
Towards authentic tasks and experiences:
The example of parser-based CALL

Mathias Schulze and Marie-Josée Hamel
Centre for Computational Linguistics, UMIST, Manchester, UK

Authenticity of language learning tasks, authenticity of learning experiences

and the use of authentic language are important characteristics of commu-

nicative language teaching and learning. In this article, ways of achieving

productive use of authentic language in a computer-assisted language learn-

ing environment are discussed. This discussion concentrates on a particular

area of CALL — parser-based CALL. The use and adaptation of two exist-

ing parsers for two CALL tools that support text production by encouraging

learners to concentrate on the linguistic structure — mainly the grammar — of

a text they have just produced in a communicative task are outlined to provide

concrete evidence for the contribution language processing techniques can

make to the field of Computer-Assisted Language Learning.

L’authenticité de la tâche langagière à effectuer, de l’expérience d’apprentis-

sage et de l’utilisation de la langue sont des caractéristiques importantes

dans l’apprentissage et l’enseignement des langues basés sur une approche

communicative. Notre discussion porte sur une exploitation que nous croyons

productive de cette langue authentique dans des environnements d’ELAO.

Elle se concentre plus particulièrement sur un type d’ELAO, celui base sur

le TAL. Nous décrivons l’utilisation et l’adaptation de deux parseurs dans

deux systèmes d’ELAO différents mais dont la fonction commune est l’aide

à la production de textes écrits où l’apprenant est amené à se concentrer sur

certaines structures syntaxiques qu’il vient de produire. Nous voulons par le

fait même démontrer l’apport indéniable des outils de TAL dans les systèmes

d’ELAO.

Authentic Language in CALL programs?

Computer-assisted language learning could be described, in a very broad sense,

as the creation, initiation, performance and/or evaluation of human-computer

interactions which stimulate, facilitate and/or enable language learning. The

term ‘interaction’ is here, strictly speaking, somewhat misleading since a gen-

uine interaction would require actions by both participating partners — but do

computers perform actions? Actions are normally understood to be intention

led and they not only produce a result of some kind, but also affect the actor.

In other words, we carry out actions in order to achieve something and in the

79



RCLA � CJAL 3–1/2

course of doing so we change — we learn, we experience, we gain or lose mo-

tivation, interest � � � Computers, on the other hand, are instruments and as such

they are incarnations of (abstract) operations (Schmitz, 1992, p. 62). Schmitz

continues by arguing:

Insgesamt können also grundsätzlich alle geistigen Operationen Maschi-

nen übertragen werden. Maschinen sind aber nicht in der Lage, Ziel und

Sinn einer Handlung zu erkennen oder zu bestimmen. (ibid., p. 169)1

Intention, however, is the main feature that distinguishes actions from opera-

tions. Operations are former actions that in the process of automatization ‘lost’

their intention2 (Rubinstein, 1984, p. 686ff). But is the distinction between

operation and action in the world of computing as clear as Schmitz argues?

Without trying to develop a philosophical argument, let us note that sophisti-

cated computer programs not only change in the course of operating (or was it

acting?) and can reason about intentions (e.g. inference engines). However, the

programs we are talking about rely on the recognition of sometimes complex

conditions which trigger the performance of more or less complex operations.

Consequently, we have an interaction between a human — who evaluates

somebody else’s action by reasoning about the likely intention and reacts

to this assumed intention — and a machine which recognizes certain (pre-

programmed) conditions and performs the related programmed operations. In

the end, an interaction does take place because the computer user, in our case the

language learner, interprets these computing operations as actions by assuming

an underlying intention, e.g. a learner using a spell-checker (often) reacts as

though the computer tool were trying to correct the spelling of a given text,

but the operation carried out by the program is the complex attempt to match

an input string against a particular record of a database. With Schmitz (1992,

p. 175), we believe that learning only takes place in this interaction because the

learners are willing to learn. They create a learning context and give sense to

the algorithm of operations.

What consequences does this understanding of human-computer interac-

tion have for our approach to language learning? What are the consequences

for CALL? Current approaches to language learning and teaching emphasize

the importance of authenticity.

In both the literature and the CALL Survey, Communicative Language

Teaching (CLT) emerged as the dominant contemporary approach, under-

pinned by the notion of ‘communicative competence’ � � � A descriptive

vocabulary has come to be associated with communicative language teach-

ing and this helps, to a certain extent, in clarifying the orientation of the

communicative language teacher: the vocabulary includes such terms as

language use, language functions, authentic language, discourse, fluency,

80



Towards authentic tasks and experiences Schulze and Hamel

interaction, negotiation, social context, appropriateness, coherence and

cohesion. (Levy, 1997, p. 154; emphasis added)

Authenticity is a feature of learning tasks and experiences that can be achieved

in many different ways. The aspect in which we are most interested is the use of

authentic language by the learners. In other words, the two CALL components

discussed here are not meant to set authentic tasks nor do they interfere during

the main stage of the communicative process. This communicative process, in

our case the production of a written text, can be initiated through any authentic

task the teacher or the learners see fit. Our CALL components are called upon

in the learning process at a much later stage. We would like to see learners who

not only use the computer for typing and formatting their foreign language

texts, but also learners who use computer tools to reflect upon the texts.

If such tools are to work successfully in a learning environment, then they

need to have an enormous amount of information that enables them to recognize

many different conditions and to perform the appropriate (complex) operations.

Only then will learners have a chance to interpret these operations as actions

and enter into a meaningful language-learning interaction with the machine.

The learner is likely to be alienated when the computer operations are not

interpretable as actions and this might result in a breakdown of the interaction

because the learner cannot react meaningfully to the operation of the CALL

tool. If we aim to make CALL tools more authentic, then what we are trying

to achieve is to make the interaction look and feel more authentic. Therefore,

we have to analyze the underlying conditions of this interaction and ‘feed’ the

computer with this conditional structure and with a structure of operations that

are triggered by these conditions. These CALL tools will perform appropriate

operations which can be, without much difficulty, interpreted by the learner as

meaningful actions and this enables the learner to react accordingly.

The particular CALL tools we would like to see are programs or compo-

nents thereof that help learners to proofread and correct the form of foreign

language texts. By form (Long, 1991) we mean the surface level of a text — in

other words — the ‘how’ something is said and not so much the ‘what’ is be-

ing said. A number of such tools are already available: many word-processors

include a spellcheck component, very often a thesaurus; monolingual and bilin-

gual dictionaries are at the learner’s disposal on-line. It would now be useful to

extend this range of linguistic tools for foreign language learners. A possible

next step is the development of grammar checkers that are written with lan-

guage learners in mind. Juozulynas (1994) has shown that a grammar checker

that relies on parsing techniques would be able to detect about 80% of the

errors made by non-native text producers. His study of German essays written

by American students concludes that grammar checkers which make use of

the current advances in Natural Language Processing (NLP) will be effective

81



RCLA � CJAL 3–1/2

language learning tools. These empirical findings are confirmed by recent de-

velopments in Second Language Acquisition theory (SLA), many of which are

directly applicable to CALL (Schulze, 1998).

Natural language parsers and the role they can play in computer-assisted

language learning have been under scrutiny in the last decade, e.g. Matthews

(1992), Holland et al. (1993), Nagata (1996). Parser-based CALL applications

and components for a variety of learning tasks and for a number of languages

have been developed over the years. Here we will take a closer look at two

parser-based grammar checkers for language learners. For these two CALL

tools, we would ideally like to have a parser that:

�
covers as many morphological and syntactic phenomena of the target

language as possible, in order to give the learner a genuine reason to be

confident in the analysis of the parser;

� is able to recognize and analyze the overwhelming majority of linguistic

constructions produced by learners, and so has some information about

the acquisition order of a foreign language;

�
and therefore has not only an adequate inventory of grammatical rules,

but also a domain-independent dictionary so that a CALL component

with this parser can be used for a wide variety of text types produced in

many different learning tasks;

� is well documented so that the coverage, the restrictions and limitations

of the parser can be clearly communicated to the learner so that no false

expectations are raised (Holland et al., 1993);

� is not only capable of processing grammatically ill-formed input

(Matthews, 1993), but can also reason about the well-formed construc-

tion intended by the learner, in order to guide the learner in an efficient

manner through the post-editing, correcting and revision process;

� and provides sufficient information for the generation of adequate feed-

back to the learner so that learners not only benefit from the program

during the text production task as such but also retain some knowledge

in the longer term.

Generally speaking, parsing algorithms and syntactic parsers have reached a

level of maturity that justifies their application in CALL. We will discuss in

what way existing parsers can be adapted to meet the criteria outlined above.

This discussion will be based on two parser-based CALL projects: both use an

existing parser; one concentrates on processing the parser output to identify

under-used and avoided syntactic structures; the other adapts the grammar by

replacing hard constraints with weak constraints to give feedback on ill-formed

82



Towards authentic tasks and experiences Schulze and Hamel

linguistic signs. However, before we turn to these examples, answers to two

general questions will have to be discussed.

Firstly, why do we advocate parser-based CALL? And secondly, why do

we rely on existing parsers? Holland et al. (1993) compare traditional and new

technologies for CALL and answer their question “Why put parsers in language

tutors?” as follows:

The appeal lies in the power of the rules. The problem with evaluating

students’ language by computer is that there are so many things to say

and so many ways to say them. To handle the unpredictable sentences

students can produce requires a flexible rule set operating at an abstract

level. (Holland et al., 1993, p. 30)

Thus, parsers are the backbone of CALL tools that return the control of the

learning process to the learner. The text the learner puts in does not have to be

restricted in any way. The students’ answers are not limited to a well-defined

set of pre-programmed answers (multiple choice) or to a restricted domain of

anticipated answers (gap-filling). The text production task can form part of an

authentic communicative task; learners are free to write whatever they assume

to be appropriate. The evaluation of the input is then based on the analysis

provided by the parser. This is possible because the parser relies on a finite set

of linguistic rules, whereas using a traditional approach — pre-programming

of anticipated correct and incorrect answers in order to provide feedback —

would mean that an infinite number of possibilities would need to be fed to

the program. Consequently, parsers are very versatile tools. They can be and

they already are used as components in a wide variety of CALL programs,

such as multi-media simulations of communicative situations, grammar and

style checkers as independent programs or components of word processors,

e-mail editors etc., and in traditional CALL packages. In all these programs

they support the analysis of the textual input.

Parsers that guarantee a good coverage of a given language (i.e. parsers

that are capable of handling a large number of different sentences in such a way

that they succeed in giving a meaningful and useful structural analysis) have

a complex system of morphological and syntactical rules as well as a compre-

hensive dictionary. Consequently, the development of such parser grammars is

a lengthy and difficult process. Since we are much more interested in showing

that parsing technology can make a useful contribution to the further progress

of CALL and CALL tools in particular (and we are not so much interested in

writing a parser grammar from scratch), we have made the pragmatic decision

to use existing parsers and to attempt to adapt these so that they can function

in a language learning context.

From a theoretical point of view, the use of parsers in CALL is beneficial

and pragmatically possible, but how does parser-based CALL work in practice?

83



RCLA � CJAL 3–1/2

How do the two projects make use of the advantages of parser-based CALL?

And how do they overcome the problems and limitations of this field? Let us

first have a brief look at Textana — a parser that relies on weak constraints.

Adapting an existing parser grammar — the example of Textana

Normally, a successful parse indicates a well-formed sentence and an unsuc-

cessful parse indicates an ill-formed one, judged on the basis of the grammar

and lexicon, but for a variety of purposes it is necessary to have parsers that

can deal with ill-formed linguistic constructions. Even if we were to assume

that a given parser is only intended to parse texts produced by competent text

producers in their own language, we cannot be certain that the text will be error

free. Obviously, if it is clear right from the start that the parser will be used

to evaluate sentences produced by foreign language learners, then this parser

must be capable of producing meaningful structural analyses of such ill-formed

sentences. This feature of a parser is often referred to as its robustness. Thus,

parsers in a CALL environment have to achieve two conflicting goals: they have

to parse correctly all well-formed constructions of the language and they have

to parse sentences which are not formed according to the rules of the parser

grammar (Dini and Malnati, 1993, p. 76). The latter sentences are constructed

using linguistic rules of the language that are simply not implemented in the

parser or rules that do not belong in the linguistic system of the language. In

our case, the latter would be rules that describe the interlanguage (Selinker,

1972) of the learner, but not the target language.

Dini and Malnati (1993, p. 76ff) list four approaches to parsing ill-formed

language input.

� the rule-based approach

� the metarule-based approach

� the preference-based approach

� the constraint-based approach.

They conclude that the fourth approach is the most efficient and a theoretically

sound one and they argue as well that “weak constraint-based parsing has

proven to be useful in increasing the robustness of an NLP system” (Dini and

Malnati, 1993, p. 88). Textana uses these weak constraints in its grammar

framework. The morphological rules of Textana’s parser grammar3 are mainly

based on a formalism taken from Categorial Grammar (CG) (Hoeksma, 1985),

while most of the syntactic rules are based on Head-Driven Phrase Structure

Grammar (HPSG) (Pollard and Sag, 1987, 1994). The parser grammar describes

a substantial fragment of German: word formation, inflection, agreement, verb

subcategorization. The composition rules used in categorial morphology and

84



Towards authentic tasks and experiences Schulze and Hamel

the HPSG syntactic rules are such that they allow suitable smaller linguistic

signs to combine to form a bigger linguistic sign. This happens mainly through

two processes: unification and subcategorization. To be precise, when we talk

about the creation of a sign then what we mean exactly is the creation of the

structural representation of a sign. Of course, the signs are in the text produced

by the learner and in our case it is a question of the parser recognizing the

structure of these signs, e.g. what noun phrase contributes in what capacity to

the formation of a larger unit — a sentence for instance.

Whenever (bigger) signs are created through a weak constraint, two out-

comes are possible:

a) If no grammatical constraint has been violated then the merger of the

two signs is possible and a new bigger sign is formed (e.g. Det + N). No

additional remarks about the newly formed sign are recorded.

b) If a weak constraint has been violated, merger is still possible and the

constraint violation will be recorded as the remarks feature of the sign

(e.g. sing=plural) in the form of a predicate which normally would have

caused the program to fail.

Textana is written in Prolog — a programming language well suited to unifica-

tion-based grammars. For Textana, failing means that the parser would have

returned no result at all. The only output would have been a simple ‘no’.

The remarks, generally speaking, record the nature of the error found by

the parser. They are inspected at appropriate times during the parsing process

and are eventually used for generating the appropriate feedback for the learner.

They provide information about the location as well as the type and the specific

realization of the error. It is then not difficult to identify the actual rule which

has been ignored and, if necessary, to explain it to the student.

Information that determines the appropriate level and form of feedback has

to come from the student model — a part of the program which is responsible

for eliciting, gathering, structuring and providing information about individual

learners. Textana’s student model is a Prolog database that contains a record

for each learner/user. The database holds information which has been elicited

from the student (name, course and foreign-language learning experience). All

other information comes directly from the parser. At this experimental stage

only the number of errors per error type and the level of feedback given for

each error type are recorded. However, it is possible to record every individual

error, used, under-used and avoided constructions, and of course, all learner

input, well-formed and ill-formed constructions alike. We have decided to opt

for the recording of less information at the beginning in order to be able to

evaluate Textana and its student model more thoroughly before expanding it.

85



RCLA � CJAL 3–1/2

Processing the output of an existing parser

The second project again works with an existing parser that was not written for

CALL purposes originally. As we already indicated above, it can take years to

develop an NLP tool that provides accurate grammaticality judgements and it

therefore seems more efficient not to write a parser from scratch but rather to

use an existing one. However, suitable parsers are not readily available and even

more difficult to find when the language chosen is not English. FIPS (French

Interactive Parser System) (Laenzlinger and Wehrli, 1991) is a principle-based

parser (Chomsky, 1986). It was made available for this second CALL project.

Firstly, its overall performance was measured against two corpora: a corpus

of sentences extracted from a grammar textbook and a learner corpus (Hamel,

1996). From the first corpus, we were able to conclude that the parser proved to

be suitable and reliable as its grammatical domain was large and it covered par-

ticularly well the intended domain — subordinate clauses. The construction of

complex sentences was chosen as the grammatical phenomenon to be analyzed

by FIPS in order to extend the parser in such a way that it could help inter-

mediate learners to improve their grasp of complex sentential constructions in

French. FIPS has the advantage that, faced with sentences it cannot analyze, it

still produces a partial analysis. In other words, the parser just ignores gram-

matical constructions that it does not recognize and only provides a structural

analysis of the sentences or parts of the sentence that it does recognize.

This enabled us to look at sentences produced by learners in our second

corpus, sentences which for some were ill-formed but for which the parser still

provided some partial analyzed output. What the learner corpus revealed to

us was that most errors were of an orthographical (spelling), morphological

(agreement), and lexical (choice) nature. The syntax (i.e. word order) seemed

to be generally correct. So was there no use for FIPS as a tool for error diagnosis

in our envisaged CALL environment? A more detailed analysis revealed that

the high level of correctness was mainly due to the fact that learners overused

constructions they were familiar with. So it was not the case that the syntax of

complex sentences had been correct and hence no problems had been flagged

by FIPS. It was that syntactically complex sentences simply were underused

in the L2 corpus, i.e. their use had been avoided. These findings could be

substantiated by elements of Second Language Acquisition (SLA) theory, par-

ticularly avoidance theory (Ellis, 1994) and competency analysis (Schachter,

1974). Thus, a different kind of grammar checking turned out to be relevant.

In fact, recent research in CALLDash student modelling (Matthews, 1993) and

parsers (Holland, 1994; Loritz, 1992) — has led us to believe that FIPS can be

used as a tool for comprehensive diagnosis in CALL. This comprehensive diag-

nosis will rely on a post-parsing activity that will generate information about

the number and types of clauses used and not used by L2 learners. In other

86



Towards authentic tasks and experiences Schulze and Hamel

words, FIPS’ output — the structural analyses of partial or complete parses of

the sentences written by the learners — will be parsed again in order to gather

data as to what types of constructions have been used in the learners’ texts. This

data will be compared to L1 data from the same discourse types (Bronckart,

1984). The frequency of certain types of complex sentences in an L2 text can

now be compared to the expected frequency for this discourse type, i.e. to the

frequency of this kind of construction in texts of the same type produced by

French native speakers. The results of this diagnosis will trigger corresponding

remedial activities on different clause types and on their function in relevant

discourse types. Learners will thus be required to practise the sentence types

which are relevant to the discourse type they were working on and which they

tried to avoid because they were not competent or confident enough to use them.

Parser-based CALL — a way forward?

When we measure the two parsers used in the two CALL projects discussed

here against our list of desiderata for the ideal CALL parser (see above), we

can justifiably say that using existing parsers and adapting them has helped us

to move closer to the ideal. Parsers are very powerful linguistic tools because

they are based on a well-defined set of rules — a set of rules that, in its essence,

is not that far away from the set of grammatical rules learners try to remember,

understand and apply. Parsers can support and facilitate the learning of these

grammatical rules. They produce an informative structural analysis of the tex-

tual input by the learner. In other words, they present grammatical knowledge

which is highly relevant to the learners because it is contextualized knowledge,

knowledge that will help them to improve and correct a text they have produced

themselves. It is not just grammatical knowledge from a grammar textbook.

This structural information can not only form the basis for adequate feedback to

the learner, but it can also, and this is at least as important to us, form the basis

for a better understanding of language learners, language learning processes,

grammar acquisition, effective feedback mechanisms and text production in

general. This is possible because the parser, which takes just the textual input

as the information source, produces an elaborate information structure. Dif-

ferent aspects of this structure can easily be transferred to a student profile.

The analysis of such student profiles will enable the fine-tuning of different

parts of the grammar checker, but at the same time, the results will not only be

relevant for the improvement of these CALL components themselves but they

will also be linguistically interesting, since parsers provide a good opportunity

to record data about text production processes and in our particular case about

grammatical and text production aspects of second language acquisition.

87



RCLA � CJAL 3–1/2

However, the question was whether or not parser-based CALL can con-

tribute in such a way as to move CALL applications closer to enabling, support-

ing and encouraging learners to produce authentic language at the computer.

Not only the two examples briefly discussed here, but also numerous other

examples have shown that parsers in CALL programs can be very valuable

tools that help significantly to improve the overall quality of these programs.

We have identified a number of features that such a parser must possess. Many

more such features remain to be investigated. For example, how do learners

work with parser-based CALL software? How do they react to interference in

the text production process based just on a structural analysis of the text input?

What exactly can structural analyses by the parser tell us about the learner, the

learning process, grammar acquisition? But one outcome is apparent already:

parsers return the (linguistic) control of the learning process to the learner. The

learner has the chance to have any piece of text on any subject checked against

the grammatical rules of a parser. The success of such an operation is merely

dependent on an adequately sized dictionary. If the parser does not have all the

grammatical rules that were necessary to create a complete structural analysis

of the input text, it will simply comment on the missing rule (Textana) or ignore

the part of the text or sentence that could not be analyzed using a rule known to

the parser (FIPS). In other words, if we assume that no parser will ever cover

a language in its entirety — even if we only consider the grammatical side —

then this problem does not prevent us from using them in a CALL program.

Indeed, we can do so as long as the feedback takes into consideration that

judging a construction as morphologically and/or syntactically ill-formed on

the basis of the parser grammar does not necessarily mean that the learner has

made an error. It could just also mean that the parser simply did not recognize

this structure. We can here at least hypothesize that the smallest parser gram-

mar, e.g. one that only covers noun phrase internal agreement in German, does

prove useful to learners as long as they know that it is only this set of operations

that the parser-based CALL program can perform. Of course this hypothesis

Table 1: Overview of the two projects

FIPS Textana

Language French German

underlying grammar GB/PPT HPSG

main grammatical focus Complex sentences simple sentences

main purpose of parsing Identify gaps identify errors

feedback focus Avoided/under-used structures ill-formed structures

computational approach post-parsing activity weak constraints

learning approach Remedial exercises detailed feedback

88



Towards authentic tasks and experiences Schulze and Hamel

needs to be validated in learning experiments, which will only be possible once

parser-based CALL programs become more widely available.

Although the two projects use somewhat different approaches to parser-

based CALL (see Table 1), they both demonstrate that using parsers for diagnosis

and checking in language learning is practical and theoretically sound and

promises to yield results in the future. They already allow learners now to

produce authentic language and receive (and least some) meaningful feedback

in order to progress in their language learning.

Notes

1 Basically all cognitive operations can be performed by machines. However, machines

are not capable of recognizing and determining the aim and the purpose of an action.
2 The example used in Activity Theory, from which the distinction between action and

operation was taken, is driving a car (Leontev, 1978). When one takes the first driving

lessons, changing gear has to be learnt as an independent action. The intention of

the learner-driver is to, let us say, change from second into third gear. Gradually

over a period of time, this action becomes automated, becomes a skill. Now it might

be the intention of the experienced driver to accelerate the car. One part of this

complex action is the gear-changing operation, which as an operation does not have

an independent intention.
3 The parser and the English grammar were written by Allan Ramsay. For more details

see ������� �		
 ��� �
� ��	 ��� and ��� �		
 ��� �
� ��	 ����
������

��.

Bibliography

Bronckart, J. 1984. Le Fonctionnement des discours. Paris: Delachaux and Niestlé.

Chomsky, N. 1986. Knowledge of Language: Its Nature, Origin, and Use. New York:

Praeger.

Dini, L. and G. Malnati. 1993. “Weak constraints and preference rules.” In P. Bennett, and

P. Paggio (eds.), Studies in Machine Translation and Natural Language Processing,

pp. 75–90. Luxembourg: Commission of the European Communities.

Ellis, R. 1994. The Study of Second Language Acquisition. Oxford: Oxford UP.

Hamel, M. 1996. “NLP tools for NLP in CALL for error diagnosis.” Journal of the

CAAL, 18, pp. 125–141.

Hoeksma, J. 1985. Categorial Morphology. New York: Garland.

Holland, V.M. 1994. “Lessons learned in designing intelligent CALL: Managing com-

munication across disciplines.” CALL, 7, pp. 227–256.

Holland, V.M., R. Maisano, C. Alderks, and J. Martin. 1993. “Parsers in tutors: What

are they good for?” CALICO Journal, 11, pp. 28–46.

Juozulynas, V. 1994. “Errors in the composition of second-year German students: An

empirical study of parser-based ICALI.” CALICO Journal, 12, pp. 5–17.

Laenzlinger, C. and E. Wehrli. 1991. “FIPS: un analyseur interactif pour le français.”

TA Informations, 32, pp. 35–49.

89



RCLA � CJAL 3–1/2

Leontev, A.N. 1978. Activity, Consciousness, and Personality. Englewood Cliffs, NJ:

Prentice-Hall.

Levy, M. 1997. Computer-Assisted language Learning. Context and Conceptualisation.

Oxford: Clarendon.

Long, M. 1991. “Focus on form: A design feature in language teaching methodology.”

In K. de Bot, D. Coste, R. Ginsberg, and C. Kramsch (eds.), Foreign Language

Research in Cross-Cultural Perspectives, 39–52. Amsterdam: John Benjamins.

Loritz, D. 1992. “Generalized transition network parsing for language study: The

GPARS system for English, Russian, Japanese and Chinese.” CALICO Journal,

10, pp. 5–22.

Matthews, C. 1992. Intelligent CALL (ICALL) Bibliography. Hull: CTI Centre for

Modern Languages.

Matthews, C. 1993. “Grammar frameworks in Intelligent CALL.” CALICO Journal, 11,

pp. 5–27.

Nagata, N. 1996. “Computer vs. workbook instruction in second language acquisition.”

CALICO Journal, 14, pp. 53–75.

Pollard, C. and I.A. Sag. 1987. Information-Based Syntax and Semantics. Chicago:

Chicago UP.

Pollard, C. and I.A. Sag. 1994. Head-Driven Phrase Structure Grammar. Chicago:

Chicago UP.

Rubinstein, S.L. 1984. Grundlagen der allgemeinen Psychologie (Übersetzung aus dem

Russischen). Berlin: Volk und Wissen.

Schachter, J. 1974. “An error in error analysis.” Language Learning, 27, pp. 205–214.

Schmitz, U. 1992. Computerlinguistik. Opladen: Westdeutscher Verlag.

Schulze, M. 1998. “Teaching grammar — learning grammar. Aspects of second language

acquisition.” CALL, 11, pp. 215–228.

Selinker, L. 1972. “Interlanguage.” International Review of Applied Linguistics, 10,

pp. 209–231.

90


