costa Rican lavas is also supportive of
an enriched mantle source (Bolge et al.
2009).  

The observed source enrich-
ment in central Costa Rica has been
the subject of  much debate.  However,
most studies have linked source enrich-
ment to the influence of  the Galapa-
gos plume (Johnston and Thorkelson
1997; Abratis and Wörner 2001;
Feigenson et al. 2004; Goss and Kay
2006; Hoernle et al. 2008; Gazel et al.
2009, 2011), which has had a funda-
mental role in the history of  both the
Caribbean and Cocos plates (Sinton et
al. 1998; Werner et al. 1999, 2003;
Hauff  et al. 2000; Barckhausen et al.
2001; Hoernle et al. 2002; Denyer and
Gazel 2009).  Recall that the oceanic
crust that subducts beneath central
Costa Rica was formed at the Cocos –
Nazca spreading center, and then over-
printed by Galapagos hotspot tracks
(Werner et al. 1999; O’Connor et al.
2007).  In detail, the subducting Gala-
pagos Seamount Province outboard of
central Costa Rica has an alkaline com-
position and an isotopic signature of
the Northern Galapagos Domain
(Wolf  – Darwin Lineament in the
Galapagos Archipelago; Hoernle et al.
2000; Werner et al. 2003; Fig. 6).  The
subducting Cocos and Coiba ridges
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Figure 5.  Variation of  206Pb/204Pb in mafic volcanic rocks (45–55 wt% SiO2) erupt-
ed along the Central American volcanic front.  Sources of  data as in Figure 3.

Figure 6.  Tectonic setting of  southern Central America (modified from Gazel et
al. 2011).  Black circles are volcanic complexes of  the volcanic front.  Orange hexa-
gons are locations of  adakitic volcanism.   EPR: East Pacific Rise; CNS: Cocos-
Nazca Spreading Center; C.I.: Cocos Island; PZF: Panama Fracture Zone.   The
depth contours of  the subducting Cocos slab are from Protti et al. (1994).



have a tholeiitic composition with a
dominant isotopic composition belong-
ing to the central Galapagos Domain
(Fernandina Island; Hoernle et al.
2000; Werner et al. 2003; Fig. 6). 

The Pb isotopic compositions
of  samples from central Costa Rica
can be explained by three isotopic end-
members, a depleted component
(depleted mantle) and two enriched
subducting Galapagos components, the
Seamount Province and the Cocos –
Coiba Ridge (Fig. 7; Hoernle et al.
2008; Gazel et al. 2009). The Seamount
Province is a recently arrived (<7 Ma)
component; before that, the Galapagos
interaction was dominated by a com-
ponent similar to the Coiba and Cocos
ridges that arrived at the subduction
system ca. 15–10 Ma  (Gazel et al.
2011). Based on radiogenic isotope sys-
tematics, geochemical variations with
time, and geochemical modeling, Gazel
et al. (2009) propose that the process
to produce magmas with a Galapagos
signature requires partial melting of
subducting Galapagos tracks and reac-
tion of  those melts with the mantle
wedge. These conclusions are in agree-
ment with other recent studies (Ben-
jamin et al. 2007; Hoernle et al. 2008)
that provide convincing evidence that
the anomalous enriched signature in
the central Costa Rican portion of  the
volcanic front is derived from the
interaction of  the mantle wedge with
Galapagos hotspot tracks.  Hoernle et
al. (2008) suggest that trench-parallel
mantle flow, perhaps coupled with
oblique subduction, causes diffusion of
this Galapagos signature from central
Costa Rica northwestward into
Nicaragua.  Trench-parallel mantle flow
is consistent with recent seismic
anisotropy data for the southern por-
tion of  the CASZ (Hoernle et al. 2008;
Abt et al. 2009, 2010).

Gazel et al. (2009, 2011) show
that the appearance of  the Galapagos
signature in the central Costa Rican
volcanic front correlates with the pro-
duction of  magmas having primitive
andesitic/adakitic compositions.
Adakites are intermediate magmas pro-
duced by high-pressure melting of  a
mafic protolith, such as a subducted
slab, and are recognized in part by their
high La/Yb and Sr compositions (Kay

1978; Defant and Drummond 1990;
Gazel et al. 2011; Whattam et al. 2012).
Their presence in central Costa Rica
strongly supports the occurrence of
slab melting and its importance in
explaining the enriched signature seen
in southernmost CASZ magmas.
Moreover, Gazel et al. (2011) report a
migration of  adakitic lavas of  35
mm/y towards the southeast, tracking
the eastward movement of  the triple
junction where the Panama Fracture
Zone intersects the Middle America
Trench (Fig. 6).  Seismic evidence
(Protti et al. 1994) suggests that there
is a slab ‘window’ beneath southern
Costa Rica and Panama, in the area
where adakites are common (orange
hexagons in Fig. 6).  The numerous
hotspot tracks and fracture zones on
the subducting Cocos and Nazca plates
(Werner et al. 1999) could make the
subducting slab below this part of  the
CASZ relatively easy to tear.  There-
fore, Gazel et al. (2011) hypothesize
that a collision between the Galapagos
hotspot tracks (Coiba Ridge?) and the
CASZ that started ca. 15–10 Ma
(Denyer and Arias 1991; Silver et al.
2004; MacMillan et al. 2004; Gazel et
al. 2009) clogged the subduction zone
and triggered slab detachment below

southern Costa Rica and Panama.  The
detached slab segments were then
replaced by hot asthenosphere, which
is consistent with the elevated mantle
potential temperatures (1400–1450 °C)
in the mantle wedge below southern
Central America (Gazel et al. 2011).
The slab-free area correlates with the
highest elevations (i.e. the Talamanca
Cordillera at ca. 4 km) in southern
Central America.  These surface eleva-
tions are possibly related to the isostat-
ic effect of  the influx of  hot mantle
together with shortening related to the
collision of  the Cocos Ridge (Gazel et
al. 2011).

VOLCANIC SEGMENTATION AND
HIGH-FIELD-STRENGTH-ELEMENTS
Stoiber and Carr (1973), Carr et al.
(1982, 2007b), and Carr (1984), build-
ing on observations made by early
explorers of  Central America (Dollfus
and Montserrat 1868; Sapper 1917),
divided the Central American volcanic
front into seven or eight segments,
each from 100 to 300 km long, sepa-
rated by changes of  strike, ‘volcanic
gaps’, or right-hand step-outs (Fig. 1).
These along-front discontinuities are
generally associated with transverse
structures, such as faults and align-
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Figure 7.  208Pb/204Pb versus 206Pb/204Pb for Costa Rican lavas showing mixing lines
from the three proposed source components:  depleted mantle (DM), the subduct-
ing seamount province (SP), and the subducting Cocos – Coiba ridge (CCR).
Sources of  data as in Figure 3.



ments of  volcanic vents (Stoiber and
Carr 1973).  Although originally
thought to reflect severance of  both
the overriding and subducting plates
(Stoiber and Carr 1973; Carr et al.
1982), segmentation is now thought to
be solely an upper plate phenomenon
(Burkart and Self  1985; Bolge et al.
2009).  Bolge et al. (2009) show that
Zr/Nb correlates with the well-recog-
nized segmentation of  the Central
American volcanic front; specifically,
Zr/Nb in erupted, high-field-strength-
element (HFSE)-depleted mafic mag-
mas declines abruptly on the north-
western side of  four proposed segment
boundaries in El Salvador through
Costa Rica (Fig. 8; Bolge et al. 2009).
Bolge et al. (2009) demonstrate that
these variations are controlled by
changes in Nb, not Zr.  All of  the
observed discontinuities in Zr/Nb cor-
respond with right-hand steps in the
volcanic front (Bolge et al. 2009).  As a
result, the variations in Zr/Nb are
closely mimicked by sharp changes in
slab depth, which abruptly decreases
on the southeastern side of  the seg-
ment boundaries, i.e. with each right-
hand (trenchward) step (Fig. 1; Syra-
cuse and Abers 2006; Bolge et al.
2009).  Thus, at each right-hand step,
slab depth decreases and Zr/Nb
increases, caused by increasing Nb
depletion in the erupted magmas
(Bolge et al. 2009).  It is important to
point out that the discontinuous varia-
tions in Zr/Nb are superimposed on
an overall along-arc trend in which
western Nicaraguan lavas define a weak
regional peak in Zr/Nb (Fig. 8; Bolge
et al. 2009), grossly analogous to the
along-arc variations in Ba/La and 10Be
(Fig. 4).  Although not examined by
Bolge et al. (2009), Hf/Ta variations in
the CASZ are identical to Zr/Nb as is
evident from the amazingly good cor-
relation between the two incompatible
element ratios (Fig. 9).  

Bolge et al. (2009) speculate
that the segmented Zr/Nb changes
along the CASZ are controlled by vari-
able amphibole stability during melting
of  the subducted Cocos plate.  At shal-
lower slab depths, residual amphibole
is present during slab melting, resulting
in high Zr/Nb if  Amph/LDNb/Zr is >1 (e.g.
Tiepolo et al. 2001).  At greater slab

depths, amphibole would not be stable
during melting (e.g. Niida and Green
1999) resulting in low Zr/Nb (Bolge et
al. 2009).  Although amphibole control
cannot presently be ruled out, we think

rutile is a more likely option for direct-
ing relative HFSE fractionation along
the CASZ.  Rutile, unlike other possi-
ble accessory phases such as titanite, is
well known for its ability to decouple
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Figure 8.  Variation of  Zr/Nb in low-Ti mafic volcanic rocks (45–55 wt% SiO2)
erupted along the Central American volcanic front from El Salvador through cen-
tral Costa Rica.  Vertical lines show positions of  proposed segment boundaries (see
Fig. 1).  Sources of  data as in Figure 3.  

Figure 9.  Zr/Nb versus Hf/Ta in low-Ti mafic volcanic rocks (45–55 wt% SiO2)
erupted along the Central American volcanic front from El Salvador through cen-
tral Costa Rica.  Sources of  data as in Figure 3.



Nb and Ta from Zr and Hf  (Jenner et
al. 1993; Foley et al. 2000; Klemme et
al. 2005; Xiong et al. 2005; Bromiley
and Redfern 2008), which is the critical
necessity along the CASZ.  Rutile
would also be a likely accessory phase
in subducting siliceous sediments (Her-
mann and Spandler 2008; Skora and
Blundy 2010) which, as discussed
above, clearly exert a large influence on
the trace element budget in Nicaragua
and may do so further north along the
CASZ as well.  Bolge et al. (2009) dis-
missed rutile control for two reasons:
first, because of  its inability to explain
a negative correlation between Zr/Nb
and Nb/Ta; however, this negative cor-
relation is seen only in El Salvador and
there only moderately (r2 = 0.694).
Second, the stability of  rutile is not
pressure dependent; but pressure
dependence is not essential, as the sta-
bility of  the guiding mineral could be a
stronger function of  temperature, or in
the case of  partial melting, the degree
of  melting.  For instance, at shallow
slab depths and lower slab surface tem-
peratures, rutile would likely be stable
during melting or dehydration, result-
ing in high Zr/Nb and Hf/Ta.  At
higher temperatures, deeper along the
slab surface, rutile might not be stable
(Skora and Blundy 2010) or might
become exhausted during melting, pro-
ducing lower Zr/Nb and Hf/Ta in
generated magmas.  

SILICIC VOLCANISM – GENERATION
OF JUVENILE CONTINENTAL CRUST?
Kutterolf  et al. (2008b) have shown
that silicic volcanism is volumetrically
significant along the CASZ and may in
fact dominate the overall magmatic
output over the past few hundred
thousand years.  However, geochemical
investigations of  Central American sili-
cic rocks are still too few and far
between.  One of  the most important
recent studies is that by Vogel et al.
(2006), which expands on thoughts
first presented in Vogel et al. (2004).
In both papers, Vogel et al. (2004,
2006) stress that erupted felsic magmas
along the Central American volcanic
front display many of  the same region-
al geochemical variations as their mafic
brethren.  For instance, the Ba/La
ratios of  silicic magmas, with two

exceptions, peak in Nicaragua and fall
off  to the northwest and southeast
(Fig. 10a).  The regional pattern for
La/Yb ratios, is, on the other hand, the
almost mirror image of  Ba/La,
exhibiting a regional minimum in
Nicaragua (Fig. 10b) – in fact, a more
pronounced regional minimum than

that shown by mafic magmas (Fig. 3a).
In addition, the few available radi-
ogenic isotopic compositions for silicic
rocks overlap those of  contiguous
mafic rocks (Fig. 11).  Thus, the silicic
magmas of  Central America seem to
have had little, if  any, crustal inheri-
tance, no matter the thickness or com-

66

Figure 10.  Variations in Ba/La (a) and La/Yb (b) in silicic volcanic rocks (65–77
wt% SiO2) erupted along the Central American volcanic front.  Data from Vogel et
al. (2006) supplemented by data from Kutterolf  et al. (2008a), Garrison et al.
(2012), and the RU_CAGeochem2013 database.



position of  crust they inhabited and
traversed (Vogel et al. 2006).  This
would suggest that juvenile continental
crust is being created all along the
CASZ (Vogel et al. 2004; Deering et al.
2012).  The preferred model of  Vogel
et al. (2006) for the origin of  Central
American silicic magmas is by
penecontemporaneous partial melting
of  recently crystallized mafic intrusions
(Tamura and Tatsumi 2002), or by melt
extraction from  more mafic crystal
mushes (Deering et al. 2012). 

Nevertheless, partial melting
of  subducting lithosphere may also
play a significant role in the generation
of  continental crust (Drummond and
Defant 1990; Rapp and Watson 1995;
Hacker et al. 2011).  This process
would be facilitated if  the slab were
enriched in incompatible-elements by
plume interaction as in the case of
Costa Rica (Gazel et al. 2009, 2011).
Partial melting of  subducting hotspot
tracks can ‘re-fertilize’ the arc mantle
wedge.  Once the enriched starting
material is produced, intra-crustal
processes such as fractional crystalliza-
tion, assimilation and anatexis (e.g. Hil-
dreth and Moorbath 1988; Annen et al.
2006) will complete the development
of  juvenile continental crust.  This
process, which may be occurring on a
large scale in Costa Rica, is consistent
with a recent geophysical study (Hayes
et al. 2013) showing that Costa Rica
has average P-wave velocities that are
closest to continental crust of  any
non-continental subduction zone,
worldwide.

DIRECTIONS AND QUESTIONS FOR
THE FUTURE
A number of  important avenues for
future research in the CASZ fall out of
this review.  The first is further applica-
tions of  high-precision 40Ar/39Ar dating
to individual volcanoes in order to bet-
ter constrain extrusive and magmatic
fluxes along the CASZ (e.g. Singer et
al. 2011).  A second is to examine
whether the sediment signature seen in
Nicaraguan volcanic rocks is delivered
by a fluid or a melt from the subduct-
ing Cocos plate.  Acquisition of  Hf
isotopic data could shed light on this
question, depending on whether the
Hf  isotopic composition of  the CASZ
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Figure 11.  Nd isotopic compositions of  mafic (a) and silicic (b) volcanic rocks (as
delineated in previous figures) erupted along the Central American volcanic front.
Colour distinctions as in previous diagrams, i.e. red – Guatemala, blue – El Sal-
vador, green – Nicaragua, and purple – Costa Rica.  Data from
RU_CAGeochem2013 database, Vogel et al. (2006), Singer et al. (2011), and Garri-
son et al. (2012).



mantle wedge is distinct from that of
the subducting Cocos crust (Tollstrup
et al. 2010).  Definitive geochemical
evidence of  a serpentinite-derived
component in Nicaragua is also lack-
ing: chlorine isotope values for vol-
canic rocks, like those of  oxygen iso-
topes, are only suggestive of  a serpeni-
tinite signature (Barnes et al. 2009).
Tonarini et al. (2007) utilize B isotopes
to argue for fluid inputs in El Salvador;
a similar B isotopic study of
Nicaraguan volcanic rocks is needed to
validate the approach of  Tonarini et al.
(2007) in the segment of  the CASZ
with, at present, the strongest geophys-
ical evidence for serpentinite subduc-
tion (e.g. Van Avendonk et al. 2011)
and the most robust geochemical evi-
dence for a wet slab input.  Another
important research question is the
character of  fluid addition from the
subducting Cocos plate in portions of
the CASZ away from Nicaragua, as
U–series data suggest fluid involve-
ment all along the CASZ, even in
Costa Rica (Benjamin et al. 2007; Jicha
et al. 2010).  Future investigations of
HFSE variability along the Central
American volcanic front are also vital
to identify which minor or accessory
phases (or phase) control(s) the
observed variation and how it relates
to CASZ segmentation and slab depth
(Bolge et al. 2009).  One aspect of
HFSE variability not discussed in this
review is the occurrence of  unusual
HFSE-enriched volcanic rocks along
the volcanic front, particularly in
Nicaragua and Costa Rica (Ui 1972;
Walker 1984; Reagan and Gill 1989;
Walker et al. 1990, 2001; Alvarado and
Carr 1993; Feigenson and Carr 1993;
Reagan et al. 1994; Patino et al. 2000;
Carr et al. 2003, 2007b; Sadofsky et al.
2008; Freundt et al. 2010; Rausch and
Schmincke 2010).  The origin of  these
atypical volcanic rocks is still contro-
versial and wants further study, bearing
in mind that the Nicaraguan and Costa
Rican examples are geochemically quite
distinct (Walker et al. 1990, 2001).
Another research focus for the CASZ
in the future should be the origin and
evolution of  silicic volcanism, particu-
larly within large caldera systems.  The
Vogel et al. (2006) hypothesis of
important juvenile crustal production

all along the volcanic front requires
geochemical testing, especially with
radiogenic isotope data.  Last, and per-
haps most important, both onshore
and offshore geophysical studies of
northern Central America are impera-
tive.  These would provide an impor-
tant foundation for vital assessments
of  the geochemical variations along the
northern half  of  the Central American
volcanic front, which are sometimes as
robust as those in the southern half
(Figs. 3b and 4), but have attracted
scant scientific attention.  Readers
interested in examining the geochem-
istry of  CASZ volcanic rocks further
are encouraged to download the
RU_CAGeochem database from
http://rci.rutgers.edu/~carr/.

ACKNOWLEDGEMENTS
Many thanks to Jarda Dostal for the
invitation to review aspects of  mag-
matic/volcanic activity in the Central
American subduction zone.  We also
thank Mike Carr and an anonymous
reviewer for their beneficial reviews of
the manuscript.  Mark Howland, car-
tographer extraordinaire, drafted all of
the figures.

REFERENCES
Abers, G.A., Plank, T., and Hacker, B.R.,

2003, The wet Nicaraguan slab: Geo-
physical Research Letters: v. 30, 1098,
http://dx.doi.org/10.1029/2002GL01
5649.

Abratis, M., and Wörner, G., 2001, Ridge
collision, slab-window formation, and
the flux of  Pacific asthenosphere into
the Caribbean realm: Geology, v. 29, p.
127–130, http://dx.doi.org/
10.1130/0091-7613(2001)029
<0127:RCSWFA>2.0.CO;2.

Abt, D.L., Fischer, K.M., Abers, G.A.,
Strauch, W., Protti, J.M., and
González, V., 2009, Shear wave
anisotropy beneath Nicaragua and
Costa Rica: Implications for flow in
the mantle wedge: Geochemistry,
Geophysics, Geosystems, v. 10,
Q05S15, http://dx.doi.org/
10.1029/2009GC002375.

Abt, D.L., Fischer, K.M., Abers, G.A.,
Protti, M., González, V., and Strauch,
W., 2010, Constraints on upper mantle
anisotropy surrounding the Cocos slab
from SK(K)S splitting: Journal of
Geophysical Research, v. 115, B06316,
http://dx.doi.org/10.1029/2009JB006
710.

Allègre, C.J., and Condomines, M., 1982,
Basalt genesis and mantle structure
studied through Th–isotopic geo-
chemistry: Nature, v. 299, p. 21–24,
http://dx.doi.org/10.1038/299021a0.

Alvarado, G.E., and Carr, M.J., 1993, The
Platanar–Aguas Zarcas volcanic cen-
ters, Costa Rica: spatial-temporal asso-
ciation of  Quaternary calc-alkaline
and alkaline volcanism: Bulletin of
Volcanology, v. 55, p. 443–453,
http://dx.doi.org/10.1007/BF003020
04.

Alvarado, G.E., and Gans, P.B., 2012, Sín-
tesis geocronológica del magmatismo,
metamorfismo y metalogenia de Costa
Rica, América Central: Revista
Geológica de América Central, v. 46,
p. 7–122.

Álvarez-Gómez, J.A., Meijer, P.T.,
Martínez-Díaz, J.J., and Capote, R.,
2008, Constraints from finite element
modeling on the active tectonics of
northern Central America and the
Middle America trench: Tectonics, v.
27, TC1008, http://dx.doi.org/
10.1029/2007TC002162.

Annen, C., Blundy, J.D., and Sparks, R.S.J.,
2006, The genesis of  intermediate and
silicic magmas in deep crustal hot
zones: Journal of  Petrology, v. 47, p.
505–539, http://dx.doi.org/
10.1093/petrology/egi084.

Aubouin, J., Bourgois, J., and Azéma, J.,
1984, A new type of  active margin:
the convergent-extensional margin, as
exemplified by the Middle America
Trench off  Guatemala: Earth and
Planetary Science Letters, v. 67, p.
211–218, http://dx.doi.org/
10.1016/0012-821X(84)90116-X.

Auker, M.R., Sparks, R.S.J., Siebert, L.,
Crosweller, H.S., and Ewert, J., 2013,
A statistical analysis of  the global his-
torical volcanic fatalities record: Jour-
nal of  Applied Volcanology, v. 2, 24
p., http://dx.doi.org/10.1186/2191-
5040-2-2.

Barckhausen, U., Ranero, C.R., von Huene,
R., Cande, S.C., and Roeser, H.A.,
2001, Revised tectonic boundaries in
the Cocos Plate off  Costa Rica: Impli-
cations for the segmentation of  the
convergent margin and for plate tec-
tonic models: Journal of  Geophysical
Research, v. 106, p. 19207–19220,
http://dx.doi.org/10.1029/2001JB000
238.

Barnes, J.D., Sharp, Z.D., Fischer, T.P.,
Hilton, D.R., and Carr, M.J., 2009,
Chlorine isotope variations along the
Central American volcanic front and
back arc: Geochemistry, Geophysics,
Geosystems, v. 10, Q11S17,

68



http://dx.doi.org/10.1029/2009GC00
2587.

Benjamin, E.R., Plank, T., Wade, J.A., Kel-
ley, K.A., Hauri, E.H., and Alvarado,
G.E., 2007, High water contents in
basaltic magmas from Irazú Volcano,
Costa Rica: Journal of  Volcanology
and Geothermal Research, v. 168, p.
68–92, http://dx.doi.org/
10.1016/j.jvolgeores.2007.08.008.

Bluth, G.J., and Rose, W.I., 2002, Collabo-
rative studies target volcanic hazards
in Central America: EOS Transac-
tions, American Geophysical Union, v.
83, p. 429–435, http://dx.doi.org/
10.1029/2002EO000309.

Bohrson, W.A., and Spera, F.J., 2007, Ener-
gy-constrained recharge, assimilation,
and fractional crystallization (EC-
RAxFC): A Visual Basic computer
code for calculating trace element and
isotope variations of  open-system
magmatic systems: Geochemistry,
Geophysics, Geosystems, v. 8,
Q11003, http://dx.doi.org/
10.1029/2007GC001781.

Bolge, L.L., Carr, M.J., Milidakis, K.I.,
Lindsay, F.N., and Feigenson, M.D.,
2009, Correlating geochemistry, tec-
tonics, and volcanic volume along the
Central American volcanic front: Geo-
chemistry, Geophysics, Geosystems, v.
10, Q12S18, http://dx.doi.org/
10.1029/2009GC002704.

Bromiley, G.D., and Redfern, S.A.T., 2008,
The role of  TiO2 phases during melt-
ing of  subduction-modified crust:
Implications for deep mantle melting:
Earth and Planetary Science Letters, v.
267, p. 301–308, http://dx.doi.org/
10.1016/j.epsl.2007.11.033.

Burkart, B., and Self, S., 1985, Extension
and rotation of  crustal blocks in
northern Central America and effect
on the volcanic arc: Geology, v. 13, p.
22–26, http://dx.doi.org/
10.1130/0091-7613(1985)13
<22:EAROCB>2.0.CO;2.

Carr, M.J., 1984, Symmetrical and segment-
ed variation of  physical and geochemi-
cal characteristics of  the Central
American volcanic front: Journal of
Volcanology and Geothermal
Research, v. 20, p. 231–252,
http://dx.doi.org/10.1016/0377-
0273(84)90041-6.

Carr, M.J., Rose, W.I., and Stoiber, R.E.,
1982, Central America, in Thorpe,
R.S., ed., Andesites: John Wiley, p.
149–166.

Carr, M.J., Feigenson, M.D., and Bennett,
E.A., 1990, Incompatible element and
isotopic evidence for tectonic control
of  source mixing and melt extraction

along the Central American arc: Con-
tributions to Mineralogy and Petrolo-
gy, v. 105, p. 369–380,
http://dx.doi.org/10.1007/BF002868
25.

Carr, M.J., Feigenson, M.D., Patino, L.C.,
and Walker, J.A., 2003, Volcanism and
geochemistry in Central America:
Progress and problems, in Eiler, J., ed.,
Inside the Subduction Factory: Ameri-
can Geophysical Union, Geophysical
Monograph Series, v. 138, p. 153–174,
http://dx.doi.org/10.1029/138GM09.

Carr, M.J., Saginor, I., Alvarado, G.E.,
Bolge, L.L., Lindsay, F.N., Milidakis,
K., Turrin, B.D., Feigenson, M.D., and
Swisher, C.C., III, 2007a, Element
fluxes from the volcanic front of
Nicaragua and Costa Rica: Geochem-
istry, Geophysics, Geosystems, v. 8,
Q06001, http://dx.doi.org/
10.1029/2006GC001396.

Carr, M.J., Patino, L.C., and Feigenson,
M.D., 2007b, Petrology and geochem-
istry of  lavas, in Bundschuh, J., and
Alvarado, G.E., eds., Central America:
Geology, Resources and Hazards, v. 1,
Taylor and Francis, p. 565–590.

Deering, C.D., Vogel, T.A., Patino, L.C.,
Szymanski, D.W., and Alvardo, G.E.,
2012, Magmatic processes that gener-
ate chemically distinct silicic magmas
in NW Costa Rica and the evolution
of  juvenile continental crust in ocean-
ic arcs: Contributions to Mineralogy
and Petrology, v. 163, p. 259–275,
http://dx.doi.org/10.1007/s00410-
011-0670-z.

Defant, M.J., and Drummond, M.S., 1990,
Derivation of  some modern arc mag-
mas by melting of  young subducted
lithosphere: Nature, v. 347, p.
662–665,
http://dx.doi.org/10.1038/347662a0. 

DeMets, C., 2001, A new estimate for pres-
ent-day Cocos-Caribbean plate
motion: Implications for slip along the
Central American volcanic arc: Geo-
physical Research Letters, v. 28, p.
4043–4046, http://dx.doi.org/
10.1029/2001GL013518.

Dengo, G., 1985, Mid America: Tectonic
setting for the Pacific margin from
southern Mexico to northwestern
Colombia, in Nairn, A.E.M., Stehli,
F.G., and Uyeda, S., eds., The Ocean
Basins and Margins: Volume 7A The
Pacific Ocean: Plenum Press, New
York, p. 123–180, http://dx.doi.org/
10.1007/978-1-4613-2351-8_4. 

Denyer, P., and Arias, O., 1991, Estrati-
grafía de la region central de Costa
Rica: Revista Geológica de América
Central, v. 12, p. 1–59.

Denyer, P., and Gazel, E., 2009, The Costa
Rican Jurassic to Miocene oceanic
complexes: Origin, tectonics, and rela-
tions: Journal of  South American
Earth Sciences, v. 28, p. 429–442,
http://dx.doi.org/10.1016/j.jsames.20
09.04.010. 

Dilley, M., Chen, R.S., Deichmann, U.,
Lerner-Lam, A.L., and Arnold, M.,
2005, Natural disaster hotspots: A
global risk analysis: World Bank Publi-
cations, Washington D.C., 145 p.,
http://dx.doi.org/10.1596/0-8213-
5930-4.

Dollfus, A., and Montserrat, E., 1868, Voy-
age Geologique Dans Les Republiques
De Guatemala Et De El Salvador:
Imprimerie Imp, Paris, 539 p.

Drummond, M.S., and Defant, M.J., 1990,
A model for trondhjemite-tonalite-
dacite genesis and crustal growth via
slab melting: Archean to modern com-
parisons: Journal of  Geophysical
Research, v. 95, p. 21503–21521,
http://dx.doi.org/10.1029/JB095iB13
p21503.

Dufek, J., and Bergantz, G.W., 2005, Lower
crustal magma genesis and preserva-
tion: a stochastic framework for the
evaluation of  basalt–crust interaction:
Journal of  Petrology, v. 46, p.
2167–2195, http://dx.doi.org/
10.1093/petrology/egi049.

Eiler, J.M., Carr, M.J., Reagan, M., and
Stolper, E., 2005, Oxygen isotope
constraints on the sources of  Central
American arc lavas: Geochemistry,
Geophysics, Geosystems, v. 6,
Q07007, http://dx.doi.org/
10.1029/2004GC000804.

Elkins, L.J., Fischer, T.P., Hilton, D.R.,
Sharp, Z.D., McKnight, S., and Walker,
J., 2006, Tracing nitrogen in volcanic
and geothermal volatiles from the
Nicaraguan volcanic front: Geochimi-
ca et Cosmochimica Acta, v. 70, p.
5215–5235, http://dx.doi.org/
10.1016/j.gca.2006.07.024.

Elliott, T., 2003, Tracers of  the slab, in
Eiler, J., ed., Inside the Subduction
Factory: American Geophysical
Union, Geophysical Monograph
Series, v. 138, p. 23–45,
http://dx.doi.org/10.1029/138GM03.

Escobar-Wolf, R.P., Diehl, J.F., Singer, B.S.,
and Rose, W.I., 2010, 40Ar/39Ar and
paleomagnetic constraints on the evo-
lution of  Volcán de Santa María,
Guatemala: Geological Society of
America Bulletin, v. 122, p. 757–771,
http://dx.doi.org/10.1130/B26569.1.

Ewert, J.W., and Harpel, C.J., 2004, In
harm’s way: Population and volcanic
risk: Geotimes, v. 49, p. 14–17.

GEOSCIENCE CANADA Volume 41 2014 69



Feigenson, M.D., and Carr, M.J., 1993, The
source of  Central American lavas:
inferences from geochemical inverse
modeling: Contributions to Mineralo-
gy and Petrology, v. 113, p. 226–235,
http://dx.doi.org/10.1007/BF002832
30.

Feigenson, M.D., Carr, M.J., Maharaj, S.V.,
Juliano, S., and Bolge, L.L., 2004, Lead
isotope composition of  Central Amer-
ican volcanoes: Influence of  the Gala-
pagos plume: Geochemistry, Geo-
physics, Geosystems, v. 5, Q06001,
http://dx.doi.org/10.1029/2003GC00
0621.

Fischer, T.P., Hilton, D.R., Zimmer, M.M.,
Shaw, A.M., Sharp, Z.D., and Walker,
J.A., 2002, Subduction and recycling
of  nitrogen along the Central Ameri-
can margin: Science, v. 297, p.
1154–1157, http://dx.doi.org/
10.1126/science.1073995.

Foley, S.F., Barth, M.G., and Jenner, G.A.,
2000, Rutile/melt partition coeffi-
cients for trace elements and an
assessment of  the influence of  rutile
on the trace element characteristics of
subduction zone magmas: Geochimica
et Cosmochimica Acta, v. 64, p.
933–938, http://dx.doi.org/
10.1016/S0016-7037(99)00355-5.

Freundt, A., Hartmann, A., Kutterolf, S.,
and Strauch, W., 2010, Volcaniclastic
stratigraphy of  the Tiscapa maar
crater walls (Managua, Nicaragua):
implications for volcanic and seismic
hazards and Holocene climate
changes: International Journal of
Earth Sciences, v. 99, p. 1453–1470,
http://dx.doi.org/10.1007/s00531-
009-0469-6.

Garrison, J.M., Reagan, M.K., and Sims,
K.W.W., 2012, Dacite formation at
Ilopango Caldera, El Salvador: U-
series disequilibrium and implications
for petrogenetic processes and magma
storage time: Geochemistry, Geo-
physics, Geosystems, v. 13, Q06018,
http://dx.doi.org/10.1029/2012GC00
4107.

Gazel, E., Carr, M.J., Hoernle, K., Feigen-
son, M.D., Szymanski, D., Hauff, F.,
and van den Bogaard, P., 2009, Gala-
pagos-OIB signature in southern Cen-
tral America: Mantle refertilization by
arc-hot spot interaction: Geochem-
istry, Geophysics, Geosystems, v. 10,
Q02S11, http://dx.doi.org/
10.1029/2008GC002246.

Gazel, E., Hoernle, K., Carr, M.J.,
Herzberg, C., Saginor, I., van den
Bogaard, P., Hauff, F., Feigenson, M.,
and Swisher, C., III, 2011, Plume-sub-
duction interaction in southern Cen-

tral America: Mantle upwelling and
slab melting: Lithos, v. 121, p.
117–134, http://dx.doi.org/
10.1016/j.lithos.2010.10.008.

Geldmacher, J., Hoernle, K., Van Den
Bogaard, P., Hauff, F., and Klügel, A.,
2008, Age and geochemistry of  the
Central American forearc basement
(DSDP Leg 67 and 84): Insights into
Mesozoic arc volcanism and seamount
accretion on the fringe of  the
Caribbean LIP: Journal of  Petrology,
v. 49, p. 1781–1815,
http://dx.doi.org/10.1093/petrolo-
gy/egn046. 

Gill, J.B., 1981, Orogenic Andesites and
Plate Tectonics: Springer-Verlag,
Berlin, 390 p., http://dx.doi.org/
10.1007/978-3-642-68012-0.

Goss, A.R., and Kay, S.M., 2006, Steep
REE patterns and enriched Pb iso-
topes in southern Central American
arc magmas: Evidence for forearc sub-
duction erosion?: Geochemistry, Geo-
physics, Geosystems, v. 7, Q05016,
http://dx.doi.org/10.1029/2005GC00
1163.

Grevemeyer, I., Kaul, N., Diaz-Naveas, J.L.,
Villinger, H.W., Ranero, C.R., and
Reichert, C., 2005, Heat flow and
bending-related faulting at subduction
trenches: Case studies offshore of
Nicaragua and Central Chile: Earth
and Planetary Science Letters, v. 236,
p. 238–248, http://dx.doi.org/
10.1016/j.epsl.2005.04.048.

Grevemeyer, I., Ranero, C.R., Flueh, E.R.,
Kläschen, D., and Bialas, J., 2007, Pas-
sive and active seismological study of
bending-related faulting and mantle
serpentinization at the Middle Ameri-
ca trench: Earth and Planetary Science
Letters, v. 258, p. 528–542,
http://dx.doi.org/10.1016/j.epsl.2007.
04.013.

Grove, T.L., Till, C.B., and Krawczynski,
M.J., 2012, The role of  H2O in sub-
duction zone magmatism: Annual
Review of  Earth and Planetary Sci-
ences, v. 40, p. 413–439,
http://dx.doi.org/10.1146/annurev-
earth-042711-105310.

Guzmán-Speziale, M., 2001, Active seismic
deformation in the grabens of  north-
ern Central America and its relation-
ship to the relative motion of  the
North America–Caribbean plate
boundary: Tectonophysics, v. 337, p.
39–51, http://dx.doi.org/
10.1016/S0040-1951(01)00110-X.

Hacker, B.R., Kelemen, P.B., and Behn,
M.D., 2011, Differentiation of  the
continental crust by relamination:
Earth and Planetary Science Letters, v.

307, p. 501–516, http://dx.doi.org/
10.1016/j.epsl.2011.05.024.

Hauff, F., Hoernle, K., Schmincke, H.-U.,
and Werner, R., 1997, A Mid Creta-
ceous origin for the Galápagos
hotspot: volcanological, petrological
and geochemical evidence from Costa
Rican oceanic crustal segments: Geol-
ogische Rundschau, v. 86, p. 141–155,
http://dx.doi.org/10.1007/PL000099
38.

Hauff, F., Hoernle, K., van den Bogaard,
P., Alvarado. G., and Garbe-Schön-
berg, D., 2000, Age and geochemistry
of  basaltic complexes in western
Costa Rica: Contributions to the geot-
ectonic evolution of  Central America:
Geochemistry, Geophysics, Geosys-
tems, v. 1, 1009, http://dx.doi.org/
10.1029/1999GC000020.

Hayes, J.L., Holbrook, W.S., Lizarralde, D.,
Van Avendonk, H.J.A., Bullock, A.D.,
Mora, M., Harder, S., Alvarado, G.E.,
and Ramirez, C., 2013, Crustal struc-
ture across the Costa Rican volcanic
arc: Geochemistry, Geophysics,
Geosystems, v. 14, p. 1087–1103,
http://dx.doi.org/10.1002/ggge.2007
9.

Hermann, J., and Spandler, C.J., 2008, Sedi-
ment melts at sub-arc depths: an
experimental study: Journal of  Petrol-
ogy, v. 49, p. 717–740,
http://dx.doi.org/10.1093/petrolo-
gy/egm073.

Herrstrom, E.A., Reagan, M.K., and Mor-
ris, J.D., 1995, Variations in lava com-
position associated with flow of
asthenosphere beneath southern Cen-
tral America: Geology, v. 23, p.
617–620, http://dx.doi.org/
10.1130/0091-7613(1995)023
<0617:VILCAW>2.3.CO;2.

Hildreth, W., and Moorbath, S., 1988,
Crustal contributions to arc magma-
tism in the Andes of  Central Chile:
Contributions to Mineralogy and
Petrology, v. 98, p. 455–489,
http://dx.doi.org/10.1007/BF003723
65.

Hoernle, K., Werner, R., Morgan, J.P.,
Garbe-Schönberg, D., Bryce, J., and
Mrazek, J., 2000, Existence of  com-
plex spatial zonation in the Galápagos
plume: Geology, v. 28, p. 435–438,
http://dx.doi.org/10.1130/0091-
7613(2000)28<435:EOCSZI>2.0.CO;
2.

Hoernle, K., van den Bogaard, P., Werner,
R., Lissinna, B., Hauff, F., Alvarado,
G., and Garbe-Schönberg, D., 2002,
Missing history (16–71 Ma) of  the
Galápagos hotspot: Implications for
the tectonic and biological evolution

70



of  the Americas: Geology, v. 30, p.
795–798, http://dx.doi.org/
10.1130/0091-7613(2002)030
<0795:MHMOTG>2.0.CO;2.

Hoernle, K., Abt, D.L., Fischer, K.M.,
Nichols, H., Hauff, F., Abers, G.A.,
van den Bogaard, P., Heydolph, K.,
Alvarado, G., Protti, M., and Strauch,
W., 2008, Arc-parallel flow in the man-
tle wedge beneath Costa Rica and
Nicaragua: Nature, v. 451, p.
1094–1097, http://dx.doi.org/
10.1038/nature06550.

Ivandic, M., Grevemeyer, I., Berhorst, A.,
Flueh, E.R., and McIntosh, K., 2008,
Impact of  bending related faulting on
the seismic properties of  the incoming
oceanic plate offshore of  Nicaragua:
Journal of  Geophysical Research, v.
113, B05410, http://dx.doi.org/
10.1029/2007JB005291.

Ivandic, M., Grevemeyer, I., Bialas, J., and
Petersen, C.J., 2010, Serpentinization
in the trench-outer rise region off-
shore of  Nicaragua: constraints from
seismic refraction and wide-angle data:
Geophysical Journal International, v.
180, p. 1253–1264, http://dx.doi.org/
10.1111/j.1365-246X.2009.04474.x.

Jenner, G.A., Foley, S.F., Jackson, S.E.,
Green, T.H., Fryer, B.J., and Lon-
gerich, H.P., 1993, Determination of
partition coefficients for trace ele-
ments in high pressure-temperature
experimental run products by laser
ablation microprobe-inductively cou-
pled plasma-mass spectrometry
(LAM–ICP–MS): Geochimica et Cos-
mochimica Acta, v. 57, p. 5099–5103,
http://dx.doi.org/10.1016/0016-
7037(93)90611-Y.

Jicha, B.R., Smith, K.E., Singer, B.S., Beard,
B.L., Johnson, C.M., and Rogers, N.W.,
2010, Crustal assimilation no match
for slab fluids beneath Volcán de
Santa María, Guatemala: Geology, v.
38, p. 859–862,
http://dx.doi.org/10.1130/G31062.1.

Johnson, M.C., and Plank, T., 1999, Dehy-
dration and melting experiments con-
strain the fate of  subducted sedi-
ments: Geochemistry Geophysics
Geosystems, v. 1, 1007,
http://dx.doi.org/10.1029/1999GC00
0014.

Johnston, S.T., and Thorkelson, D.J., 1997,
Cocos-Nazca slab window beneath
Central America: Earth and Planetary
Science Letters, v. 146, p. 465–474,
http://dx.doi.org/10.1016/S0012-
821X(96)00242-7.

Kay, R.W., 1978, Aleutian magnesian
andesites: Melts from subducted Pacif-
ic ocean crust: Journal of  Volcanology

and Geothermal Research, v. 4, p.
117–132, http://dx.doi.org/
10.1016/0377-0273(78)90032-X.

Keppler, H., 1996, Constraints from parti-
tioning experiments on the composi-
tion of  subduction-zone fluids:
Nature, v. 380, p. 237–240,
http://dx.doi.org/10.1038/380237a0.

Key, K., Constable, S., Matsuno, T., Evans,
R.L., and Myer, D., 2012, Electromag-
netic detection of  plate hydration due
to bending faults at the Middle Ameri-
ca trench: Earth and Planetary Science
Letters, v. 351–352, p. 45–53,
http://dx.doi.org/10.1016/j.epsl.2012.
07.020.

Kimura, G., Silver, E., and Blum, P., 1997,
Proceedings of  the Ocean Drilling
Program, Initial Reports, Volume 170:
Ocean Drilling Program, College Sta-
tion, Texas, 458 p.

Klemme, S., Prowatke, S., Hametner, K.,
and Günther, D., 2005, Partitioning of
trace elements between rutile and sili-
cate melts: Implications for subduc-
tion zones: Geochimica et Cos-
mochimica Acta, v. 69, p. 2361–2371,
http://dx.doi.org/10.1016/j.gca.2004.
11.015.

Kutterolf, S., Freundt, A., Peréz, W., Mörz,
T., Schacht, U., Wehrmann, H., and
Schmincke, H.-U., 2008a, Pacific off-
shore record of  plinian arc volcanism
in Central America: 1. Along-arc cor-
relations: Geochemistry, Geophysics,
Geosystems, v. 9, Q02S01,
http://dx.doi.org/10.1029/2007GC00
1631.

Kutterolf, S., Freundt, A., and Peréz, W.,
2008b, Pacific offshore record of  plin-
ian arc volcanism in Central America:
2. Tephra volumes and erupted mass-
es: Geochemistry, Geophysics,
Geosystems, v. 9, Q02S02,
http://dx.doi.org/10.1029/2007GC00
1791.

La Femina, P.C., Connor, C.B., Hill, B.E.,
Strauch, W., and Saballos, J.A., 2004,
Magma-tectonic interactions in
Nicaragua: the 1999 seismic swarm
and eruption of  Cerro Negro volcano:
Journal of  Volcanology and Geother-
mal Research, v. 137, p. 187–199,
http://dx.doi.org/10.1016/j.jvolgeo-
res.2004.05.006.

Leeman, W.P., Carr, M.J., and Morris, J.D.,
1994, Boron geochemistry of  the
Central American volcanic arc: Con-
straints on the genesis of  subduction-
related magmas: Geochimica et Cos-
mochimica Acta, v. 58, p. 149–168,
http://dx.doi.org/10.1016/0016-
7037(94)90453-7.

Lefeldt, M., Grevemeyer, I., Goßler, J., and

Bialas, J., 2009, Intraplate seismicity
and related mantle hydration at the
Nicaraguan trench outer rise: Geo-
physical Journal International, v. 178,
p. 742–752, http://dx.doi.org/
10.1111/j.1365-246X.2009.04167.x.

Lücke, O.H., Götze, H.-J., and Alvarado,
G.E., 2010, A constrained 3D density
model of  the upper crust from gravity
data interpretation for central Costa
Rica: International Journal of  Geo-
physics, v. 2010, 860902,
http://dx.doi.org/10.1155/2010/8609
02.

Lyon-Caen, H., Barrier, E., Lasserre, C.,
Franco, A., Arzu, I., Chiquin, L.,
Chiquin, M., Duquesnoy, T., Flores,
O., Galicia, O., Luna, J., Molina, E.,
Porras, O., Requena, J., Robles, V.,
Romero, J., and Wolf, R., 2006, Kine-
matics of  the North
American–Caribbean–Cocos plates in
Central America from new GPS meas-
urements across the Polochic-Motagua
fault system: Geophysical Research
Letters, v. 33, L19309,
http://dx.doi.org/10.1029/2006GL02
7694.

MacKenzie, L.S., Abers, G.A., Rondenay,
S., and Fischer, K.M., 2010, Imaging a
steeply dipping subducting slab in
southern Central America: Earth and
Planetary Science Letters, v. 296, p.
459–468, http://dx.doi.org/
10.1016/j.epsl.2010.05.033.

MacMillan, I., Gans, P.B., and Alvarado, G.,
2004, Middle Miocene to present plate
tectonic history of  the southern Cen-
tral American Volcanic Arc: Tectono-
physics, v. 392, p. 325–348,
http://dx.doi.org/10.1016/j.tecto.200
4.04.014.

Mann, P., Rogers, R.D., and Gahagan, L.,
2007, Overview of  plate tectonic his-
tory and its unresolved problems, in
Bundschuh, J., and Alvarado, G.E.,
eds., Central America: Geology,
Resources and Hazards, v. 1: Taylor &
Francis, p. 201–237.

Marschall, H.R., Altherr, R., and Rüpke, L.,
2007, Squeezing out the slab – model-
ling the release of  Li, Be and B during
progressive high-pressure metamor-
phism: Chemical Geology, v. 239, p.
323–335, http://dx.doi.org/
10.1016/j.chemgeo.2006.08.008.

Martin, L.A.J., Wood, B.J., Turner, S., and
Rushmer, T., 2011, Experimental
measurements of  trace element parti-
tioning between lawsonite, zoisite and
fluid and their implication for the
composition of  arc magmas: Journal
of  Petrology, v. 52, p. 1049–1075,
http://dx.doi.org/10.1093/petrolo-

GEOSCIENCE CANADA Volume 41 2014 71



gy/egr018.
McBirney, A.R., 1969, Compositional varia-

tions in Cenozoic calc-alkaline suites
of  Central America, in McBirney,
A.R., ed., Proceedings of  the Andesite
Conference: Oregon Department of
Geology and Mineral Industries, Bul-
letin, 65, p. 185–189.

Moritz, E., Bornholdt, S., Westphal, H.,
and Meschede, M., 2000, Neural net-
work interpretation of  LWD data
(ODP Leg 170) confirms complete
sediment subduction at the Costa Rica
convergent margin: Earth and Plane-
tary Science Letters, v. 174, p.
301–312, http://dx.doi.org/
10.1016/S0012-821X(99)00270-8.

Morris, J.D., and Hart, S.R., 1983, Isotopic
and incompatible element constraints
on the genesis of  island arc volcanics
from Cold Bay and Amak Island,
Aleutians, and implications for mantle
structure: Geochimica et Cosmochimi-
ca Acta, v. 47, p. 2015–2030,
http://dx.doi.org/10.1016/0016-
7037(83)90217-X.

Morris, J.D., Leeman, W.P., and Tera, F.,
1990, The subducted component in
island arc lavas: constraints from Be
isotopes and B–Be systematics:
Nature, v. 344, p. 31–36,
http://dx.doi.org/10.1038/344031a0.

Niida, K., and Green, D.H., 1999, Stability
and chemical composition of  parga-
sitic amphibole in MORB pyrolite
under upper mantle conditions: Con-
tributions to Mineralogy and Petrolo-
gy, v. 135, p. 18–40,
http://dx.doi.org/10.1007/s00410005
0495.

O’Connor, J.M., Stoffers, P., Wijbrans, J.R.,
and Worthington, T.J., 2007, Migration
of  widespread long-lived volcanism
across the Galápagos Volcanic
Province: Evidence for a broad
hotspot melting anomaly?: Earth and
Planetary Science Letters, v. 263, p.
339–354, http://dx.doi.org/
10.1016/j.epsl.2007.09.007.

Patino, L.C., Carr, M.J., and Feigenson,
M.D., 2000, Local and regional varia-
tions in Central American arc lavas
controlled by variations in subducted
sediment input: Contributions to Min-
eralogy and Petrology, v. 138, p.
265–283, http://dx.doi.org/
10.1007/s004100050562.

Plank, T., and Langmuir, C.H., 1988, An
evaluation of  the global variations in
the major element chemistry of  arc
basalts: Earth and Planetary Science
Letters, v. 90, p. 349–370,
http://dx.doi.org/10.1016/0012-
821X(88)90135-5.

Plank, T., and Langmuir, C.H., 1993, Trac-
ing trace elements from sediment
input to volcanic output at subduction
zones: Nature, v. 362, p. 739–742,
http://dx.doi.org/10.1038/362739a0.

Plank, T., and Langmuir, C.H., 1998, The
chemical composition of  subducting
sediment and its consequences for the
crust and mantle: Chemical Geology,
v. 145, p. 325–394, http://dx.doi.org/
10.1016/S0009-2541(97)00150-2.

Protti, M., Güendel, F., and McNally, K.,
1994, The geometry of  the
Wadati–Benioff  zone under southern
Central America and its tectonic sig-
nificance: results from a high-resolu-
tion local seismographic network:
Physics of  the Earth and Planetary
Interiors, v. 84, p. 271–287,
http://dx.doi.org/10.1016/0031-
9201(94)90046-9.

Protti, M., Güendel, F., and McNally, K.,
1995, Correlation between the age of
the subducting Cocos plate and the
geometry of  the Wadati-Benioff  zone
under Nicaragua and Costa Rica, in
Mann, P., ed., Geologic and Tectonic
Development of  the Caribbean Plate
Boundary in Southern Central Ameri-
ca: Geological Society of  America,
Special Papers, v. 295, p. 309–326,
http://dx.doi.org/10.1130/SPE295-
p309.

Ranero, C.R., and von Huene, R., 2000,
Subduction erosion along the Middle
America convergent margin: Nature, v.
404, p. 748–752,
http://dx.doi.org/10.1038/35008046.

Ranero, C.R., Morgan, J.P., McIntosh, K.D.,
and Reichert, C., 2001, Flexural fault-
ing and mantle serpentinization at the
Middle America trench (abstract):
American Geophysical Union, Fall
Meeting, 2001, Abstracts, v. 82,
#T22D-04.

Ranero, C.R., Morgan, J.P., McIntosh, K.,
and Reichert, C., 2003, Bending-relat-
ed faulting and mantle serpentiniza-
tion at the Middle America trench:
Nature, v. 425, p. 367–373,
http://dx.doi.org/10.1038/nature0196
1.

Rapp, R.P., and Watson, E.B., 1995, Dehy-
dration melting of  metabasalt at 8–32
kbar: Implications for continental
growth and crust-mantle recycling:
Journal of  Petrology, v. 36, p.
891–931, http://dx.doi.org/
10.1093/petrology/36.4.891.

Rausch, J., and Schmincke, H.-U., 2010,
Nejapa Tephra: The youngest (c. 1 ka
BP) highly explosive hydroclastic
eruption in western Managua
(Nicaragua): Journal of  Volcanology

and Geothermal Research, v. 192, p.
159–177, http://dx.doi.org/
10.1016/j.jvolgeores.2010.02.010.

Reagan, M.K., and Gill, J.B., 1989, Coexist-
ing calcalkaline and high-niobium
basalts from Turrialba Volcano, Costa
Rica: Implications for residual
titanates in arc magma sources: Jour-
nal of  Geophysical Research, v. 94, p.
4619–4633, http://dx.doi.org/
10.1029/JB094iB04p04619.

Reagan, M.K., Morris, J.D., Herrstrom,
E.A., and Murrell, M.T., 1994, Urani-
um series and beryllium isotope evi-
dence for an extended history of  sub-
duction modification of  the mantle
below Nicaragua: Geochimica et Cos-
mochimica Acta, v. 58, p. 4199–4212,
http://dx.doi.org/10.1016/0016-
7037(94)90273-9.

Ringwood, A.E., 1974, The petrological
evolution of  island arc systems: Twen-
ty-seventh William Smith Lecture:
Journal of  the Geological Society, v.
130, p. 183–204, http://dx.doi.org/
10.1144/gsjgs.130.3.0183.

Rodriguez, M., DeMets, C., Rogers, R.,
Tenorio, C., and Hernandez, D., 2009,
A GPS and modelling study of  defor-
mation in northern Central America:
Geophysical Journal International, v.
178, p. 1733–1754, http://dx.doi.org/
10.1111/j.1365-246X.2009.04251.x.

Rogers, R.D., and Mann, P., 2007,
Transtensional deformation of  the
western Caribbean–North America
plate boundary zone, in Mann, P., ed.,
Geologic and Tectonic Development
of  the Caribbean Plate Boundary in
Northern Central America: Geological
Society of  America, Special Papers, v.
428, p. 37–64, http://dx.doi.org/
10.1130/2007.2428(03).

Rogers, R.D., Mann, P., and Emmet, P.A.,
2007, Tectonic terranes of  the Chortis
block based on integration of  regional
aeromagnetic and geologic data, in
Mann, P., ed., Geologic and Tectonic
Development of  the Caribbean Plate
Boundary in Northern Central Ameri-
ca: Geological Society of  America,
Special Papers, v.428, p. 65–88,
http://dx.doi.org/10.1130/2007.2428(
04).

Rose, W.I., Conway, F.M., Pullinger, C.R.,
Deino, A., and McIntosh, W.C., 1999,
An improved age framework for late
Quaternary silicic eruptions in north-
ern Central America: Bulletin of  Vol-
canology, v. 61, p. 106–120,
http://dx.doi.org/10.1007/s00445005
0266.

Rüpke, L.H., Morgan, J.P., Hort, M., and
Connolly, J.A.D., 2002, Are the region-

72



al variations in Central American arc
lavas due to differing basaltic versus
peridotitic slab sources of  fluids?:
Geology, v. 30, p. 1035–1038,
http://dx.doi.org/10.1130/0091-
7613(2002)030<1035:ATRVIC>2.0.C
O;2.

Rychert, C.A., Fischer, K.M., Abers, G.A.,
Plank, T., Syracuse, E., Protti, J.M.,
Gonzalez, V., and Strauch, W., 2008,
Strong along-arc variations in attenua-
tion in the mantle wedge beneath
Costa Rica and Nicaragua: Geochem-
istry, Geophysics, Geosystems, v. 9,
Q10S10, http://dx.doi.org/
10.1029/2008GC002040.

Sadofsky, S.J., Portnyagin, M., Hoernle, K.,
and van den Bogaard, P., 2008, Sub-
duction cycling of  volatiles and trace
elements through the Central Ameri-
can volcanic arc: evidence from melt
inclusions: Contributions to Mineralo-
gy and Petrology, v. 155, p. 433–456,
http://dx.doi.org/10.1007/s00410-
007-0251-3.

Sallarès, V., Dañobeitia, J.J., and Flueh,
E.R., 2001, Lithospheric structure of
the Costa Rican Isthmus: Effects of
subduction zone magmatism on an
oceanic plateau: Journal of  Geophysi-
cal Research, v. 106, p. 621–643,
http://dx.doi.org/10.1029/2000JB900
245.

Sapper, K., 1917, Katalog Der
Geschichtlichen Vulkanausbruche:
Karl J. Trubner, Strasbourg, 358 p.

Shaw, A.M., Hilton, D.R., Fischer, T.P.,
Walker, J.A., and Alvarado, G.E., 2003,
Contrasting He–C relationships in
Nicaragua and Costa Rica: insights
into C cycling through subduction
zones: Earth and Planetary Science
Letters, v. 214, p. 499–513,
http://dx.doi.org/10.1016/S0012-
821X(03)00401-1.

Silver, E., Costa Pisani, P., Hutnak, M.,
Fisher, A., DeShon, H., and Taylor, B.,
2004, An 8–10 Ma tectonic event on
the Cocos Plate offshore Costa Rica:
Result of  Cocos Ridge collision?:
Geophysical Research Letters, v. 31,
L18601, http://dx.doi.org/
10.1029/2004GL020272.

Singer, B.S., Smith, K.E., Jicha, B.R., Beard,
B.L., Johnson, C.M., and Rogers, N.W.,
2011, Tracking open-system differenti-
ation during growth of  Santa María
Volcano, Guatemala: Journal of
Petrology, v. 52, p. 2335–2363,
http://dx.doi.org/10.1093/petrolo-
gy/egr047.

Sinton, C.W., Duncan, R.A., Storey, M.,
Lewis, J., and Estrada, J.J., 1998, An
oceanic flood basalt province within

the Caribbean plate: Earth and Plane-
tary Science Letters, v. 155, p.
221–235, http://dx.doi.org/
10.1016/S0012-821X(97)00214-8.

Skora, S., and Blundy, J., 2010, High-pres-
sure hydrous phase relations of  radio-
larian clay and implications for the
involvement of  subducted sediment in
arc magmatism: Journal of  Petrology,
v. 51, p. 2211–2243,
http://dx.doi.org/10.1093/petrolo-
gy/egq054.

Stoiber, R.E., and Carr, M.J., 1973, Quater-
nary volcanic and tectonic segmenta-
tion of  Central America: Bulletin Vol-
canologique, v. 37, p. 304–325,
http://dx.doi.org/10.1007/BF025976
31.

Syracuse, E.M., and Abers, G.A., 2006,
Global compilation of  variations in
slab depth beneath arc volcanoes and
implications: Geochemistry, Geo-
physics, Geosystems, v. 7, Q05017,
http://dx.doi.org/10.1029/2005GC00
1045.

Syracuse, E.M., Abers, G.A., Fischer, K.,
MacKenzie, L., Rychert, C., Protti, M.,
González, V., and Strauch, W., 2008,
Seismic tomography and earthquake
locations in the Nicaraguan and Costa
Rican upper mantle: Geochemistry,
Geophysics, Geosystems, v. 9,
Q07S08, http://dx.doi.org/
10.1029/2008GC001963.

Tamura, Y., and Tatsumi, Y., 2002, Remelt-
ing of  an andesitic crust as a possible
origin for rhyolitic magma in oceanic
arcs: an example from the Izu-Bonin
arc: Journal of  Petrology, v. 43, p.
1029–1047, http://dx.doi.org/
10.1093/petrology/43.6.1029.

Tatsumi, Y., and Isoyama, H., 1988, Trans-
portation of  beryllium with H2O at
high pressures: Implication for magma
genesis in subduction zones: Geo-
physical Research Letters, v. 15, p.
180–183, http://dx.doi.org/
10.1029/GL015i002p00180.

Tatsumi, Y., Hamilton, D.L., and Nesbitt,
R.W., 1986, Chemical characteristics of
fluid phase released from a subducted
lithosphere and origin of  arc magmas:
Evidence from high-pressure experi-
ments and natural rocks: Journal of
Volcanology and Geothermal
Research, v. 29, p. 293–309,
http://dx.doi.org/10.1016/0377-
0273(86)90049-1.

Tera, F., Brown, L., Morris, J., Sacks, I.S.,
Klein, J., and Middleton, R., 1986,
Sediment incorporation in island-arc
magmas: Inferences from 10Be:
Geochimica et Cosmochimica Acta, v.
50, p. 535–550, http://dx.doi.org/

10.1016/0016-7037(86)90103-1.
Tiepolo, M., Bottazzi, P., Foley, S.F., Ober-

ti, R., Vannucci, R., and Zanetti, A.,
2001, Fractionation of  Nb and Ta
from Zr and Hf  at mantle depths: the
role of  titanian pargasite and kaersu-
tite: Journal of  Petrology, v. 42, p.
221–232, http://dx.doi.org/
10.1093/petrology/42.1.221.

Tollstrup, D., Gill, J., Kent, A., Prinkey, D.,
Williams, R., Tamura, Y., and Ishizuka,
O., 2010, Across-arc geochemical
trends in the Izu-Bonin arc: Contribu-
tions from the subducting slab, revisit-
ed: Geochemistry, Geophysics,
Geosystems, v. 11, Q01X10,
http://dx.doi.org/10.1029/2009GC00
2847.

Tonarini, S., Agostini, S., Doglioni, C.,
Innocenti, F., and Manetti, P., 2007,
Evidence for serpentinite fluid in con-
vergent margin systems: The example
of  El Salvador (Central America) arc
lavas: Geochemistry, Geophysics,
Geosystems, v. 8, Q09014,
http://dx.doi.org/10.1029/2006GC00
1508.

Turner, S., Bourdon, B., and Gill, J., 2003,
Insights into magma genesis at con-
vergent margins from U–series iso-
topes, in Bourdon, B., Henderson,
G.M., Lundstrom, C.C., and Turner,
S.P., eds., Uranium-Series Geochem-
istry: Mineralogical Society of  Ameri-
ca, Reviews in Mineralogy and Geo-
chemistry, v. 52, p. 255–310.

Ui, T., 1972, Recent volcanism in the
Masaya–Granada area, Nicaragua: Bul-
letin Volcanologique, v. 36, p.
174–190, http://dx.doi.org/
10.1007/BF02596989.

Ulmer, P., 2001, Partial melting in the man-
tle wedge – the role of  H2O in the
genesis of  mantle-derived ‘arc-related’
magmas: Physics of  the Earth and
Planetary Interiors, v. 127, p. 215–232,
http://dx.doi.org/10.1016/S0031-
9201(01)00229-1.

Van Avendonk, H.J.A., Holbrook, W.S.,
Lizarralde, D., and Denyer, P., 2011,
Structure and serpentinization of  the
subducting Cocos plate offshore
Nicaragua and Costa Rica: Geochem-
istry, Geophysics, Geosystems, v. 12,
Q06009, http://dx.doi.org/
10.1029/2011GC003592.

van Wyk de Vries, B., Grosse, P., and
Alvarado, G.E., 2007, Volcanism and
volcanic landforms, in Bundschuh, J.,
and Alvarado, G.E., eds., Central
America: Geology, Resources and
Hazards, v. 1: Taylor and Francis, p.
123–154, http://dx.doi.org/
10.1201/9780203947043.ch4.

GEOSCIENCE CANADA Volume 41 2014 73



Vogel, T.A., Patino, L.C., Alvarado, G.E.,
and Gans, P.B., 2004, Silicic ign-
imbrites within the Costa Rican vol-
canic front: evidence for the forma-
tion of  continental crust: Earth and
Planetary Science Letters, v. 226, p.
149–159, http://dx.doi.org/
10.1016/j.epsl.2004.07.013.

Vogel, T.A., Patino, L.C., Eaton, J.K., Val-
ley, J.W., Rose, W.I., Alvarado, G.E.,
and Viray, E.L., 2006, Origin of  silicic
magmas along the Central American
volcanic front: Genetic relationship to
mafic melts: Journal of  Volcanology
and Geothermal Research, v. 156, p.
217–228, http://dx.doi.org/
10.1016/j.jvolgeores.2006.03.002.

von Huene, R., Aubouin, J., Azema, J.,
Blackington, G., Carter, J.A., Coul-
bourn, W.T., Cowan, D.S., Curiale, J.A.,
Dengo, C.A., Faas, R.W., Harrison, W.,
Hesse, R., Hussong, D.M., Laad, J.W.,
Muzylov, N., Shiki, T., Thompson,
P.R., and Westberg, J., 1980, Leg 67:
The Deep Sea Drilling Project Mid-
America Trench transect off
Guatemala: Geological Society of
America Bulletin, v. 91, p. 421–432,
http://dx.doi.org/10.1130/0016-
7606(1980)91<421:LTDSDP>2.0.CO;
2.

Walker, J.A., 1984, Volcanic rocks from the
Nejapa and Granada cinder cone
alignments, Nicaragua, Central Ameri-
ca: Journal of  Petrology, v. 25, p.
299–342, http://dx.doi.org/
10.1093/petrology/25.2.299.

Walker, J.A., 1989, Caribbean arc tholeiites:
Journal of  Geophysical Research, v.
94, p. 10539–10548,
http://dx.doi.org/10.1029/JB094iB08
p10539.

Walker, J.A., Carr, M.J., Feigenson, M.D.,
and Kalamarides, R.I., 1990, The pet-
rogenetic significance of  interstratified
high- and low-Ti basalts in central
Nicaragua: Journal of  Petrology, v. 31,
p. 1141–1164, http://dx.doi.org/
10.1093/petrology/31.5.1141.

Walker, J.A., Patino, L.C., Cameron, B.I.,
and Carr, M.J., 2000, Petrogenetic
insights provided by compositional
transects across the Central America
arc: Southeastern Guatemala and
Honduras: Journal of  Geophysical
Research, v. 105, p. 18949–18963,
http://dx.doi.org/10.1029/2000JB900
173.

Walker, J.A., Patino, L.C., Carr, M.J., and
Feigenson, M.D., 2001, Slab control
over HFSE depletions in central
Nicaragua: Earth and Planetary Sci-
ence Letters, v. 192, p. 533–543,
http://dx.doi.org/10.1016/S0012-

821X(01)00476-9.
Walker, J.A., Mickelson, J.E., Thomas, R.B.,

Patino, L.C., Cameron, B., Carr, M.J.,
Feigenson, M.D., and Edwards, R.L.,
2007, U-series disequilibria in
Guatemalan lavas, crustal contamina-
tion, and implications for magma gen-
esis along the Central American sub-
duction zone: Journal of  Geophysical
Research, v. 112, B06205,
http://dx.doi.org/10.1029/2006JB004
589.

Walker, J.A., Singer, B.S., Jicha, B.R.,
Cameron, B.I., Carr, M.J., and Olney,
J.L., 2011, Monogenetic, behind-the-
front volcanism in southeastern
Guatemala and western El Salvador:
40Ar/39Ar ages and tectonic implica-
tions: Lithos, v. 123, p. 243–253,
http://dx.doi.org/10.1016/j.lithos.201
0.09.016.

Wallace, P.J., 2005, Volatiles in subduction
zone magmas: concentrations and
fluxes based on melt inclusions and
volcanic gas data: Journal of  Volcanol-
ogy and Geothermal Research, v. 140,
p. 217–240, http://dx.doi.org/
10.1016/j.jvolgeores.2004.07.023.

Werner, R., Hoernle, K., van den Bogaard,
P., Ranero, C., von Huene, R., and
Korich, D., 1999, Drowned 14-m.y.-
old Galápagos archipelago off  the
coast of  Costa Rica: Implications for
tectonic and evolutionary models:
Geology, v. 27, p. 499–502,
http://dx.doi.org/10.1130/0091-
7613(1999)027<0499:DMYO-
GP>2.3.CO;2.

Werner, R., Hoernle, K., Barckhausen, U.,
and Hauff, F., 2003, Geodynamic evo-
lution of  the Galápagos hot spot sys-
tem (Central East Pacific) over the
past 20 m.y.: Constraints from mor-
phology, geochemistry, and magnetic
anomalies: Geochemistry, Geophysics,
Geosystems, v. 4, 1108,
http://dx.doi.org/10.1029/2003GC00
0576.

Whattam, S.A., Montes, C., McFadden,
R.R., Cardona, A., Ramirez, D., and
Valencia, V., 2012, Age and origin of
earliest adakitic-like magmatism in
Panama: Implications for the tectonic
evolution of  the Panamanian magmat-
ic arc system: Lithos, v. 142–143, p.
226–244, http://dx.doi.org/
10.1016/j.lithos.2012.02.017.

Witham, C.S., 2005, Volcanic disasters and
incidents: A new database: Journal of
Volcanology and Geothermal
Research, v. 148, p. 191–233,
http://dx.doi.org/10.1016/j.jvolgeo-
res.2005.04.017.

Woodhead, J.D., and Johnson, R.W., 1993,

Isotopic and trace-element profiles
across the New Britain island arc,
Papua New Guinea: Contributions to
Mineralogy and Petrology, v. 113, p.
479–491, http://dx.doi.org/
10.1007/BF00698317.

Woodhead, J.D., Eggins, S.M., and John-
son, R.W., 1998, Magma genesis in the
New Britain Island Arc: Further
insights into melting and mass transfer
processes: Journal of  Petrology, v. 39,
p. 1641–1668, http://dx.doi.org/
10.1093/petroj/39.9.1641.

Woodhead, J.D., Hergt, J.M., Davidson, J.P.,
and Eggins, S.M., 2001, Hafnium iso-
tope evidence for ‘conservative’ ele-
ment mobility during subduction zone
processes: Earth and Planetary Science
Letters, v. 192, p. 331–346,
http://dx.doi.org/10.1016/S0012-
821X(01)00453-8.

Xiong, X.L., Adam, J., and Green, T.H.,
2005, Rutile stability and rutile/melt
HFSE partitioning during partial melt-
ing of  hydrous basalt: Implications for
TTG genesis: Chemical Geology, v.
218, p. 339–359, http://dx.doi.org/
10.1016/j.chemgeo.2005.01.014.

You, C.-F., Morris, J.D., Gieskes, J.M.,
Rosenbauer, R., Zheng, S.H., Xu, X.,
Ku, T.L., and Bischoff, J.L., 1994,
Mobilization of  beryllium in the sedi-
mentary column at convergent mar-
gins: Geochimica et Cosmochimica
Acta, v. 58, p. 4887–4897,
http://dx.doi.org/10.1016/0016-
7037(94)90219-4.

You, C.-F., Castillo, P.R., Gieskes, J.M.,
Chan, L.H., and Spivack, A.J., 1996,
Trace element behavior in hydrother-
mal experiments: Implications for
fluid processes at shallow depths in
subduction zones: Earth and Planetary
Science Letters, v. 140, p. 41–52,
http://dx.doi.org/10.1016/0012-
821X(96)00049-0.

Received    June 2013
Accepted as revised August 2013
First published on the web 
February 2014

74


