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SUMMARY
Optical remotely sensed data have
broad application for geological map-
ping in Canada’s North. Diverse
remote sensors and digital image pro-
cessing techniques have specific map-

ping functions, as demonstrated by
numerous examples and associated
interpretations. Moderate resolution
optical sensors are useful for discrimi-
nating rock types, whereas sensors that
offer increased spectral resolution (i.e.
hyperspectral sensors) allow the geolo-
gist to identify certain rock types (mainly
different types of  carbonates, Fe-bear-
ing rocks, sulphates and hydroxyl-
(clay-) bearing rocks) as opposed to
merely discriminating between them.
Increased spatial resolution and the
ability to visualize the earth’s surface in
stereo are now offered by a host of
optical sensors. However, the useful-
ness of  optical remote sensing for geo-
logical mapping is highly dependent on
the geologic, surficial and biophysical
environment, and bedrock predictive
mapping is most successful in areas
not obscured by thick drift and vegeta-
tion/lichen cover, which is typical of
environments proximal to coasts. In
general, predictive mapping of  surficial
materials has fewer restrictions. Optical
imagery can be enhanced in a variety
of  ways and fused with other geo-
science datasets to produce imagery
that can be visually interpreted in a
GIS environment. Computer process-
ing techniques are useful for undertak-
ing more quantitative analyses of
imagery for mapping bedrock, surficial
materials and geomorphic or glacial
features. 

SOMMAIRE
Les données recueillies par télédétec-
tion optique offrent beaucoup de pos-
sibilités pour la cartographie
géologique des régions nordiques cana-
diennes.  La diversité des télécapteurs
et des techniques de traitement
numérique des données permet la défi-
nition de fonctions de cartographie
spécifique, tel que l’illustre de nom-

breux exemples et interprétations asso-
ciées.  Des capteurs optiques de
moyenne résolution sont utiles pour
différencier les types de roche, alors
que les capteurs à plus fines résolutions
(les capteurs hyperspectraux, par ex.)
permettent au géologue de subdiviser
certains types de roches (principale-
ment différents types de carbonates,
roches ferrugineuses, roches à sulfates
et à hydroxyle (argile).  Une meilleure
résolution spatiale et la fonction de
vision stéréoscopique sont maintenant
offertes sur une gamme de capteurs
optiques.  Cela dit, l’utilité de la télédé-
tection optique pour la cartographie
géologique est fortement tributaire des
conditions de la géologie de surface et
de son environnement biophysique, le
potentiel prédictif  de la télécartogra-
phie étant maximal pour les régions
exemptes d’une couverture épaisse de
dépôts glaciaires ou d’une couverture
végétale/lichen caractéristique typique
des  environnements longeant les
côtes.  Divers procédés permettent de
rehausser  l’imagerie optique et de
réaliser des fusions avec d’autres jeux
de données géoscientifiques et de pro-
duire une imagerie visuellement inter-
prétable en environnement de SIG.
Les techniques de traitement de don-
nées par ordinateur sont utiles pour
d’autres types d’analyse quantitative
d’imagerie pour la cartographie des
matériaux de couverture du socle et
pour répertorier des formes glaciaires
et géomorphologiques.

INTRODUCTION
Canada needs efficient methods for
upgrading its geoscience knowledge
base because of  its vast territory and
world-class mineral potential. This is
primarily achieved by updating and
completing the national geological map
coverage; however, many areas in
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Canada’s north are inadequately
mapped from both a bedrock and a
surficial materials perspective. In the
past, the coverage and publication of
traditional geological paper maps was a
process spanning decades and requir-
ing years of  associated fieldwork.
Today, the need to attract investment
in the mineral resource industry
requires an alternative, more time-effi-
cient approach to geological mapping.
As a result, techniques of  Remote Pre-
dictive Mapping (RPM) have, in recent
years, been tested in pilot projects car-
ried out by Canadian national and
provincial geological surveys. Basically,
RPM is an integrated geological map-
ping approach, in which existing
datasets are re-compiled by interpreting
aerial photographs, satellite imagery
and airborne geophysical data, all in a
digital environment.  This, in combina-
tion with strategically planned field fol-
low-ups, allows for the production of
up-to-date digital geological map data-
bases, over large regions, more fre-
quently (two to three years). The digital
standardized format of  such modern
archives also provides geological infor-
mation in a structured form that facili-
tates future updates.  Generally, RPM
provides focus for regional mapping
and exploration efforts as well as first-
order geological information in areas

that are poorly mapped. A more
detailed presentation on RPM is pro-
vided by Schetselaar et al. (2007) and
Harris (2008). 

Optical remote sensing can
play a significant role in the RPM
process as many optical sensors offer-
ing high-quality data are presently avail-
able to the geologist. Much spectral
information on specific rocks and min-
erals that can aid in geological mapping
and provide information on geological
structures and surficial materials can
commonly be acquired by optical
remote sensing. This paper provides a
review of  optical remote sensing for
the mapping geologist and provides
general discussions on theoretical prin-
ciples, sensors and processing tech-
niques, using examples from Canada’s
North. 

THEORETICAL PRINCIPLES
Optical remote sensing is based on cre-
ating an image using reflected solar
energy from selected intervals of  the
electromagnetic (EM) spectrum; these
intervals range in wavelength from 0.4
to 3.0 microns (μm) and include the
visible (V), near infrared (NIR) and
short wave (or middle) infrared
(SWIR). The visible, and near infrared,
are commonly collectively referred to
as VNIR (Fig. 1).  The sun is the

source of  energy for optical remote
sensing; hence optical sensors (e.g.
LANDSAT) are passive, as no energy is
generated by the sensor in the data-
acquisition process.  Data generated
are readily available in a digital raster or
grid format in which individual image
elements called pixels contain a digital
number (DN) that is proportional to the
amount of  solar energy reflected at a
given wavelength. Remote sensing can
also be conducted in the thermal
infrared portion (TIR) of  the EM
spectrum; this involves the sensing of
emitted (as opposed to reflected) ener-
gy (heat) from the Earth at wave-
lengths from 3 to 5 μm and 8 to 14
μm. Thermal remote sensing does
offer advantages for geological map-
ping of  certain minerals, but is not dis-
cussed in this review paper.

Optical sensors are further
characterized by a series of  bands (or
channels) (Table 1), each providing a
separate image that can be viewed and
interpreted separately (Fig. 2), or com-
bined as red–green–blue (RGB) ternary
images (Fig. 3), in which  colour varia-
tions are created by the combination of
three channels.  A unique image, in
which different terrain and surficial
features are enhanced, will result for
each band, as the incoming solar ener-
gy will interact differently with the

Figure 1. Diagram of  the electromagnetic spectrum. 
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atmosphere and with the earth’s sur-
face (Fig. 4), depending on the wave-
length.

Overall, the resolving capabili-
ty of  a sensor is a combination of
spectral coverage, spectral resolution,
spatial resolution and signal-to-noise
ratio.  These characteristics of  a sensor
(both airborne and satellite-borne) are
fixed and cannot be altered post-sensor
construction. Optical sensors are typi-
cally classified as multispectral or
hyperspectral.  Multispectral sensors
have a limited number of  bands (gen-
erally less than 30), of  wider band-
width (100 nanometres (nm) or more),
whereas hyperspectral sensors are char-
acterized by many bands (30 to 100s)
of  very narrow bandwidth (3 to 20
nm). 

The number of  wavelengths
covered and the bandwidth (i.e. width
of  the channel in μm or nm) dictates
the spectral resolution of  the sensor.
Higher spectral resolution increases the
probability of  unequivocally identifying
various earth materials (such as specific
minerals or groups of  minerals defin-
ing a particular lithotype) as opposed
to simply discriminating materials or
mineral groups. More channels or
increased spectral resolution increases the
application of  the optical sensor, as

different parts of  the EM spectrum are
more suited for discriminating different
minerals.  For example, the VNIR is
particularly good at discriminating vari-
ous iron-bearing minerals whereas
clays and carbonates are better discrim-
inated in the SWIR (Fig. 5). Recently,
much emphasis has been placed on
hyperspectral remote sensing, which
simply refers to an optical sensor with
many channels. LANDSAT, for exam-
ple, has 6 channels in the VNIR and
SWIR, whereas a hyperspectral optical
sensor, such as the airborne PROBE
system has 128 channels, and the air-
borne AVRIS sensor has 256 channels
in same segment of  the EM spectrum
(see Table 2 for a summary of  selected
optical sensors).  

Optical sensors exploit the
variable reflectance of  earth features
that result from differences in surface
chemistry. Interaction of  the incoming
energy with the surface is controlled by
processes at the molecular level (e.g.
vibrations, oscillations of  molecules),
which determines whether the energy
is absorbed, reflected or transmitted,
resulting in a unique spectral signature
for the particular target.  The impor-
tance of  spectral resolution can be
clearly seen on spectral plots (Fig. 6)
for two clay minerals (alunite and

kaolinite) recorded by sensors with dif-
ferent spectral resolutions and by
ground-based spectrometers. Alunite
and kaolinite can be uniquely identified
by their spectral characteristics (posi-
tion and shape of  absorption troughs
between 2.1 and 2.2 μm) using the
AVRIS and GER sensors, which have
sufficient spectral resolution to resolve
their spectral properties. However,
because LANDSAT is characterized by
low spectral resolution (only 2 bands in
the SWIR), alunite and kaolinite may
be discriminated but cannot be unique-
ly identified or separated.

Another important considera-
tion is spatial resolution, which for opti-
cal sensors is defined by the flying
height and instantaneous field of  view.
The amount of  geological information
that can be extracted from an image is
strongly dependent on the spatial reso-
lution of  the sensor (Fig. 7). Moderate
resolution sensors such as LANDSAT
(30 m resolution for multispectral
bands, and 15 m resolution for
panchromatic bands) are useful for
regional mapping campaigns (>1:50
000 scale) and can offer information
on lithology, structure and infrastruc-
ture for field planning purposes. High-
er resolution sensing is currently
offered by satellite-borne sensors such

Table 1. Summary of  LANDSAT 7 Thematic Mapper (TM) bands and principal remote sensing applications.

Wavelength
(µm/microns)
R = Reflected

Band E = Emitted Nominal Spectral Location Principal Applications

1 0.45 – 0.52 R Blue (V) Designed for water body penetration, making it useful for coastal 
water mapping. Also useful for soil/vegetation discrimination, 
forest type mapping and cultural feature identification.

2 0.52 – 0.60 R Green (V) Designed to measure green reflectance peak of  vegetation for 
vegetation discrimination and vigour assessment. Also useful for 
cultural feature identification.

3 0.63 – 0.69 R Red (V) Designed to sense in a chlorophyll absorption region, aiding in 
plant species differentiation. Also useful for cultural feature 
identification.

4 0.76 – 0.90 R Near Useful for determining vegetation type, vigour, and biomass content. 
Infrared (NIR) For delineating water bodies, and for soil moisture discrimination.

5 1.55 – 1 .75 R Short Wave Indicative of  vegetation moisture content and soli moisture 
Infrared (SWIR) discrimination, and thermal mapping applications.

6 10.4 – 12 .5 E Thermal Infrared Useful in vegetation stress analysis, soil moisture discrimination, 
and thermal mapping (heat loss, forest fires etc) applications.

7 2.08 – 2.35 R Short Wave Useful for discrimination of  certain mineral and rock types. Also 
Infrared (SWIR) sensitive to vegetation moisture content.
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as ASTER, IRS and SPOT-5.  Parallel-
ing the recent development of  optical
sensors offering higher spectral resolu-
tion (i.e. hyperspectral) are sensors that
now offer metre to sub-metre spatial
resolution from space (e.g. IKONOS,
QUICKBIRD, GEOEYE, WORLD-
VIEW –Table 2). This imagery,
although expensive to purchase, rivals
aerial photography and often exceeds
aerial photographs in terms of  spatial
resolution and the amount of  terrain
detail that can be interpreted, as many
of  these sensors offer multispectral
capabilities. This type of  high spatial
resolution imagery is very useful for
not only detailed mapping but also for
logistical planning activities.  Addition-

ally, many of  these sensors can collect
stereo imagery. Many examples of  high
resolution sensors and moderate reso-
lution sensors can be found in Google
Earth and Microsoft Virtual Earth.

Another feature of  a sensor is
its dynamic range, or signal-to-noise ratio,
which is the amplitude of  the signal
relative to the amplitude of  the noise
of  the sensor.  The higher the signal-
to-noise (S/N) the better a signal can
be resolved and identified.  It is often
advantageous to process the data using
the full dynamic range as opposed to
compressing the data (e.g. from 32 or
16 to 8 bits), as this represents a loss
of  potentially useful information.

Optical remote sensors record

reflected solar energy; hence there is a
need to deal with complicating factors
such as the atmosphere (Fig. 4), which
can seriously degrade image quality.
Obviously, imaging is not possible in
cloudy conditions, but even in appar-
ent cloud-free conditions the effects of
the atmosphere (e.g. scattering, absorp-
tion) must be taken into account in the
imaging process.  Atmospheric correc-
tions often must be applied to quanti-
tatively interpret the data. This is espe-
cially true for optical remote sensing in
northern latitudes, where the effects of
the atmosphere are compounded by
low sun (illumination) angles, which
can have a serious effect on the quality
(low S/N) of  the resulting data. The

Figure 2. Examples of  LANDSAT TM imagery over the Shultz Lake area, Nunavut, Canada, showing individual bands (chan-
nels). a) band 1 (0.45–0.52 μm), blue wavelength; b) band 2 (0.52–0.60 μm), green wavelength; c) band 3 (0.60–0.69μm), red
wavelength; d) band 4 (0.76–0.90 μm), near infrared (NIR); e) band 5 (1.55–1.75 μm), short wave infrared (SWIR); f) band 7
(2.08–2.35 μm), SWIR. See Figure 3 for location of  imagery.
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path that solar energy takes from
source (sun) to destination (sensor) is
complex (Fig. 4), and many variables
can have a profound effect on the
resulting imagery. These effects must
be accounted for (corrected) in the
final image product, especially for
hyperspectral sensors.

It must be stressed that optical
remote sensing only collects informa-
tion on the surface of  the earth, unlike
magnetic remote sensing, for example.
As mentioned above, cloud cover will
completely reflect and/or absorb
incoming solar radiation, so this is a

limiting factor for remote sensing in
Canada’s north. However, when com-
plete coverage of  a study area is
obtained, the resulting imagery will
normally suffice for future mapping
programs, as the objects of  interest
(i.e. geology, terrain) do not change sig-
nificantly over time. Nevertheless, the
season in which the optical data are
acquired will make a significant differ-
ence in the way a given area will
appear, because of  seasonal climate
variations (e.g. snow vs. no snow, fall
senescence etc.) as well as acquisition
geometries (sun angle). Imagery

acquired during winter looks apprecia-
bly different than imagery collected in
the same area during the summer (Fig.
8). Lower winter sun angles often pro-
duce imagery that is optimal for map-
ping geological structures and glacial
and geomorphologic features because
of  the pseudo 2.5-D shadowing effect
(Fig. 8a, c).  Therefore, the season of
acquisition is as important as spectral
and spatial resolution for geological
mapping applications.

In addition to the system fac-
tors, discussed above, the most impor-
tant terrain factors that should be con-

Figure 3. Examples of  LANDSAT TM imagery over the Shultz Lake area, Nunavut, Canada. Viewing LANDSAT  multispec-
tral data using an image analysis system or GIS involves a colour display utilizing three primary colours – red, green and blue
(RGB). Therefore, three channels of  data can be displayed through these colours creating what is called a colour composite or
ternary image. a) bands 3, 2, 1 (red, green, blue, or RGB) natural colour composite; vegetated areas are green; b) bands 4, 3, 2
(RGB) false colour composite; vegetated areas are red and outcrop is cyan; c) bands 7, 5, 4 (RGB) false colour composite of
infrared bands; vegetated areas are blue and outcrop is yellow; d) bands 7, 4, 2 (RGB) false colour composite of  infrared bands
and visible bands; vegetated areas are green and outcrop is pink.
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sidered when using optical imagery for
structural, lithological and surficial
mapping include: 
1) The nature and age of  the

bedrock; 
2) The type and amount of  surficial

cover (which defines the target for
surficial mapping but is an impedi-

ment to bedrock mapping);  
3) The biophysical environment, such

as the type and amount of  vegeta-
tion (including lichen) and snow
cover; and 

4) The topography. 
Lichen can be a particularly strong
impediment to bedrock mapping using

hyperspectral remote sensing even in
areas with abundant outcrop, as lichen
can mask the diagnostic spectral signa-
tures of  the rocks and minerals
beneath (Bechtel et al. 2002).

Optical remote sensing, like
any form of  remote sensing (including
geophysics), is not an all-encompassing
tool or solution for geological map-
ping, and the success of  the specific
geological application is dependant on
both the system and the terrain factors
discussed above. Obviously, optical
remote sensing will be more successful
for lithological mapping in terrain with
good bedrock exposure and less surfi-
cial and vegetation cover, whereas sur-
ficial mapping using optical imagery
has fewer geographic, terrain and bio-
physical restrictions.

DATA
A variety of  optical sensors is available
for geological mapping, and a summa-
ry of  the characteristics of  selected
instruments is provided in Table 2.
Sensors are often broadly characterized
by their host platform; i.e. whether
they are satellite-borne or aircraft-
borne.   Satellite-borne sensors have
the advantage of  providing synoptic
coverage from a stable platform, as
there is no atmosphere to affect the
motion of  the sensor.  They are expen-
sive to build and deploy in lower earth
orbits, but once in orbit they have a
lifespan of  many years and the costs of
data acquisition per scene are generally
low.  However, satellite-borne sensors
are limited in other ways.  Given that
the orbit is fixed, and the pointing
direction is not generally adjustable,
optical sensors are very dependent on
good weather for successful data acqui-
sition.  In some areas of  the world (e.g.
the tropics and northern regions), this
is a considerable problem because of
almost perpetual cloud cover.  Further-
more, in recent years newer optical
sensors are being mounted on smaller
satellites because of  cost considera-
tions; hence, they have payload limita-
tions that may limit data storage, lead-
ing to limitations on data scene size
and spatial resolution.  HYPERION,
one of  the few satellite-borne hyper-
spectral sensors presently in orbit, has
limited spatial resolution (30 m) and
serious problems with S/N.  Generally,
for satellite-borne sensors there is a

Figure 4. Diagram showing path of  solar radiation from the sun to the ground
and reflection back to the sensor. The influences of  the atmosphere are many and
varied and include absorption, scattering, transmittance and reflection. The interac-
tion with the ground and subsequent reflection from the ground and back through
the atmosphere to the sensor is equally complex. LT (radiance) from paths 1, 3, and
5 contains relevant spectral information concerning the target whereas LP (path
radiance) from paths 2 and 4 includes diffuse sky radiance and/or radiance from
the area adjacent to the target. Total radiance (LS) = LT +LP (Jensen 2005, p. 205).
Path 1 – solar irradiance; Path 2 – diffuse sky irradiance; Path 3 – atmospheric scat-
tering; Path 4 – reflection from nearby terrain; Path 5 – reflection from nearby ter-
rain and atmosphere; Li – intrinsic radiance of  the target; Ls – total radiance; LT –
total radiance from the target toward the sensor; Lp – path radiance from multiple
scattering; E0 – solar irradiance at the top of  the atmosphere; Ed – diffuse sky irra-
diance; Tθ – atmospheric transmittance.
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trade-off  between high spatial and high
spectral resolution. For example, the
IKONOS satellites have a spatial reso-
lution of  4 m for 4 channels of  data;
in contrast, the ASTER satellite-borne
sensor has 14 available channels but a
spatial resolution of  only 15 to 90 m.

Stereo coverage from many optical
sensors (SPOT, ASTER, GeoEye,
IKONOS, QuickBird, WorldView 1
and 2) is also possible because differ-
ent view angles produce parallax differ-
ences in stereo pairs. These stereo
images can be viewed through stereo-

scopes or directly on a computer
screen by using special stereo glasses.
This greatly facilitates the geological
interpretation process.

Airborne sensors are typically
mounted on small aircraft and engaged
for project or site-specific acquisitions.
Hence, the cost per scene is much
higher, and costs will vary across the
globe because of  varying mobiliza-
tion/demobilization costs.  Aircraft
generally fly close to the surface of  the
earth (less than 10 km), hence airborne
data are often characterized by much
better spatial resolution (3 to 10 m pix-
els or less); however, this is changing
rapidly with the advent of  a new gen-
eration of  satellite-borne sensors that
have extremely high spatial resolution.
Acquisition of  data from hyperspectral
sensors having broad spectral coverage
(e.g. VNIR + SWIR) and high spatial
and spectral resolution is, therefore,
possible with airborne platforms.  The
biggest challenge with airborne hyper-
spectral data is correcting and process-
ing the large volume of  data generated.

Error Correction and Registration 
Raw, remotely sensed optical data
(Level 0), once collected, is typically
corrected to Level 1 data, which
accommodates known radiometric and
geometric errors. These data are gener-
ally delivered as a ‘path’ image, which
is an image that is orthogonal to the
path over which it was collected, but
has not been adjusted to represent its
true position over the surface of  the
earth (georectification).  A number of
Level 1 subtypes exist, and vary
depending on the sensor.  For example,
ASTER L1A data has the Level 0 to
Level 1 corrections calculated, but they
are only appended, not applied, where-
as for ASTER L1B data, the correc-
tions have been applied.  For LAND-
SAT imagery, various data products are
available, including L1G, in which the
data are orthorectified using a simple
Geotopo global Digital Elevation
Model (DEM).  Typically, such
labelling is employed more for imagery
acquired from satellite-borne sensors;
variations in terminology may also be
encountered.

Post-processing of  the data
past Level 1 is often required, depend-
ing on the sensor and the application
of  the data.  Most sensors, even com-

Figure 5. Spectral curves of  various ground features. a) Typical spectral curves for
vegetation, dry soil and wet soil from the visible (V) to short-wave infrared (SWIR)
segment of  the EM spectrum. The channel positions of  two commonly used opti-
cal satellite systems (LANDSAT 7 TM and SPOT) are also indicated. b) Typical
spectra for various minerals from the V to SWIR segment of  the EM spectrum
(measured in the lab using a reflectance spectrometer). The position, shape and
depth of  the various reflectance peaks and troughs (absorption bands) uniquely
define the respective minerals. 
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mercial ones (e.g. IKONOS, QUICK-
BIRD), deliver a product formatted
with digital numbers (DN).  For non-
quantitative applications the data could
be used directly, but in most cases it is
preferable to convert digital numbers
using the following corrections:
• Gains and offsets or unit conver-

sion coefficients are applied to

convert the data from digital num-
ber (DN) to radiance
(W/m2/sr/µm: Watts/square
metre/steradian/specific frequency
in hertz);

• Atmospheric corrections to con-
vert the data from radiance to rela-
tive reflectance or at-surface
reflectance.

For some sensors, particularly
those that are categorized as ‘research
sensors’ (e.g. ASTER, HYPERION),
many other corrections are necessary
to address errors inherent in the instru-
ments. For most applications, only
major sources of  instrument error will
require correction, whereas for others
more precise correction will be

Table 2. Characteristics of  selected optical sensors.

No. Spectral Spatial
Sensor Name Type Channels Spectral Range Resolution Resolution Scale

LANDSAT 7 Optical – 8 (3-V; 1- 0.4 to 2.35 μm, 65 – 260 nm and 30 m pixels (60 Regional
Multispectral; NIR; 2-MIR; and 10.4 - 12.5 380 nm (pan) m TIR; 15 m
Satellite-borne 1-TIR; 1-Pan μm Pan)

SPOT 5 Optical – 5 (2-V; 1- .48- 1.75 μm Pan – 2.5 m Regional -
Multispectral; NIR; 1- (super mode); Local
Satellite-borne SWIR; 1- Mss – 10 m;

Pan) SWIR – 20 m
ASTER Optical – 14 (3-V; 6 0.52 – 0.86 μm; 60 – 100 nm; 15, 30, and 90 m Regional

Multispectral; SWIR; 5- 1.60 – 2.43 μm; 40 – 70 nm; pixels
Satellite-borne TIR) 8.125 – 11.65 350 – nm

μm
QuickBird Optical – 5 (3-V; 1 .45 - .9 μm Pan – 0.6 m; Local

Multispectral; NIR; 1-Pan) Mss – 2, 44 m
Satellite-borne

IKONOS Optical – 4 (3-V; 1 0.445 – 0.853 66 – 96 nm 4 m pixels Local
Multispectral; NIR) μm

WorldView1 Optical – 1-Pan Pan .45 – 0.8 0.5 m Local
Panchromatic μm
only; Satellite-

borne
WorldView2 Optical – 9 (1-Pan; 8- Pan 45 – 0.8 0.5 m Local

Multispectral; Mss; 6-V; 2- μm; VNIR – 0.4
Satellite-borne NIR) 1.0 μm

HYPERION Optical – 220 0.35 – 2.5 μm ~ 15 nm 30 m pixels Regional
Hyperspectral;
Satellite-borne

CASI Optical – 100 0.4 – 1.1 μm ~ 20 nm up to 1.23 m Local
Hyperspectral; pixels cross-

Airborne track
SFSI Optical – 234 1.2 – 2.4 μm ~10 nm depends on Local

Hyperspectral; altitude flown
Airborne

HyMap Optical – 228 0.4 – 2.5 μm ~ 20 nm typically 3 – 10 Local
Hyperspectral; m pixels,

Airborne depends on
altitude flown

PROBE-1 Optical – 226 0.4 – 2.5 μm ~ 20 nm typically 3 – 10 Local
Hyperspectral; m pixels,

Airborne depends on
altitude flown

Note: MIR = mid-infrared; NIR = near infrared; SWIR = short-wave infrared; TIR = thermal infrared; V = visible
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required.  Most hyperspectral datasets
will require accurate atmospheric cor-
rection, as the data are often used to
generate precise spectral signatures of
various Earth features. 

A number of  commercial
software products are available for pre-
cise and detailed atmospheric correc-
tion, including ACORN and FLAASH.
These are more widely applied to
hyperspectral data, but may also be
used for multispectral data (e.g.
ASTER).  Simpler correction tech-
niques than those employed by the
above packages include Internal Aver-
age Relative Reflectance, Flat Field Cal-
ibration, and Empirical Line Correc-
tion.  These simpler techniques, which
generate relative, as opposed to
absolute reflectances, are often appro-

priate for multispectral sensors.  A
comprehensive summary of  atmos-
pheric correction methods is provided
by the United States Geological Survey
(USGS 2003).

SELECTED OPTICAL SENSORS USE-
FUL FOR RPM 
A wide range of  optical sensors is
available for use, and for the inexperi-
enced user it can be a daunting task
choosing the sensor that is most
appropriate for a given geological
application.  Hence, Table 2 presents a
summary of  the sensors best suited to
RPM applications. 

High Spatial Resolution Satellite-
borne Sensors
IKONOS is a commercial satellite that

was deployed in a sun-synchronous
orbit (651 km) in 1999 by Space Imag-
ing (now owned by GeoEye).  It has
two sensors featuring extremely high
spatial resolution: a 403 nm panchro-
matic band sensor having 1 m resolu-
tion, and a multispectral sensor with 4
bands (MS-1 to MS-4 at blue, green,
red and near infrared) at 4 m resolu-
tion (at 26° off-nadir; slightly better
resolution at nadir). Images can be
ordered from either telescope, or both,
and combinations of  products are also
available including orthorectified prod-
ucts.

QUICKBIRD is also commer-
cially operated, and was launched by
Digital Globe in 2001. It is in a syn-
chronous orbit, slightly lower in alti-
tude than IKONOS (450 km), with a 3
to 7 day revisit cycle. It has two sen-
sors, similar to IKONOS, but has
slightly higher spatial resolution. The
550 nm panchromatic band sensor
provides imagery with a spatial resolu-
tion of  0.61 m (at nadir), and the 4
band multispectral sensor (blue, green,
red and near infrared) provides 2.44 m
resolution (also at nadir).  As with
IKONOS, a variety of  different image
products is available.

The strength of  IKONOS
and QUICKBIRD lies in their ability
to generate high-quality, high-resolu-
tion imagery that can, to some degree,
replace the use of  aerial photographs.
IKONOS has an image swath of  11.3
km (nadir), and 13.8 km (26° off-
nadir), whereas QUICKBIRD has a
slightly larger image swath of  16.5 km
(nadir).  IKONOS and QUICKBIRD
images are particularly useful for initial
site surveys and field work planning
and mapping. Although the imagery
from both satellites is of  very high
quality, it is quite expensive: acquisition
of  a new scene costs more than $3K.
A more cost-effective solution is to
order previously imaged scenes con-
tained in the data archive for each
instrument, at a cost of  ~ $1K or less.

GeoEye, launched in Septem-
ber 2008, acquires panchromatic data
at a spatial resolution of  0.41 m and
multispectral data at a resolution of
1.65 m. Both image types can be col-
lected in stereo. A global repeat cycle
of  3 days allows collection of  over 350
000 km2 of  pan-sharpened imagery on
a daily basis. Digital Globe’s World-

Figure 6. Plots showing different spectral curves over the SWIR portion of  the
EM spectrum for the clay minerals alunite and kaolinite as a function of  different
spectral resolutions. a) Spectrum for alunite derived from the airborne AVRIS sys-
tem (256 channels), ground based GER (244 channels at a nominal 10 nm band-
width), Geoscan (24 channels) and LANDSAT TM (2 channels); b) same as above
for kaolinite. 



View 1 satellite launched in 2007 offers
high quality panchromatic imagery at a
resolution of  0.5 m with a repeat cycle
of  1.7 days, allowing for the collection
of  up to 750 000 km2 of  imagery per
day. Worldview 2 offers both panchro-
matic imagery and multispectral
imagery in the VNIR range at a spatial
resolution of  0.5 m.

The SPOT series of  satellites
has been operational since 1986 and
comprises four satellites culminating in
SPOT-5, launched in May 2002. The
sensors’ oblique viewing capability (i.e.
a steerable beam) offers frequent imag-
ing of  a given geographic area as well
as stereoscopic viewing. SPOT-5 com-
prises two panchromatic channels char-

acterized by 5 m spatial resolution,
three channels in the VNIR with 10 m
pixels, and one SWIR channel with a
20 m pixel (Table 2). The two panchro-
matic channels can be combined to
generate a 2.5 m-resolution product
(super-mode) that is ideal for mapping
and logistical applications. The super
pan-mode can be used as a replace-
ment for aerial photographs because it
has sufficiently high spatial resolution
and is affordable for use in hand-held
mapping devices. This imagery has
been used successfully by the Geologi-
cal Survey of  Canada for a number of
regional mapping projects.

Moderate Spatial Resolution 
Satellite-borne Sensors
LANDSAT 7 ETM+ is the latest in a
series of  LANDSAT satellites (LAND-
SAT 1 to 5 and 7) deployed by the US
Government, in conjunction with
NASA, the US Geological Survey and
the Jet Propulsion Laboratory. The
still-operational LANDSAT 5 was fol-
lowed by LANDSAT 7, which was
deployed in April 1999 in a sun-syn-
chronous orbit at an altitude of  705
km.  It has a repeat cycle of  16 days,
and a nominal equatorial crossing of
approximately 10 am local time (i.e. at
the location where the crossing
occurs). 

LANDSAT 7 has an advanced
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Figure 7. Examples of  imagery featuring different spatial resolutions, Ekati diamond mine, Northwest Territories, Canada. a)
LANDSAT TM 3-band colour ternary composite (30 m resolution); b) IKONOS multi-spectral image (3.2 m resolution) show-
ing an obvious difference in detail as a function of  greater spatial resolution. High resolution imagery such as IKONOS,
QUICKBIRD, GeoEye and WorldView I and II are valuable for field planning activities and may be used in hand-held field
computers as a substitute for aerial photographs in some cases. These images can also be collected in stereo, which greatly facil-
itates geological interpretation.



version of  the Thematic Mapper (TM)
sensor that was deployed on LAND-
SAT 5, called Enhanced Thematic
Mapper Plus (ETM+).  The ETM+
sensor comprises three different tele-
scopes, covering a wide range of  the
EM spectrum.  There are four chan-
nels in the VNIR (1 to 4; blue, green,
red and near infrared), two channels in
the SWIR (5 and 7), one channel in the
thermal infrared (TIR; channel 6, with
data available at low and high gain),
and one panchromatic channel (8).
Channel 8 has a spatial resolution of

15 m, channels 1 to 5 and 7 have a
spatial resolution of  30 m, and the
thermal channel (6) has a spatial reso-
lution of  60 m.

The LANDSAT series of
satellites provided the first global, opti-
cal multispectral imagery suitable for
geological applications, and has been
instrumental in introducing remote
sensing as an exploration and mapping
tool to the geological community
world-wide. The next generation of
LANDSAT satellites (LANDSAT 8),
termed the LANDSAT Data Continu-

ity Mission, has a planned launch
sometime in 2011.  

The ASTER sensor is one of
five different sensors installed on the
Terra Satellite, which was produced
and launched by a joint venture
(TERRA) involving the US Govern-
ment (NASA), and the Japanese Gov-
ernment’s Ministry of  Economy Trade
and Industry.  ASTER is the flagship
sensor on TERRA (the others being
CERES, MERIS, MODIS, and MOP-
PET), and was designed as the first
stage of  a series of  new Earth Obser-
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Figure 8. Examples of  summer and winter LANDSAT imagery in the Flin Flon area, Manitoba, Canada. a) LANDSAT band
4 near-infrared (NIR) winter image (white is snow); note pseudo-2.5-D shadowing effect caused by the low sun angle; b)
LANDSAT band 4 (NIR) summer image; c) LANDSAT colour composite ternary winter image (bands 7, 4, 1 – RGB); d)
LANDSAT colour composite ternary summer image (bands 7, 4, 1 – RGB). Source: David Viljoen, Geological Survey of  Cana-
da.



vation Satellites (EOS) by the US and
International partners.  TERRA was
launched into a sun-synchronous orbit
at Vandenburg Air Force Base in
December 1999, and first started
acquiring data on February 24, 2000.
TERRA has a 16-day repeat cycle, and
an equatorial crossing at approximately
10:30 am local time. 

The main objective of  ASTER
is to assist in improving the under-
standing of  local- and regional-scale
processes on, or near, the Earth’s sur-
face and lower atmosphere. ASTER is
a multispectral sensor with a total of
14 channels acquired by four individual
telescopes.  There are three channels in
the VNIR (1, 2, 3N), a second, back-
looking telescope with a single band in
the VNIR (3B), six channels in the
SWIR (4, 5, 6, 7, 8, 9), and five chan-
nels in the TIR (10, 11, 12, 13, 14).
Note that the VNIR does not have the
blue band found in LANDSAT.  The
VNIR telescopes have a spatial resolu-
tion of  15 m, slightly better than
LANDSAT’s 30 m, and the SWIR and
TIR have a spatial resolution of  30 and
90 m, respectively.  Although ASTER
has limited spatial and spectral resolu-
tion when compared to a hyperspectral
sensor, it clearly provides an opportu-
nity to carry out spectral mapping on a
regional scale (e.g. 1:250 000), and has
been shown in some applications to
provide good results at scales of  1:50
000 or larger (Cudahy 2002; Oliver and
van der Wielen 2006).  

ASTER has also been evaluat-
ed directly as a tool for RPM, with suc-
cessful results (Wickert et al. 2005).  It
is a very useful sensor for RPM as it
offers an increased number of  chan-
nels of  narrower bandwidth in the
SWIR and TIR compared to LAND-
SAT (Table 2), hence it has an
increased multispectral mapping capa-
bility.  The narrower bandwidth makes
it possible to resolve spectral responses
in the SWIR that are grouped into two
broad bands in LANDSAT.  Thus,
ASTER can distinguish different min-
eral groups (e.g. different groups of
clays) that may be associated with spe-
cific lithotypes or alteration zones
characteristic of  certain types of  min-
eral deposits. Although ASTER falls
far short of  the capability of  hyper-
spectral sensors in its ability to differ-
entiate mineral species (Fig. 6), the

global availability of  ASTER as a satel-
lite-borne platform and its low cost as
a research level satellite (US $80/scene)
makes it an excellent exploration and
mapping tool for geological applica-
tions.  Further details on the use of
ASTER for geological mapping can be
found in Wickert et al. (2005).

Hyperspectral Satellite-borne 
Sensors 
HYPERION, the first publicly avail-
able satellite-borne hyperspectral sen-
sor, was launched by the USGS in
2000.  It was built as a satellite version
of  the airborne TRWIS sensor.
HYPERION is a ‘pushbroom’ hyper-
spectral sensor that has 220 channels
ranging from 0.35 to 2.5 µm; it has
very narrow band-widths (10 nm), and
a spatial resolution of  30 m (note: a
‘pushbroom’ sensor comprises a line of
sensors arranged perpendicular to the
flight direction of  the satellite).
HYPERION consists of  two spec-
trometers, one for the VNIR
(357–1055 nm), and the second for the
SWIR (851–2576 nm). Of  the 220
channels, only 180 can be used,
because of  spectral overlap and mis-
alignment or missing data.  Overall, the
narrow bandwidth provides for excel-
lent spectral resolution, providing the
capability to discriminate between dif-
ferent minerals spectrally, even though
the pixel size is the same as LAND-
SAT (30 m).  With its increased chan-
nels and associated high spectral reso-
lution, this sensor is a major techno-

logical step-up from multispectral sen-
sors, as the sensor is capable of  map-
ping mineral end members.

Unfortunately, HYPERION
has a very low S/N relative to that of  a
typical airborne sensor such as HyMap.
The S/N for HYPERION is on the
order of  50:1, and is particularly low
over the SWIR part of  the EM spec-
trum.  This contrasts with a reported
S/N for HyMap of  >500:1.  This
means that more subtle spectral
absorption features will be more diffi-
cult to differentiate in HYPERION
data, and that good illumination condi-
tions (little to no cloud, high sun angle)
are of  particular importance for the
acquisition of  this imagery.  

Over the next 5 to 10 years,
several countries have plans for the
development and launch of  satellite-
borne hyperspectral sensors (Table 3).
This will obviously be beneficial for
the spectral differentiation of  rock
types and minerals; however, spatial
resolution may be a limiting factor for
very detailed (mine-scale) geological
studies.

Hyperspectral Airborne Sensors
Several airborne hyperspectral sensors
(Table 2) have provided limited cover-
age of  the Canadian landmass. Areas
for which hyperspectral data have been
acquired include parts of  Baffin Island
(available through the Geological Sur-
vey of  Canada and the Canada Centre
of  Remote Sensing – CCRS) and the
Sudbury Basin in Ontario (available
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Table 3. Planned satellite-borne hyperspectral sensors.

SENSOR EnMAP HyspIRI HYPER-X PRISMA

Proposed End 2012 2014 2013 2011
Launch

Number of 1 2 2 2
Instruments

Bandwidth 420–2450 nm 380–2400 nm Hyper + 400–2500 nm
Coverage Hyper + TIR multispectral Hyper; 400–700

nm Pan
Spatial 30 m 60 m 15–30 m 20–30 m
Resolution Hyper; 5 m Pan
Spectral 5 nm 10 nm ? 10 nm
Resolution

Signal-to- > 500:1 Good High ?
Noise

Swath 5 * 30 km 145 km 30 km 30–60 km



through CCRS). 
The SFSI sensor is a grating-

based, ‘pushbroom’ imaging spectrom-
eter.  It has 234 channels that cover the
1219–2437 nm range, an average spec-
tral sampling interval of  5.2 nm, and a
nominal bandwidth of  10 nm (Neville
et al. 2003).  The CASI sensor acquires
data from up to 228 spectral channels
in the 400–1000 nm range. The AVRIS
sensor is operated by NASA’s Jet
Propulsion Laboratory and collects 224
channels between 400 and 2500 nm.
The PROBE sensor developed by
Earth Search Sciences Inc. collects 128
channels in the 400–2500 nm range;
the PROBE-1 can be flown over vari-
ous altitudes, providing spatial resolu-
tion of  1 to 10 m and swath widths
from 1 to 6 km. 

DATA INTERPRETATION FOR 
GEOLOGICAL APPLICATIONS

Bedrock Structure
Optical imagery can be used to assist
in mapping geological structures; for
example, lineament mapping on
remotely sensed data has long been
undertaken by geoscientists (Harris et
al. 1987).  However, the art of  linea-
ment mapping can be taken further by
employing simple principles of  visual
interpretation (especially pattern, shape
and context), in concert with field
observations (if  available), and espe-
cially the inspection of  magnetic data
to add some measure of  geological cal-
ibration to the lineament interpretation
(Fig. 9a, b). 

Because of  lower sun angles,
winter imagery offers pseudo 3-D
enhancement of  terrain features that
may be useful for structural interpreta-
tions (Fig. 8).  Fall imagery is often a
preferred choice in boreal forest terrain
because of  maximum senescence-relat-
ed differences in vegetation, which can,
in turn, enhance some geological struc-
tures.  However, above the tree line,
summer imagery captured in the
absence of  significant snow cover may
be preferred.  If  LANDSAT data are
to be used, particularly if  free data are
preferred, then the geologist may not
have a choice and will have to use what
is available on the Canadian Geogratis
web site [http://geogratis.cgdi.gc.ca/].

The nature of  the bedrock
(geological environment) is obviously

of  particular importance, as much
more structural information can usual-
ly be extracted from older, complexly
deformed rocks than from younger,
flat-lying sedimentary rocks (see Fig. 5-
11 in Harris and Wickert 2008).  The
amount of  structural information that
can be interpreted from optical
imagery is also affected by the type,
thickness and extent of  surficial cover
and vegetation, as mentioned previous-
ly. The following RPM application in
structural interpretation, which devel-
oped from the Southwestern Baffin
Integrated Geosciences project (St-
Onge et al. 2007; Sanborn-Barrie et al.
2008) illustrates the importance of
geological environment with respect to
the application of  optical remote sens-
ing data. A pattern of  ductile form
lines and folds was derived from an
enhanced LANDSAT colour compos-
ite image of  the Foxe Peninsula (Fig.
9a); two areas with relatively few inter-
preted structures emerge in the inter-
pretation (Fig. 9b): in the west, a thick
layer of  glacial till obscures underlying
bedrock structures, whereas in the
northeast, flat-lying Paleozoic sedimen-
tary rocks offer little structural infor-
mation (Fig. 9b). The form lines inter-
preted from LANDSAT data represent
tectonic trend lines derived from a
variety of  structures, including bedding
and three generations of  foliation. In
some cases, the trend lines highlight
fold interference patterns, which are
expressed as circular to ovoid struc-
tures that are also delineated as mag-
netically variable units on total field
and vertical gradient data (not shown).
The interpreted trend lines allow
southwestern Baffin Island to be divid-
ed into five major zones (Fig. 9b).
Zone 1 is characterized by an absence
of  trend information and corresponds
to flat-lying Paleozoic (Ordovician)
carbonate rocks devoid of  mappable
structures. Zone 2 comprises magneti-
cally low-relief  supracrustal rocks of
the Lake Harbour Group, which are
intruded by magnetite-bearing plutonic
rocks and subsequently folded. Zone 3
represents a corridor of  uniformly
high magnetic intensity with variable
form-patterns comprising ‘straight’
zones and smaller scale folds. Zone 4
is characterized by straight northwest-
trending form lines reflecting tectonic
modification by a major dextral tran-

scurrent shear zone (Sanborn-Barrie et
al. 2008). Zone 5 correlates with
supracrustal rocks of  the Lona Bay
and Schooner Harbour sequences
(Sanborn-Barrie et al. 2008) and is
characterized by a number of  north-
east-plunging folds.

Close inspection of  the
LANDSAT data (Fig. 10) reveals that
many folds can also be traced on the
basis of  drainage and topographic pat-
terns (e.g. distribution of  bedrock
ridges). In fact, correlation between
form lines interpreted on the LAND-
SAT and magnetic data (not shown) is
extremely high, indicating that, in this
area, both datasets offer similar infor-
mation and can act as proxies for each
other. Corroboration of  remotely pre-
dicted ductile structures with structural
measurements made in the field high-
lights the value of  LANDSAT for
regional geological interpretation. More
details on this subject can be found in
Harris et al. (2008).

Figure 11 shows LANDSAT
and ASTER images and associated
interpretations for a small area in the
southern Foxe Peninsula, Baffin Island.
The LANDSAT colour composite
image (Fig. 11a) is somewhat blocky in
appearance and groups of  pixels can
be seen. However, the plunging syn-
form is clearly visible and form lines
can be delineated (Fig. 11c), outlining
the local structural setting. LANDSAT
has a spatial resolution (pixel size) of
30 m and at scales less than 1:100 000
can be difficult to interpret, although
in this case the well-defined synform
remains recognizable. The ASTER
image (Fig. 11b), which has a resolu-
tion of  15 m, provides a clearer rendi-
tion of  this structure. 

Figure 12 presents a series of
QUICKBIRD images of  the same area
as Figure 11. The QUICKBIRD
imagery (Fig. 12a to c) provides excep-
tional structural detail (see Fig. 13b for
structural interpretation) exceeding that
of  an aerial photograph (Fig. 12d). In
the higher resolution image (Fig. 12a),
a general indication of  the northward
dip of  the southern limb of  the syn-
form can be ascertained by strong
reflections from the scarp slopes facing
the sun (south) and less reflection
along the dip slopes (see location A on
Fig. 12a). The geological structures on
the predictive map (Fig. 13b) compare
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Figure 9. a) LANDSAT false colour composite ternary image of  Foxe Peninsula, southwestern Baffin Island with red, green,
and blue corresponding to bands 7, 4, and 2 ( image provided by the Canada Centre for Remote Sensing); b) structural interpre-
tation of  the LANDSAT data showing a five-fold subdivision of  the bedrock geology (see text for discussion).
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Figure 10. LANDSAT and associated interpretations of  a small part of  the Foxe Peninsula, Baffin Island (see Fig. 9a for loca-
tion). a) LANDSAT  false colour composite ternary image (bands 5, 4, 2 – RGB); b) structural interpretation of  the LANDSAT
image. Zones are those portrayed in Figure 9.



favourably with the mapped geology
(St-Onge et al. 2007; Fig. 13a) when
comparing form lines and fold axes.
However, once again, field work is
required to fine tune the predictions
and unequivocally identify various geo-
logical structures.

Landforms and Glacial Structure
Optical imagery can provide useful
information on terrain morphology,
glacial landforms and streamlined land-
forms that reflect glacial dispersal
directions (Fig. 14).  The degree of
topographic/morphologic enhance-

ment will depend on season (see
above) and latitude, as variations in
both factors will result in different sun
elevation and azimuth angles.  Combin-
ing (fusing) these data with topograph-
ic information (i.e. a DEM) often
results in a superior image (Fig. 14c) in
which glacial landforms are clearly
seen. The use of  a DEM in conjunc-
tion with LANDSAT 7 data for map-
ping glacial landforms is well illustrated
in the Glacial Flow-line Map of  Cana-
da (Shaw et al. 2010).

Visual photogeologic interpre-
tation of  enhanced imagery is com-

monly undertaken to produce predic-
tive structural maps as shown in Fig-
ures 9 to 14. However, automatic and
semi-automatic techniques can also be
employed to extract linear features (e.g.
glacial lineaments), although this
approach entails input from the geolo-
gist to screen out non-geological linea-
ments (Masuda et al. 1991; Raghavan
et al. 1993; Karnieli et al. 1996).

Bedrock Characterization
The Canadian far north has good
bedrock exposure, which makes rela-
tively accurate mapping of  rock types
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Figure 11. Lower and higher resolution imagery and interpre-
tations for a small area of  the Foxe Peninsula, Baffin Island. See
Figure 10a for location. a) LANDSAT false colour composite
ternary image (bands 7, 4, 2 – RGB); b) ASTER VNIR false
colour composite ternary image (bands 3, 2, 1 – RGB); c) struc-
tural interpretation derived from the LANDSAT image. 



possible, certainly more so than in
boreal forest environments farther
south. However, in general, mapping
bedrock from optical imagery in north-
ern Canada remains problematic
because of  surficial and vegetation
cover. For example, lichen cover tends

to dampen spectral signatures of  rocks
and sometimes masks important fea-
tures of  individual spectra.  Further-
more, optical sensors respond to sur-
face characteristics only, as previously
discussed; therefore, spectral signatures
often reflect the weathered residue

from the underlying bedrock as
opposed to the mineral constituents of
the rocks themselves.  In some cases,
this actually facilitates the discrimina-
tion of  the rocks, which may be distin-
guished by differences in associated
iron and clay weathering products.
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Figure 12. Various high resolution images over the same area as Figure 11 (see Fig. 10a for location). a) QUICKBIRD
panchromatic (black and white) image; b) QUICKBIRD multi-spectral false colour composite ternary image (RGB – near
infrared, green and blue wavelengths); c) fused panchromatic and MSS QUICKBIRD colour composite ternary image; d) aerial
photograph. Note that the plunging fold is much more evident on the high-resolution QUICKBIRD imagery than on the aerial
photo.



Many rocks cannot be distinguished
solely on the basis of  their non-weath-
ered spectral profiles, so this is a viable
and valuable approach. In other cases,
vegetation cover can be used as a
proxy for the underlying bedrock, as
certain plant species will grow prefer-
entially over certain rock types, or else
the weathered bedrock residue has not
been transported by glaciers and there-
fore reflects, at least in part, the
bedrock composition. An approach
often utilized before attempting to
identify and map rock types from opti-
cal data is to mask out areas of  surfi-
cial and vegetation cover using image-
analysis techniques and focusing the
analysis on the exposed bedrock or
weathered residual material.

Regional differences in litho-
types (e.g. basement vs. supracrustal
rocks) can often be detected by moder-
ate resolution sensors, such as LAND-
SAT, by employing various combina-

tions of  bands displayed as colour
composite ternary images.  On the
LANDSAT colour composite image of
southeastern Baffin Island (Fig. 15a),
note that supracrustal rocks, which
define broad doubly plunging folds, are
clearly displayed in shades of  blue and
cyan, whereas basement rocks are dis-
played in shades of  green. Despite the
low spectral resolution of  LANDSAT
data, these rock units are very distinct
from a spectral point of  view, allowing
regional mapping of  major rock units
and fold patterns. LANDSAT data are
especially useful for mapping carbon-
ate-bearing rocks because of  their
unique signature (even at low spectral
resolutions) in the SWIR portion of
the EM spectrum (Fig. 15a). 

Higher spatial and spectral res-
olution sensors (including hyperspec-
tral) can obviously offer more detailed
information on rock types, simply as a
function of  increased resolution.

ASTER, for example, offers better
spectral resolution in the SWIR than
LANDSAT (see Table 2 and Fig. 11b).
A number of  examples of  the use of
ASTER for northern mapping are
shown in Harris and Wickert (2008).

The SPOT-5 data, although
characterized by lower spectral resolu-
tion than ASTER or LANDSAT, does
offer higher spatial resolution (Table 1)
and is valuable not only for lithological
mapping but also general logistical
planning and field traversing (see sec-
tion on Field Planning and Logistics
below). Figure 16 shows various
enhanced SPOT-5 images from Cum-
berland Peninsula, Nunavut, that illus-
trate the utility of  these multispectral
data for differentiating basement and
supracrustal rocks. 

The very high spatial and
moderate spectral resolution in the
VNIR, together with stereo capability,
make imagery captured by GeoEye
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Figure 13. a) Geological map (St-Onge et al. 2007) of  the area shown in Figures 11 and 12; b) structural interpretation derived
from QUICKBIRD images (Fig. 12); note differences and similarities between interpreted and mapped geology.



(and other high-resolution optical sen-
sors) ideal for 2-D and 3-D feature
extraction and analysis (Fig. 17). For
example, a predictive bedrock geology
map interpreted from four stereo Geo-
Eye map pairs (Fig. 17c) presents much
more detailed information than the
existing 1:500 000 scale geological map
of  the area (Fig. 17d; Thorsteinsson
and Tozer 1962; Hulbert et al. 2005).
Aided by recent reconnaissance-level
field observations, one of  the main
map units (Wynniatt Formation) was
divided into four sub-units (members)
that are recognized throughout most of

the map area. As well, an important
distinction can be made between Pro-
terozoic sedimentary strata and uncon-
formably overlying inter-layered sand-
stones and carbonates of  Cambro-
Ordovician age. GeoEye colour com-
posite images provide valuable infor-
mation about structural and lithological
features, and are an excellent resource
for bedrock mapping in areas not cov-
ered by surficial material (Fig. 18). 

Hyperspectral remote sensors
offer significant advantages over more
traditional optical remote sensors
(LANDSAT and SPOT) for geological

mapping. Increased spectral resolution
allows for actual identification of  spe-
cific minerals (Figs. 5 and 6) and rock
types, as opposed to simple discrimina-
tion. The main focus of  hyperspectral
research for geological applications has
been the identification of  specific min-
erals, pure concentrations of  which are
referred to as spectral end members.
However, the Arctic, because of  the
numerous factors discussed above, may
represent an environment in which
pure end members that relate to specif-
ic minerals are difficult, if  not impossi-
ble, to obtain. Nevertheless, it may be
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Figure 14. Imagery useful for mapping glacial features, Alberta, Canada. a) Shaded-relief   digital elevation model (DEM)
derived from SRTM 3 arc-second Space Shuttle data; shading is from the northwest; b) LANDSAT  7, 4, 2 (RGB) colour com-
posite ternary image of  the same area; c) fused (combined) DEM and LANDSAT  images; d) interpretation of  glacial features
and landforms. The shaded-relief  DEM clearly portrays glacial landforms, and when combined with LANDSAT data it offers a
unique image in which both topographic and spectral characteristics of  the landscape are evident, allowing for a detailed inter-
pretation of  glacial flow features and stream-lined landforms (see Shaw et al. 2010 for more details).



possible to obtain spectral signatures
of  minerals that typically occur in a
certain rock or formation, and to iso-
late differences in spectra related to the
presence or absence of  a specific min-
eral (e.g. Fe- and clay-bearing minerals).
Significant research in desert areas of
the world has shown that a wide range
of  minerals, particularly clays, hydroxyl
group minerals and carbonates, can be
uniquely identified and mapped
through spectral analysis (see van der
Meer and de Jong 2001) within the
VNIR and SWIR regions of  the EM
spectrum. Much less research has been
conducted in cold desert environments
typical of  Canada’s north.  However,
recent work, using airborne hyperspec-
tral (PROBE) data in the Canadian
Arctic, indicates that dolostones can be
uniquely separated from limestones
(Budkewitsch et al. 2000) and that

metasedimentary, metatonalitic and
metagabbroic rocks can be discriminat-
ed in certain geological environments
(Harris et al. 2005; 2006a, b; 2010). A
study by Bowers and Rowen (1996),
using hyperspectral data acquired by
the Jet Propulsion Laboratory’s AVRIS
sensor over the Ice River alkaline com-
plex of  British Columbia, also indicat-
ed that several bedrock types could be
discriminated and identified.

Figure 19 is an enhanced
hyperspectral image derived from air-
borne PROBE data acquired over
southeastern Baffin Island during
August 2000. The various colours on
the enhanced image correlate with dif-
ferent rock units, and dark blue areas
represent vegetation that grows prefer-
entially over metagabbroic rocks (the
vegetation in this area can therefore be
used as a mapping proxy). The hyper-

spectral imagery was enhanced using a
Minimum Noise Fraction transform, a
technique for reducing the number of
channels (in this case 128) to a smaller
number that contains most of  the
information content of  the entire
dataset. Harris et al. (2005) provide
more details on how this airborne
hyperspectral dataset was useful for
lithological mapping in southeastern
Baffin Island.

Lichen cover can be problem-
atic, as it tends to dampen spectral sig-
natures of  rocks (Fig. 20) and some-
times masks important features of
individual spectra, as previously stated.
Again, hyperspectral sensors respond
to surface characteristics only; there-
fore, spectral signatures often reflect
the weathered residue from the under-
lying bedrock as opposed to the miner-
al constituents of  the rocks themselves.
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Figure 15. a) LANDSAT 7, 4, 3 (RGB) colour composite ternary image of  southeastern Baffin Island; b) associated geology
map (St-Onge et al. 1998). A small outcrop of  carbonate rocks can be seen (dark magenta at area A).
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Figure 16. Images from Cumberland Peninsula, Nunavut, illustrate the utility of  SPOT-5 multispectral data for differentiating
metasedimentary rocks, mafic dykes and ultramafic intrusions from surrounding metatonalites. a) Location map; b) SPOT-5
Superpan panchromatic image with overlying field observations that indicate the presence of  metasedimentary rocks, gabbro
dykes and an outcrop of  peridotite within an area dominated by tonalite; c) RGB colour composite of  bands 4, 2, 1 (SWIR, red,
green) masked to remove water, ice, and green vegetation. This image discriminates supracrustal rocks and ultramafic intrusions
from surrounding granitoids; however, the mafic dykes are in shades of  red similar to the granitoids and are only visible due to
textural differences. A northwest to southeast-trending raft of  metasedimentary rock is displayed in yellow, and peridotite in
cyan; d) RGB colour composite enhanced by a Minimum Noise Fraction (MNF) transform (see section on Data Processing)
showing spectral variation in vivid colours, improving the ability to detect lithologic variations (note expression of  supracrustal
rocks). However, it is more difficult to interpret how these colours represent the lithologic and mineralogic characteristics of
the rocks from a spectral reflectance perspective as each MNF image used in the ternary image is a linear mix of  all the input
SPOT-5 bands.



It is well known that iron-bearing,
hydroxyl-bearing (i.e. clays) and car-
bonate-bearing rocks are the most easi-
ly identified in the VNIR and SWIR

because of  diagnostic spectral features
caused by electronic transitions and
molecular vibrations (Hunt 1977;
Clarke 1999). Quartzite is also easily

identified in the VNIR and SWIR, not
because of  diagnostic spectral features
but because of  its high albedo and
thus high reflectance. Studies in north-

70

Figure 17. GeoEye1 image and associated geological interpretation over the Minto Inlier, Victoria Island. a) Location map; b)
radiometrically enhanced 3, 2, 1 colour composite ternary GeoEye1 image, pan sharpened to 1 m; c) predictive bedrock geology
interpreted from stereo pairs of  GeoEye1 images; d) geological map of  the same area (Thorsteinsson and Tozer 1962; Hulbert
et al. 2005). Note the greater geological detail interpreted from the GeoEye1 image compared to the mapped geology.



ern Baffin Island (Budkewitsch et al.
2000) and southeastern Baffin Island
(Harris et al. 2005; Rogge et al. 2007,
2009) demonstrate the value of  hyper-
spectral data for identifying various
species of  carbonate-bearing rocks, in
particular. Figure 21 is a predictive car-
bonate-image map that combines cal-
cite, dolomite, and diopside abundance

maps to identify different carbonate
species on the basis of  subtle differ-
ences in spectral reflectance in the
SWIR portion of  the EM spectrum.

For the most part, silicate-
bearing rocks do not have diagnostic
spectral signatures in the VNIR and
SWIR. Thermal remote sensing utiliz-
ing emitted radiation in the 8.0 to 14.0

µm range (much longer wavelengths)
may be better for mapping silicate-
bearing rock types, as it is in this part
of  the EM spectrum that silicates have
unique absorption features.

Surficial Materials 
Aerial photographs have traditionally
been used for surficial mapping
through monoscopic and stereoscopic
analysis. However, many optical remote
sensors now provide spatial resolution
comparable to, and, in some cases,
exceeding that of  aerial photographs.
Paired with additional spectral resolu-
tion (primarily in the VNIR portion of
the EM spectrum) and the ability to
collect stereo imagery, new optical sen-
sors provide an excellent source of
data to aid in the mapping of  Quater-
nary geology.

Vegetation and wetlands can
be easily identified on optical imagery
(Fig. 22b), as can bedrock outcrops
(Fig. 22c) in most cases, although the
spectral signatures of  outcrop can be
confused with exposed eskers or other
glacial features.  Various image analysis
methods for outcrop identification can
be employed, ranging from empirical
ratios to supervised classification (Har-
ris and Wickert 2008; also see image
examples below).  In addition, the loca-
tion of  former forest fires can be iden-
tified, which may reveal areas where
the probability of  outcrop is higher,
thus facilitating field traversing.

Surficial materials can often be
recognized and mapped on enhanced
optical imagery through simple visual
interpretation based on tones/colour,
shape, form, and texture, as well as
through more advanced image process-
ing techniques (see below; Grunsky et
al. 2006). These predictive maps often
compare favourably to mapped surfi-
cial units, and depending on the scale,
can sometimes offer more information
about surficial units than shown on tra-
ditional maps (Fig. 23). It should be
noted that surficial materials maps can
commonly be produced using simple
visual interpretation and/or more
advanced processing methods, but that
maps of  glacial processes are more dif-
ficult to generate as this involves cap-
turing information other than spectral
response.
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Figure 18. Radiometrically enhanced 4, 3, 2 colour composite ternary GeoEye
images of  Victoria Island. a) Area A, Figure 17b; this image provides valuable
information about both structural and lithological features and is an excellent
resource for bedrock mapping in areas not covered by surficial material; b) area B,
Figure 17b; the unconformity between Paleozoic and Precambrian strata is shown
as a heavy black line. Note also that individual sandstone layers of  only a few
metres thickness in the Cambro-Ordovician unit (yellow lines) as well as bedding
traces in the stromatolitic carbonate unit (thin blue lines) can be mapped using this
imagery. In both images, lithological contacts are shown as light green lines, and red
lines are faults.



Field Planning and Logistics
Optical imagery can also be used to
help in field planning and logistics,
although spatial resolution may be a
limitation when compared to tradition-
al aerial photographs.  However, with
the development of  sensors that have
extremely high spatial resolution from
space (e.g. IKONOS, QUICKBIRD,
Worldview), logistical planning, aided
by satellite-acquired data, is now possi-
ble. The major limitation with this type
of  imagery is the generally higher cost
when compared to the purchase of
existing aerial photographs, although,
as discussed above, they offer compa-
rable or better spatial resolution and
certainly better spectral resolution than
aerial photos.

Optical imagery is frequently
an important addition to the new digi-
tal technologies being used to conduct
field work. Handheld GPS-enabled
computer devices are now typically
used for recording field observations
and are usually equipped with viewing
screens that support the display of
imagery, including high resolution
datasets. This allows for real time dis-
play of  the geologist’s coordinates on
an image dataset, which greatly facili-
tates traverse navigation. Traditionally,
navigation for field work was depend-
ent on having physical copies of  black
and white aerial photographs; however,
the latter can be cumbersome to carry
and the photography commonly pre-
dates the field visit by many years,
resulting in an inaccurate match to the
modern landscape. Although the
bedrock geology will not change much
over time, there may be substantial
changes in landforms, extent of  surfi-
cial materials, and ice cover. Optical
imagery is typically much more closely
timed to the field visit, e.g. the previ-
ous summer. High-resolution imagery
commonly exceeds the detail provided
in aerial photographs (Fig. 24), and
many products have the added benefit
of  multiple image bands that provide
more information on spectral
response, thus assisting in mapping
various geological features.  In addition
to the digital displays, paper plots of
optical imagery help with helicopter
navigation, and allow the geologist to
make notes and rough interpretations
that can be tested while in the field.
Furthermore, optical imagery is by def-
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Figure 19. Example of  an enhanced hyperspectral image derived from airborne
PROBE data acquired over southeastern Baffin Island in August, 2000. The various
colours of  the MNF-enhanced image correlate with different rock units. The dark
blue areas represent vegetation, which grows preferentially over metagabbroic
rocks; vegetation can therefore be used as a mapping proxy for these rocks. Mt –
metatonalite; Mgb – metagabbro; Ms – metasedimentary rocks; Q – quartzite; Mzg
– monzogranite; black lines represent interpreted faults. 



inition digital, whereas most aerial pho-
tography is analogue imagery requiring
scanning and georeferencing before the
data can be used within a GIS environ-
ment.

DATA PROCESSING

Visual Enhancement
Contrast enhancement involves using a
mathematical function (look-up-table
or LUT) to stretch the raw data
expressed in bytes to the full display
range of  the data histogram (0–255
grey levels), thus improving the con-
trast and colour distribution of  the
image. Figure 25a is a raw image prior
to application of  a linear LUT, whereas
Figure 25b shows the results after con-
trast stretching.

Spatial filtering (edge enhance-
ment and high frequency enhance-
ment) techniques are useful for high-
lighting geological structures (Fig. 25c,
d).  Spatial filtering involves the appli-
cation of  a filter to the image data on a
pixel-by-pixel basis, either in the image
(convolution) or frequency (Fourier)
domain, and is used to enhance either
low or high spatial frequency features
as well as edges in optical imagery.
These features often represent geologi-
cal structures (faults, dykes, form lines,
lithological contacts) as well as glacial
features (eskers, drumlins, flow fea-
tures). Note the spatial enhancement
of  northwest–southeast trending gla-
cial features and northeast–southwest
trending tectonic features (Fig. 25c, d)
compared to the raw and contrast-

stretched images (Fig. 25a, b, respec-
tively).

Colour composite ternary
images offer significant advantages
over single-channel black and white
displays for geological interpretation as
they combine three channels of  often
complementary information, resulting
in a better portrayal of  geological fea-
tures than when a single channel is
used (compare and contrast the single-
band black and white images (Fig. 2)
with the colour ternary images shown
in Fig. 3).  Some of  the common
colour combinations of  LANDSAT
data used for geological interpretation
in northern environments are listed in
Table 4.

Band ratios (dividing one band
by another) are extremely useful for
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Figure 20. Spectral plots of  pressure-washed carbonate rock and various lichen species that coat the non-pressure washed
areas of  the outcrop in the vicinity of  the Izok Lake VMS deposit, Nunavut. The spectra were measured using an ASD
portable spectrometer equipped with a contact probe, and can be seen in the photographs of  the outcrop. Note that the lichen
spectra in the visible portion of  the EM spectrum are much less intense than the carbonate spectra, and in the SWIR portion
the characteristic absorption bands (especially the one centred at 2376 nanometres) are totally obscured. Spectra measured by
Mat Maloley (Canada Centre for Remote Sensing) and J. Harris (Geological Survey of  Canada).



highlighting spectral differences (e.g.
reflection vs. absorption) between vari-
ous surface features, such as vegetation
and outcrop (Fig. 22), and iron- and
clay-bearing rocks (Fig. 26b, c).  Band
ratio images can be used to highlight
or identify these geological features for
further spectral and spatial analysis, or
as masks that are used to exclude areas
from further processing and analysis
(Fig. 16c).

Multivariate Processing
Optical multispectral imagery such as
LANDSAT is amenable to multivariate
processing. A number of  data transfor-
mations (e.g. Principle Component
Analysis and Minimum Noise Fraction;
Richards and Jia 1999; Jensen 2005)
can be applied to optical data (Figs.
16d, 19) and serve as valuable image
processing techniques whereby spectral

variations, which often represent dif-
ferences in lithology and surficial mate-
rials, are enhanced.   Principal Compo-
nent Analysis describes the distribution
of  multivariate data using a new set of
transformed axes (components) that
are linear combinations of  all the input
bands.  Each component represents a
mix of  the input bands (the influence
of  each band is measured by an eigen-
vector), and can be displayed as an
individual black and white image, or
else three components can be displayed
as an RGB colour composite ternary
image (see Fig. 5-28 of  Harris and
Wickert 2008). The resulting compo-
nent images can enhance individual
features of  the terrain, such as vegeta-
tion, moisture regimes, rock and surfi-
cial units.  The Minimum Noise Frac-
tion transformation, examples of
which have been presented above, is

very similar to Principle Component
Analysis except that it is more effective
for isolating noise in a multivariate
dataset (Green et al. 1988) and is com-
monly applied to hyperspectral data.
Variations of  Principal Component
Analysis, such as Directed Principal
Component Analysis (e.g. Crosta tech-
nique; Crosta and Moore 1989), allow
for the identification of  selected wave-
lengths that contain spectral informa-
tion on specific minerals, and the use
of  these selected wavelengths to per-
form a Principal Component Analysis.
Further details on the use of  these
multivariate transforms can be found
in Grunsky et al. (2006) and Harris and
Wickert (2008).
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Figure 21. Predictive spectral carbonate image-map derived from airborne hyperspectral data of
a small area of  southwestern Baffin Island. This colour composite ternary image combines calcite
(red), dolomite (green) and diopside (blue) abundance maps produced by matched filtering using
spectral information from defined training areas applied to airborne PROBE hyperspectral data
(Harris et al. 2010). Different carbonate species are clearly expressed in this image based on subtle
differences in spectral reflectance in the SWIR portion of  the EM spectrum. The black areas are
lakes and the neutral grey areas represent vegetation that was masked and not considered in the
classification process. The main northwest–southeast linear belt (A), which defines the southern
limb of  a large fold, is in large part pure calcite (red) with a component of  dolomite (yellow: R +
G).  The large yellow area at B is much the same but has a higher percentage of  dolomite. The
carbonate surrounding the central intrusion (C) is largely dolomite with some diopside
(blue/cyan). A small linear belt (D) south of  A has a more dolomitic composition. These observa-
tions were supported by field work undertaken in the Southwestern Baffin Integrated Geosciences
project.



Data Visualization 

2.5-D Renditions
Geologists have long been using tech-
nology to view landscapes in the third
dimension to facilitate geological inter-

pretation. In the past, this typically
consisted of  viewing overlapping aerial
photographs through stereoscopes.
However, new computer technology
and software now provide geologists
with a digital environment for viewing

multiple image representations of  a
landscape. The GIS and data visualisa-
tion software is now available that
enables the use of  a DEM (or some
other statistical surface data such as
magnetics) to build digital 2.5-D ter-
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Figure 22. a) False colour composite ternary LANDSAT
image (4, 3, 2 – RGB) of  Shultz Lake, Nunavut; vegetation is
red and bedrock is cyan; b) vegetation image produced by
thresholding a LANDSAT NIR/Red (4/3) ratio image. A
NIR/red image enhances vegetation, which strongly reflects
NIR energy and absorbs red energy; c) outcrop map produced
by thresholding a LANDSAT SWIR/NIR (7/4) ratio image.
This ratio enhances outcrop (white tones) by maximizing the
difference between SWIR reflectance and NIR absorption by
exposed rock. A LANDSAT 1/4 (blue/ NIR) ratio could also
be used except that in hazy atmospheric conditions band 1
(blue energy) will be preferentially scattered, increasing the
overall albedo of  the image and thus reducing the overall
effectiveness of  the ratio for discriminating outcrop. See Fig-
ure 3 for location.



rains that can accommodate the drap-
ing of  both image and vector data and
support the creation of  pseudo real-
world scenes. Working within these
2.5-D digital environments can assist
with visual interpretation of  map and
image analysis products by highlighting
textural information that is not as easi-
ly perceived in a planimetric view of
the data (Fig. 27a). It can also be useful
for logistical planning exercises such as
locating suitable sites for field camps
and strategically planning field travers-
es (Fig. 27b).  

Data Fusion
Data fusion (Harris et al. 1990, 1999) is
now a standard visualization technique
for combining various geoscience
datasets.  Fusion is accomplished by
using a number of  image processing
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Figure 23. Classification of  LANDSAT data into generalized surficial units, Shultz Lake, Nunavut.  a) Supervised classification
based on training areas identified by a surficial geologist; this surficial materials map is based on differences in spectral signa-
tures for each generalized surficial unit derived from LANDSAT data; b) uncertainty map, showing areas (in warmer colours)
that are not classified with confidence (i.e. uncertain). These images were generated using a new classification technique known
as the Iterative Classification Method (ICM; Harris et al. in press). See Figure 3 for location.

Table 4.   Ternary  band combinations for mapping geology from LANDSAT
imagery for Northern environments.

Best Ternary RGB
Band Colour

Feature Combinations Comments

Vegetation 4,3,2 – false colour Vegetation appears red
composite (FCC)

3,2,1 – natural or true Vegetation appears green
colour composite (TCC) (natural to our eyes)

Outcrop 3,2,1 Outcrop appears white
4,3,2 Outcrop appear blue to cyan
7,4,2 Outcrop appears pink

Roads / infrastructure 3,2,1 Roads appear white
4,3,2 Roads appear cyan



techniques (colour space transforms,
arithmetic operators, wavelet trans-
forms), the aim of  which is to produce
an enhanced image suitable for visual
interpretation in which elements of  the
fused data complement one another.
Fused imagery provides an image

which is greater than the sum of  its
individual inputs.  For example,
LANDSAT can be fused with digital
elevation data (i.e. a DEM), offering an
image that shows spectral patterns
through variations in hue, combined
with enhanced topography that is use-

ful for highlighting geomorphic pat-
terns (Figs. 12c and 14c). The DEM
may also be used to construct a 2.5-D
visualization of  the terrain (Fig. 27a,
b). LANDSAT data may also be fused
with thematic data (such as a geological
map) so that the geology can be direct-
ly compared to the spectral patterns
seen on the LANDSAT imagery, or
merged with geophysical data so that
magnetic patterns can be compared to
topographic and spectral patterns. Har-
ris et al. (1990, 1999) provide many
examples of  effective data fusions for
geological interpretation.

Computer Assisted Processing

Supervised Classification
A spectral map is based on variations
in spectral signatures extracted from
optical imagery; geological calibration
of  these spectral classes must be
undertaken by field work or compari-
son with other supporting geoscience
datasets. A spectral map can be created
from optical imagery by using a priori
information on rock or surficial units,
which can take the form of  training
areas over known rock or surficial units
and can be derived by a number of
methods, including:
• Inspection of  aerial photographs

or high resolution satellite imagery;
• Field observations or locations

chosen in the field; and
• Inspection of  geological maps in

concert with observations of  opti-
cal imagery.

Once the geologist has select-
ed suitable training areas that are con-
sidered representative of  the rock units
to be classified, spectral signatures (sta-
tistics) for those units are extracted and
compared to one another using a vari-
ety of  statistical techniques (e.g. Trans-
formed Divergence ) to test if  the sig-
natures are statistically separable, for
each unit to be mapped.  If  the signa-
tures are unique, statistics from each
training area are then used to classify
the data by employing a classification
algorithm (e.g. Maximum Likelihood;
Neural Networks, etc.; see Jensen
2005), resulting in a classified (predic-
tive) map of  geological units (Fig. 23;
Grunsky et al. 2006). It is often pru-
dent to divide the original training
areas into two (or more) groups for
cross-validation purposes. That is, one
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Figure 24.  High resolution imagery of  part of  the Cumberland Peninsula, Baffin
Island; see Figure 16 for approximate location. a) Black and white aerial photo-
graph (scanned at 300 dpi); b) SPOT-5 panchromatic image (2.5 m spatial resolu-
tion).
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Figure 25. Enhancements of  single-band LANDSAT  imagery of  the Thirty Mile Lake
area, Nunavut. a) Raw image (band 4 – NIR); b) contrast-enhanced band 4 image; c)
band 4 image using an edge filter; d) band 4 image using a 25 x 25 pixel high frequency
spatial filter.



group of  training areas can be used for
classification and the other group used
to validate the classification through
what is called a Confusion Matrix.

Another method for validating the
accuracy of  the classification is to
compare the classified map to sites vis-
ited in the field. Harris et al. (in press)

present a new method of  supervised
classification based on a Monte Carlo
simulation (a class of  computational
algorithms that rely on repeated ran-
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Figure 26.  Examples of  ratios useful for geological mapping, southeastern Baffin Island (see Figure 19 for location). a) MNF-
enhanced hyperspectral image in which colours reflect different lithotypes; b) iron ratio (equivalent to a LANDSAT 3/1 ratio),
to enhance rocks with high Fe-content (in this case metasedimentary rocks that display a rusty orange weathering colour); c)
clay ratio (equivalent to a LANDSAT 7/5 ratio), to enhance rocks that display clay alteration (in this case sericite-altered meta-
tonalite; d) mapped geology (St-Onge et al. 1998) for comparison.



dom sampling to compute their results)
in concert with random cross-valida-
tion of  the training areas used for clas-
sifying surficial materials. This algo-
rithm, known as the Iterative Classifi-
cation method, has the advantage of
quantifying both statistical and spatial
uncertainty in the classification
process.

Classification of  optical
imagery is often only based on spectral
information, but optical imagery also
potentially offers much textural infor-
mation that can be used in the classifi-
cation process in concert with spectral
(tonal) information (note: texture is
defined as rapid changes in tonal
response in an image and defines spa-
tial patterns that are a mix of  different
spatial frequencies). The addition of
spatial derivatives calculated from the
optical data and/or other datasets like
DEMs and radar can provide addition-
al surface information that often
results in higher classification accura-
cies.

Unsupervised Classification
A spectral map can also be produced
automatically without input from train-
ing areas by using a process known as
Unsupervised Classification or Data
Clustering. Typically, the geologist will
provide the number of  units (or clus-
ters) to be found in the multi-band
optical data and select a clustering
algorithm (e.g. K-means, N-D his-
togram, etc.) that will automatically
find like statistical data clusters and
produce a thematic map of  these clus-
ters.  However, the geologist must
make geological sense of  this map to
determine what the resulting units rep-
resent. This normally involves ‘ground
truthing’ (field mapping) and/or exam-
ination of  other supporting geoscience
datasets to geologically calibrate the
spectral classes. An example of  a surfi-
cial materials map produced through
unsupervised classification is shown in
Figure 5-32 of  Harris and Wickert
(2008).

DISCUSSION and SUMMARY
Optical remote sensing involving the
spectral analysis of  minerals, rocks and
surficial materials plays an important
part in the remote predictive mapping
process, both for mapping and for
exploration activities. The recent
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Figure 27. a) 2.5-D perspective view of  SPOT-5 data captured from ArcGlobe,
over part of  Cumberland Peninsula, Baffin Island, This image was created using a
‘simulated’ true colour ternary image (10 m multispectral SPOT-5 bands pan-sharp-
ened with 2.5 m SuperPan data) draped on a DEM-generated terrain surface.
Images of  this type can be used for logistical planning. b) 2.5-D SPOT-5 false
colour composite visualization of  sedimentary terrain, also in the Cumberland
Peninsula. This image is not only useful for geological mapping, as sedimentary
bedding can  be clearly seen, but it can also be used to give a mapping party a good
idea of  the terrain they will be mapping before embarking on field activities.



emphasis on sensors that offer higher
spatial and spectral resolution facili-
tates the geological mapping and
exploration process by providing
increased spatial detail, often surpass-
ing that which can be achieved from
aerial photographs; it also allows for
the unique identification of  specific
minerals and, in some cases, rock
types, based on spectral response
(unique spectral characteristics). Dis-
crimination and general separation of
certain minerals, rocks and surficial
materials are possible with lower spec-
tral resolution sensors (LANDSAT,
SPOT), but unique identification, as is
the case with hyperspectral sensors, is
not.

A great variety of  optical sen-
sors is presently available, with more
coming on line in the near future (e.g.
LANDSAT 8, hyperspectral). Most of
these will collect data in the VNIR and
SWIR segments of  the EM spectrum.
Much research on the geological appli-
cations of  remotely sensed data col-
lected in these portions of  the EM
spectrum exist in the literature, but fur-
ther research is required on spectral
analysis for northern geological envi-
ronments (especially the application of
hyperspectral imagery). An exciting
new field, still in its infancy, is the
application of  thermal remote sensing
for the identification of  silicate-bearing
rocks. However, few satellite-borne
sensors other than ASTER offer suffi-
cient spectral resolution for this type of
geological application, and the 90 m
spatial resolution of  ASTER thermal
data limits results to a regional scale, at
best. At this stage we are still reliant on
airborne sensors as we are for hyper-
spectral optical remote sensing.

Particularly important to the
application of  optical remote sensing
for geological mapping is the nature of
the bedrock, including the weathering
style of  specific rock types, which
depends on their mineralogy, the
nature and type of  surficial cover, geo-
morphic/topographic characteristics,
and biophysical cover (i.e. vegetation
and lichens). This, combined with the
scale of  mapping, not only dictates the
choice of  a particular optical sensor
but also the type of  processing
required for extracting geological infor-
mation. Simple image enhancement
followed by visual (onscreen) interpre-

tation of  2-D imagery is often very
effective, mimicking the procedure
long applied by geologists to aerial
photographs. It is also now possible to
view stereo imagery on touch-sensitive
CRT screens using special stereo glass-
es and to actually conduct photogeo-
logic interpretations using touch-sensi-
tive pens, the results of  which can be
immediately captured as vector files
within a GIS environment. The role of
more advanced computer processing
techniques, especially when dealing
with many image channels (e.g. multi-
spectral, hyperspectral) offers advan-
tages for producing more objective
maps based on the spectral (and tex-
tural) characteristics of  the data itself.
A predictive geological map is often
produced using both processing meth-
ods.

Figure 28 illustrates areas of
northern Canada where optical remote
sensing is likely to be successful for
bedrock and surficial mapping. These
maps are derived from the merging (in
a GIS platform) of  the new Interna-
tional Polar Year compilation of  Arctic
geology (Harrison et al. 2008), the sur-
ficial geology map of  Canada (Fulton
1995) and a Canadian landcover map
(NRCAN 1999). The areas optimum
for bedrock mapping using optical
remotely sensed data  (Fig. 28a) were
ranked following GIS analysis of  major
rock types and surficial cover. Specifi-
cally, rock types that are best separated
using spectral analysis (largely sedimen-
tary or supracrustal rocks as opposed
to granitoid rocks) and areas that are
either exposed or covered with thin till
were rated as having higher potential;
areas covered by ice obviously have
low potential. With respect to structur-
al mapping, older, Archean bedrock
generally offers better potential for
structural mapping using optical
remote sensing than flat-lying sedimen-
tary sequences, especially if  geological
structures are topographically
expressed and not covered by thick till
deposits. With respect to the potential
for mapping surficial deposits (Fig.
28b), areas of  thicker till cover were
rated as having lower potential for
mapping both materials and landforms,
as opposed to less covered areas where
landforms, and in some cases surface
materials, are strongly expressed in the
geomorphic/topographic environment.

It is recommended that these
maps be used only as a general guide
to the selection of  optical data for geo-
logical mapping. In combination with
these maps, a cursory interpretation of
LANDSAT data (free from the
Geogratis website) would be beneficial
to a planned mapping project. As can
be seen in the examples provided here-
in, certain geological environments are
more suitable for optical remote sens-
ing of  bedrock and geological struc-
tures. For example, because of  its over-
all optical spectral properties, Victoria
Island (Figs. 17 and 18) is better suited
for geological mapping than Baffin
Island, and within Baffin Island, map-
ping supracrustal rocks (Figs. 15 and
19) is more easily done by optical
remote sensing in the southeast than in
the southwest (Figs. 9 to 13) because
of  generally less vegetation and lichen
cover in the former and the weathering
style of  the various rock types. From a
structural mapping perspective, both
environments offer much information,
as form lines are well-expressed topo-
graphically (e.g. see Figs. 9 and 13). If
the LANDSAT data appear promising
after examination of  the range of
colours and patterns seen in the
imagery (Figures 9 and 15 provide
examples of  good spectral contrast),
then progression to other, higher reso-
lution data is warranted. However, if
the area is well-covered and appears
spectrally homogeneous, then another
method (e.g. geophysics, radiometrics,
radar) may offer more geological infor-
mation and thus a better source on
which to base geological predictions.

Optical remote sensing does
play, and will play an increasingly
important role in the geological map-
ping of  Canada’s north. This is espe-
cially relevant with the recent emphasis
on satellite-borne systems that offer
high spatial and spectral resolutions
along with the ability to collect data in
stereo, which is obviously advanta-
geous for geological interpretation.
The incorporation of  optical remote
sensing in the development of  RPM
methods and protocols is presently
being undertaken by the Geological
Survey of  Canada.
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