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Abstract

We present an algorithm for optimal step-and-shoot multileaf collimator field segmentation minimizing tongue-and-
groove effects. Adapting the concepts of [7] we characterize the minimal decomposition time as the maximal weight
of a path in a properly constructed weighted digraph. We alsoshow that this decomposition time can be realized by
a unidirectional plan, thus proving that the algorithm from[9] is monitor unit optimal in general and not only for
unidirectional leaf movement. Our characterization of theminimal decomposition time has the advantage that it can be
used to derive a heuristic for the reduction of the number of shape matrices following the ideas of [7].
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1. Introduction

An important method in cancer treatment is the use
of high energetic radiation. In order to kill tumor cells
the patient is exposed to radiation that is delivered by a
linear accelerator whose beam head can be rotated about
the treatment couch. Inevitably the healthy tissue sur-
rounding the tumor is also exposed to some radiation.
So the problem arises to arrange the treatment in a way
such that the tumor receives a sufficiently high uniform
dose while the damage to the normal tissue is as small
as possible. The standard approach to this problem is
as follows. First the patient body is discretized into so
calledvoxels. The set of voxels is then partitioned into
three sets: the clinical target volume, the critical struc-
tures and the remaining tissue. There are certain dose
constraints for each of these parts. Basically the dose in
the target volume has to be sufficient to kill the cancer-
ous cells and the dose in the critical structures must not
destroy the functionality of the corresponding organs.
The determination of a combination of radiation fields
is usually done by inverse methods based on certain
physical models of how the radiation passes through a
body. In the early 1990’s the method of intensity modu-
lated radiation therapy (IMRT) was developed in order
to obtain additional flexibility. Using a multileaf colli-
mator (MLC) it is possible to form homogeneous fields
of different shapes. By superimposing some homoge-
neous fields an intensity modulated field is delivered.
An MLC consists of two banks of metal leaves which
block the radiation and can be shifted to form irregu-
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Fig. 1. The leaf pairs of a multileaf collimator (MLC)

larly shaped beams (Fig. 1).
The most common approach in treatment planning

is to divide the optimization into two phases. At first,
a set of beam angles and corresponding fluence matri-
ces are determined. In a second step a sequence of leaf
positions for the MLC for each of the angles is deter-
mined that yields the desired fluence distribution. Very
recently there have been attempts to combine both steps
into one optimization routine [5,12]

In this paper we concentrate on the second step, the
shape matrix decomposition problem. Suppose we have
fixed the beam angles from which the radiation is re-
leased, and for each of the beam angles we are given a
fluence distribution that we want the patient to be ex-
posed to. After discretizing the beam intobixelswe can
assume that the fluence distribution is given as a non-
negative integerm×n−matrixA. Each row of the ma-
trix corresponds to a pair of leaves of the MLC, and the
entryaij represents the required fluence at bixel(i, j).
When the MLC is used in the so called step–and–shoot
mode the given fluence distribution is realized by super-
imposing a number of differently shaped homogeneous
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fields coming from different combinations of the leaf
positions. For example, Figure 2 shows a sequence of
leaf positions for the matrix

A =









1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0









=

2 ·









0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0









+









0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0









+









1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0









(1)

where the shading indicates the region which is covered
by the leaves.

The problem of realizing a given intensity matrixA
leads to the problem of representingA as a positive inte-
ger combination of certain(0, 1)–matrices, called shape
matrices, which represent the possible leaf positions. So
the realization in Fig. 2 corresponds to the decompo-
sition in (1). In order to compare different decompo-
sitions of an intensity map we consider two quantities
(where we adopt the terminology of [1]). For a decom-
positionA =

∑k

t=1 utS
(t), the sum of the coefficients

is proportional to the total irradiation time and is called
decomposition time, DT =

∑t

k=1 uk. The numbert
of used shape matrices, calleddecomposition cardinal-
ity (DC), influences the total treatment time due to the
setup time between the delivery of different shapes. Our
objectives in constructing a decomposition are to mini-
mize bothDT andDC. In this paper we consider two
additional constraints that come from the technical re-
strictions in many of the available MLCs. The interleaf
collision constraint (ICC) forbids the overlapping of op-
posite leaves in adjacent rows. Another restriction is
due to the tongue–and–groove leaf arrangement of the
MLCs (see Fig. 3).

Radiation

Fig. 3. The tongue–and–groove design of the leaves of an
MLC.

There is a narrow strip in the border region between
two adjacent rows that is covered by both leaves and this

may lead to underdosage effects in these regions, as is
illustrated in Figure 4 for the fluence matrixA = ( 2 3

3 4 ).
In order to minimize this effect we require thataij ≤

ai+1,j implies that bixel(i + 1, j) is exposed when-
ever bixel(i, j) is exposed (similarly fori − 1 instead
of i + 1). Thus we assure that the overlap region of
two bixels always receives the smaller one of the rele-
vant doses. We say that a shape matrix decomposition
of A satisfies the tongue–and–groove constraint (TGC)
if this condition holds for all used shape matrices. This
intuitive concept of minimizing underdosage is made
more precise in Lemma 1 below. Of course, when the
total delivery time increases due to adding the TGC, the
total leakage radiation through closed leaves also in-
creases, so there might be a tradeoff between reduction
of TG-underdosage and increasing leakage. But numer-
ical experiments indicate that the increase of delivery
time compared to the unconstrained case is rather small.

Starting with [3] and [6] several algorithms were
proposed for the shape matrix decomposition problem
[1,2,4,8,13,14]. Methods for eliminating the tongue–
and–groove underdosage were presented in [9–11]. The
algorithm from [9] isDT–optimal, as is shown for uni-
directional plans in [9] and will be proved without re-
striction for the leaf movement direction in the present
paper. Adapting the approach of [4], in [7] we charac-
terized the minimalDT for the decomposition with ICC
as the maximal weight of a path in a certain digraph.
In this paper we further modify this approach such that
the TGC is included. In addition, we present a greedy
heuristic for the reduction of the number of shape ma-
trices and present some numerical test results.

2. Mathematical formulation of the DT–decomposition
problem with ICC and TGC

Throughout the rest of the paper, for a natural number
n, [n] denotes the set{1, 2, . . . , n} and for natural num-
bersm ≤ n, [m, n] denotes the set{m, m + 1, . . . , n}.
In this section we formulate the shape matrix decom-
position problem and give a min–max–characterization
of the optimal solution very similar to the one used in
[7]. We start with a formal characterization of the shape
matrices that are allowed in a decomposition of a given
intensity matrixA.

Definition 1. Let A be an intensity matrix. AnA–shape
matrix is anm × n-matrix S = (sij) with entries from
{0, 1}, such that there exist integersli, ri (i ∈ [m])
with the following properties:

li < ri (i ∈ [m]), (2)

si,j =

{

1 if li < j < ri

0 otherwise
(i ∈ [m], j ∈ [n]), (3)

(4)
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Fig. 2. A realization of the intensity matrixA using an MLC. The numbers below the leaf positions indicate the number of
monitor units required.
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Fig. 4. Two different realizations of the same fluence matrix. The numbers next to the leaf positions indicate the irradiation times
for the corresponding beams. In the left version the overlapbetween bixels(1, 1) and(2, 1) receives no radiation at all.

ICC: li < ri+1, ri > li+1 (i ∈ [m − 1]), (5)

and we have

TGC:















aij ≤ ai+1,j ∧ sij = 1 ⇒
si+1,j = 1 (i ∈ [m − 1], j ∈ [n]),

aij ≤ ai−1,j ∧ sij = 1 ⇒
si−1,j = 1 (i ∈ [2, m], j ∈ [n]).

(6)

A shape matrix decompositionof an intensity matrix
A is a representation

A =

t
∑

k=1

ukS(k) (7)

with positive integersuk and A–shape matricesS(k)

(k ∈ [t]). The decomposition time (DT ) of this decom-
position is

∑t

k=1 uk and the shape matrix decompo-
sition problem is to find, for givenA, a shape matrix
decomposition with minimalDT . We want to give a
precise description of the sense in which condition (6)
ensures that the TG-underdosage is minimized. For this
purpose we define the tongue and groove error of a de-

composition (7) at bixel(i, j) by

TG(i, j) = min{aij , ai+1,j} −
∑t

k=1 uks
(k)
ij s

(k)
i+1,j

(i ∈ [m − 1], j ∈ [n]).

The sum in the right hand side of this equation is the
total fluence delivered to the overlap between rowsi and
i + 1 in columnj, because this overlap is open in the
k−th shape if and only ifs(k)

ij = s
(k)
i+1,j = 1. This sum

is at mostmin{aij, ai+1,j}:

aij =

t
∑

k=1

uks
(k)
ij ≥

t
∑

k=1

uks
(k)
ij s

(k)
i+1,j ,

and similarly forai+1,j . ThusT (i, j) ≥ 0 and every
positive value ofT (i, j) indicates an underdosage. The
following lemma states that the underdosage is mini-
mized for every(i, j) if all the shape matrices satisfy
condition (6).
Lemma 1. For a decompositionA =

∑t

k=1 ukS(k),
we haveTG(i, j) = 0 for all (i, j) ∈ [m − 1] × [n] if
and only if every shape matrixS(k) satisfies (6).
Proof. By symmetry, we may assumeaij ≤ ai+1,j . We
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obtainT (i, j) = 0 if and only if

aij =

t
∑

k=1

uks
(k)
ij =

t
∑

k=1

uks
(k)
ij s

(k)
i+1,j ,

and this is the case if and only ifs(k)
i+1,j = 1 whenever

s
(k)
ij = 1. �

In order to characterize the minimal DT we use a
similar approach as in [7]. We construct a digraphG =
(V, E) as follows.

V = {0, 1} ∪ ([m] × [0, n + 1]) ,

E = E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {(0, (i, 0)) : i ∈ [m]} ∪ {((i, n + 1), 1): i ∈ [m]},

E2 = {((i, j), (i + 1, j)) : i ∈ [m − 1], j ∈ [n]},

E3 = {((i, j), (i − 1, j)) : i ∈ [2, m], j ∈ [n]},

E4 = {((i, j − 1), (i, j)) : i ∈ [m], j ∈ [n + 1]}.

Here0 and1 serve as starting and end point, respectively,
and the vertices in[m] × [n] correspond to the entries
of A. The two extra columns[m] × {0} and [m] ×
{n + 1} have the purpose to simplify the notation: they
assure that for every(i, j) ∈ [m]× [n] there are vertices
(i, j − 1) and(i, j + 1). Without this, in several of the
arguments below, it would be necessary to treat the first
and the last column separately (then0 and1 would have
to play the role of(i, 0) and(i, n+1), respectively). To
be able to treat the first and then-th column exactly as
the remaining columns, we also putai,0 = ai,n+1 = 0
(i ∈ [m]). We define the weight functionw : E → Z:

w(0, (i, 0)) = w((i, n + 1), 1) = 0 (i ∈ [m]),

w((i, j), (i + 1, j)) = min{0, ai+1,j − aij}

(i ∈ [m − 1], j ∈ [n − 1]),

w((i, j), (i − 1, j)) = min{0, ai−1,j − aij}

(i ∈ [2, m], j ∈ [n − 1]),

w((i, j − 1), (i, j)) = max{0, aij − ai,j−1}

(i ∈ [m], j ∈ [n + 1]).

Example 1. Figure 5 showsG corresponding to the
matrix

A =









4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3









.

The following theorem, which is proved in Sections
3. and 4., is the main result of this paper and the basis
of the decomposition algorithm.
Theorem 1. The minimal DT of a shape matrix decom-
position of a nonnegative matrixA equals the maximal
weight of a(0, 1)−path inG.

For convenience we denote this maximal weight by
c(A):

c(A) = max{w(P ) : P is a (0, 1)−path inG}. (8)

Observe that the results from [4] and [7] can be seen as
characterizations of the minimal DT in terms of maxi-
mal path weights for different variants of the problem
corresponding to manfacturer specific restrictions.
• MLC without restriction of leaf movement: use the

graphG without the vertical arcs.
• MLC with interleaf collision but without tongue and

groove: use the same graphG, but with modified
weights for the vertical arcs.

So the only case that cannot be treated in this framework
is an MLC with tongue and groove and without interleaf
collision.

3. The lower bound

In this section we show that the maximal weight of
a (0, 1)−path in G is a lower bound for theDT of
a decomposition ofA, thus proving the first half of
Theorem 1. The basic idea of the proof is a combination
of the arguments in [1] and [9], the main difference to
[9] being that we do not require the leaf sequence to
be unidirectional. For our argument below we need an
exact description of how the numbers

α(i, j) := max{w(P ) : P is a (0, (i, j))−path inG}

can be computed. This description is given in Algorithm
1.

The underlying principle can be described as follows.
We proceed columnwise. Assuming we have already de-
termined the values in columnj − 1 we initialize col-
umnj with α(i, j) := α(i, j−1)+w((i, j −1), (i, j)).
After that we modify these values in order to satisfy the
conditions

α(i, j) ≥ α(i − 1, j) + w((i − 1, j), (i, j))

for i ∈ [2, m],

α(i, j) ≥ α(i + 1, j) + w((i + 1, j), (i, j))

for i ∈ [m − 1].

Now the statement of the following lemma is obvious.
Lemma 2. Algorithm 1 computes the numbersα(i, j)
in timeO(m2n).

SupposeA =
∑t

k=1 S(k) is a shape matrix decom-
position ofA. We characterize the shape matrixS(k) by
its left and right leaf positionsl(k)

i andr
(k)
i (i ∈ [m]).

For (i, j) ∈ [m] × [n + 1], let Lij denote the set of in-

dicesk with l
(k)
i < j, and similarly, letRij denote the
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Fig. 5. The digraphG corresponding to matrix A.

Algorithm 1 (Computation of the numbersα(i, j)).
for i = 1, . . . , m do α(i, 1) := ai1

for j = 2, . . . , n + 1 do
for i = 1, . . . , m do α(i, j) := α(i, j − 1) + w((i, j − 1), (i, j))
for i = 2, . . . , m do

if α(i, j) < α(i − 1, j) + w((i − 1, j), (i, j)) then
α(i, j) := α(i − 1, j) + w((i − 1, j), (i, j))

if α(i − 1, j) < α(ij) + w((i + 1, j), (i, j)) then Update(i − 1)

FunctionUpdate(k)
α(k, j) := α(k + 1, j) + w((k + 1, j), (i, j))
if k ≥ 2 andα(k − 1, j) < α(kj) + w((k, j), (k − 1, j)) then Update(k − 1)

set of indicesk with r
(k)
i ≤ j. More formally,

Lij = {k ∈ [t] : l
(k)
i < j},

Rij = {k ∈ [t] : r
(k)
i ≤ j}.

Then|Lin| is the number of shape matrices which con-
tribute to rowi, andmaxi∈[m] |Lin| is a lower bound
for theDT . In the next lemma we collect some simple
observations about the setsLij andRij .
Lemma 3. (1) For (i, j) ∈ [m] × [n], Rij ⊆ Lij and

|Lij \ Rij | = aij .
(2) For (i, j) ∈ [m] × [n], |Lij | ≥ |Li,j−1| +

max{0, aij − ai,j−1}.
(3) For (i, j) ∈ [2, m]× [n], Ri−1,j ⊆ Lij andRij ⊆

Li−1,j .
(4) For (i, j) ∈ [2, m] × [n],

ai−1,j ≤ aij =⇒Li−1,j \ Ri−1,j ⊆ Lij \ Rij

ai−1,j ≥ aij =⇒Li−1,j \ Ri−1,j ⊇ Lij \ Rij

Proof. The first statement is a simple consequence of the
facts thatr(k)

i ≤ j implies l
(k)
i < j and thats(k)

ij = 1 if
and only ifk ∈ Lij \Rij . The second statement is clear
if aij ≤ ai,j−1, sinceLi,j−1 ⊆ Lij . If aij > ai,j−1,
there must be at leastaij − ai,j−1 shape matricesS(k)

with s
(k)
ij = 1 ands

(k)
i,j−1 = 0. For these shape matrices

we havel
(k)
i = j − 1, so k ∈ Lij \ Li,j−1 and this

proves the second claim. Using the ICC we obtain the
first inclusion in the third statement:

k ∈ Ri−1,j =⇒ r
(k)
i−1 ≤ j =⇒ l

(k)
i < j =⇒ k ∈ Lij ,

and similarly the second one. For the fourth statement,
assumeai−1,j ≤ aij . Using the TGC we obtain

k ∈ Li−1,j \ Ri−1,j =⇒ s
(k)
i−1,j = 1 =⇒ s

(k)
ij = 1

=⇒ k ∈ Lij \ Rij .

This gives the first implication, and the second one is
proved similarly. �

Next, we show that the numbersα1(i, j) bound the
cardinalities|Lij | from below.
Lemma 4. For (i, j) ∈ [m] × [n], we haveα(i, j) ≤
|Lij |.
Proof. We proceed by induction. Forj = 1, α(i, 1) =
ai1 and the claim is obvious, since we need at leastai1

shape matrices withl(k)
i = 0. Suppose the statement of

the lemma is false, and letj be the index of the first
column where, for some rowi, we haveα(i, j) > |Lij |.
From Lemma 3 we get

|Lij | ≥ |Li,j−1| + max{0, aij − ai,j−1}

≥ α(i, j − 1) + w((i, j − 1), (i, j)).

Hence after the initialization of columnj in Algorithm
1 (line 3), we still haveα(i, j) ≤ |Lij | for all i ∈ [m].
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Now let i be the index of the row where the claim of the
lemma is violated for the first time when the algorithm
is running. Consider this first violation and assume it
occurs in line 6 of Algorithm 1. The case that it occurs
in the functionUpdate(k) is treated analogously.
Case 1.ai−1,j ≤ aij . In this casew((i−1, j), (i, j)) =

0, hence the updating step of the algorithm is
α(i, j) := α(i − 1, j). By (iii) and (iv) in Lemma 3
we have

Ri−1,j ⊆ Lij andLi−1,j \ Ri−1,j ⊆ Lij .

HenceLi−1,j ⊆ Lij , and consequentlyα(i, j) =
α(i−1, j) ≤ |Lij |, contradicting the assumption that
the step leads to a violation of the claim.

Case 2.ai−1,j > aij . Now the considered step is
α(ij) := α(i − 1, j) − (ai−1,j − aij). Again by(iii)
and(iv) from Lemma 3,

Ri−1,j ⊆ Lij andLij \ Rij ⊆ Li−1,j \ Ri−1,j .

This implies (using(i) from Lemma 3)

|Lij | ≥ |Ri−1,j | + |Lij \ Rij |

= (|Li−1,j | − ai−1,j) + aij

≥ α(i − 1, j) − ai−1,j + aij = α(i, j),

contradicting the assumption. �

Lemma 4 shows that the numbersα(i, n) (i ∈ [m]) are
lower bounds for theDT . We state this conclusion as a
lemma.
Lemma 5. For any shape matrix decomposition of an
intensity matrixA, we have

DT ≥ max
i∈[m]

α(i, n) = c(A).

4. The algorithm

We compute a shape matrix decomposition ofA ac-
cording to Algorithm 2. This is essentially a reformula-
tion of the algorithm of Kamath et al. [9], but we need
it in this form in order to show that our characterization
of the minimalDT in Theorem 1 is correct.

Algorithm 2 (DT-optimal shape matrix decomposition).
for k = 1, . . . , c(A) do

for i = 1, . . . , m do
l
(k)
i := max{j ∈ [0, n] : α(i, j) < k or j = n}

r
(k)
i := min{j ∈ [n + 1] : α(i, j) ≥ k + aij or

j = n + 1}
for (i, j) ∈ [m] × [n] do

s
(k)
ij :=

{

1 if l
(k)
i < j < r

(k)
i

0 otherwise

Lemma 6. From Algorithm 2 we obtain a shape matrix
decomposition ofA with DT = c(A).
Proof. Clearly, theDT of the sum of shape matrices
returned by the algorithm isc(A). We divide the proof
of the theorem into three parts.

Claim 1. The matricesS(k) form indeed a decomposi-
tion of A, that meansA =

∑c(A)
k=1 S(k).

Fix some(i, j) ∈ [m] × [n]. We have
(

l
(k)
i < j ⇐⇒ α(i, j) ≥ k

)

and

(

r
(k)
i > j ⇐⇒ α(i, j) < k + aij

)

.

Together we obtains(k)
ij = 1 ⇐⇒ α(i, j) − aij <

k ≤ α(i, j), hence
∑c(A)

k=1 s
(k)
ij = aij , and this proves

the claim.

Claim 2. The matricesS(k) satisfy the ICC.
Assume the claim is false. That means, for somek ∈
[c(A)] andi ∈ [m − 1], l

(k)
i ≥ r

(k)
i+1 or r

(k)
i ≤ l

(k)
i+1. We

consider only the first case, since the second one can be
treated similarly. We putj = r

(k)
i+1. By construction and

our assumption, we have

α(i, j) < k and α(i + 1, j) ≥ k + ai+1,j .

But on the other hand,

α(i, j) ≥ α(i + 1, j) + w((i + 1, j), (i, j))

= α(i + 1, j) + min{0, aij − ai+1,j},

thusα(i, j) ≥ k, and this contradiction proves the claim.

Claim 3. The matricesS(k) satisfy the TGC.
Supposeaij ≤ ai+1,j and s

(k)
ij = 1, or equivalently

l
(k)
i < j < r

(k)
i . By construction, this implies

k ≤ α(i, j) < k + aij . (9)

Observe, that

w((i, j), (i + 1, j)) = 0 and

w((i + 1, j), (i, j)) = aij − ai+1,j ,

sinceaij ≤ ai+1,j . Using (9), we obtain the bounds

α(i + 1, j) ≥ α(i, j) + w((i, j), (i + 1, j))

= α(i, j) ≥ k and

k + aij > α(i, j) ≥ α(i + 1, j) + w((i + 1, j), (i, j))

k + aij > α(i + 1, j) + (aij − ai+1,j).

Hencek ≤ α(i + 1, j) < k + ai+1,j , and according to

Algorithm 2,s(k)
i+1,j = 1. Thus the first TGC is satisfied,

and the second one is proved similarly. �

Together, Lemmas 5 and 6 prove Theorem 1.



Thomas Kalinowski – Algorithmic Operations Research Vol.3(2008) 165–174 171

5. Minimizing the number of shape matrices

The problem of minimizing the number of shape ma-
trices is NP–hard even for a single row intensity matrix
[1]. So it is natural to look for a heuristic approach that
yields decompositions with a small number of shape
matrices within a reasonable time even if optimality is
not always reached. In [7] we used a greedy strategy
in order to find a decomposition with minimalDT and
a small number of shape matrices for MLCs with ICC
but neglecting the TGC. This method can be modified
to respect the TGC. In order to characterize the maxi-
mal coefficientu for which there is anA-shape matrix
S, such thatuS can be a term in aDT -optimal decom-
position ofA, we need the following lemma.
Lemma 7. Let A =

∑t
k=1 ukS(k) be a decomposi-

tion of A (i.e. theS(k) are A–shape matrices), and put
A(0) = A andA(k) = A −

∑k

k′=1 uk′S(k′) for k ∈ [t].
Then, for everyk ∈ [t] we have

• s
(k)
ij = 1 ands

(k)
i+1,j = 0 ⇒ a

(k−1)
ij ≥ a

(k−1)
i+1,j +

u (i ∈ [m − 1], j ∈ [n]),

• s
(k)
ij = 1 ands

(k)
i−1,j = 0 ⇒ a

(k−1)
ij ≥ a

(k−1)
i−1,j +

u (i ∈ [2, m], j ∈ [n]).
Informally speaking, if we consider the sequence of

matrices starting withA and subtracting one by one the
S(k) taking S(k) exactly uk times, the lemma claims
that in each step we subtract anA′–shape matrix, where
A′ is the resulting matrix after the previous step.

Proof. Assume the contrary and letk be the first index
where one of the two claims fails to be true. By sym-
metry, we assume

s
(k)
ij = 1, s

(k)
i+1,j = 0, a

(k−1)
ij < a

(k−1)
i+1,j + u.

SinceS(k) is anA–shape matrix, the TGC impliesaij >

ai+1,j . From our assumption we obtaina(k)
ij < a

(k)
i+1,j ,

hence
s
(k′)
ij = 0 and s

(k′)
i+1,j = 1

for somek′ > k, contradicting the assumption thatS(k′)

is anA–segment.

We call a pair(u, S) of a positive integeru and an
A–shape matrixS anadmissible segmentation pair, if
• A − uS is nonnegative,
• sij = 1 andsi+1,j = 0 ⇒ aij ≥ ai+1,j +

u (i ∈ [m − 1], j ∈ [n]),
• sij = 1 andsi−1,j = 0 ⇒ aij ≥ ai−1,j +

u (i ∈ [2, m], j ∈ [n]),
• c(A − uS) = c(A) − u.
Now we proceed exactly as in [7]: we find an admissible
segmentation pair(u, S) with maximalu and continue
with A− uS until we reach the zero matrix. In order to

derive an upper bound for the coefficientu in an admis-
sible segmentation pair(u, S), we use an idea from [2]
and identify the set of segments with the set of paths
from D to D′ in the layered digraphΓ = (W, F ), con-
structed as follows. The vertices in thei−th layer corre-
spond to the possible leaf positions in rowi (1 ≤ i ≤ m)
and two additional verticesD andD′ are added:

W = {(i, l, r) : i ∈ [m], l ∈ [0, n], r ∈ [l + 1,

. . . , n + 1]} ∪ {D, D′}.

Between two vertices(i, l, r) and(i + 1, l′, r′) there is
an arc if the corresponding leaf positions are consistent
with the ICC, i.e. ifl′ < r andr′ > l. In addition, the
arc setF contains all arcs fromD to the first layer and
from the last layerm to D′, so

F = F+(D) ∪ F−(D′) ∪
m−1
⋃

i=1

F+(i), where

F+(D) = {(D, (1, l, r)) : (1, l, r) ∈ W},

F−(D) = {((m, l, r), D′) : (m, l, r) ∈ W},

F+(i) = {((i, l, r), (i + 1, l′, r′)) : l′ < r, r′ > l}.

There is a bijection between the possible leaf positions
and the paths fromD to D′ in Γ. This is illustrated in
Fig. 6 which shows the paths inΓ for m = 4, n = 2,
corresponding to the shape matrices

(

1 0
0 1
1 1
1 0

)

(straight lines) and

(

0 1
1 1
1 0
0 1

)

(dashed lines).

For each vertex(i, l, r) let u0(i, l, r) denote an upper
bound for the coefficient in an admissible segmentation
pair (u, S) whereS is a shape matrix withli = l and
ri = r. Then any admissible segmentation pair(u, S)
corresponds to a path

D, (1, l1, r1), (2, l2, r2), . . . , (m, lm, rm), D′

with the following properties.
• For i ∈ [m], u0(i, li, ri) ≥ u.
• For i ∈ [m − 1] andj ∈ [n],

li < j ≤ li+1 or ri+1 ≤ j<ri =⇒ aij ≥ ai+1,j + u,

li+1 < j ≤ li or ri ≤ j<ri+1 =⇒ ai+1,j ≥ aij + u.

If we have good upper boundsu0(i, l, r), this yields a
considerable reduction of the set of shape matrices that
have to be considered in the search for an admissible
segmentation pair. In our implementation we used the
bound from the following lemma.
Lemma 8. For i ∈ [m], let gi = c(A)−

∑n
j=1 max{0,

aij − ai,j−1}, and suppose(u, S) is an admissible seg-
mentation pair with parametersli, ri (i ∈ [m]). Then
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Fig. 6. The vertices ofΓ for m = 4, n = 2 and two(D, D′)–paths.

for i ∈ [m],

u ≤ gi if ri = li + 1 (10)

u ≤ min{gi + max{0, ai,r−1−air}, gi+max{0, ai,l+1

− ail},
1
2 (gi + max{0, ai,l+1 − ail} + max{0,

ai,r−1 − air})} if ri > li + 1. (11)

Proof. For brevity of notation, letdij = max{0, aij−
ai,j−1} for (i, j) ∈ [m]× [n]. Observe that

∑n

j=1 dij is
just the weight of the path

0, (i, 0), (i, 1), . . . , (i, n), (i, n + 1), 1

in G. The fact that(u, S) is an admissible segmentation
pair implies,

n
∑

j=1

d′ij ≤ c(A) − u, (12)

whereA′ = (a′

ij) = A − uS andd′ij = max{0, a′

ij −
a′

i,j−1}. If ri = li + 1, a′

ij = aij for all j and this
implies (10). For (11), observe that

d′i,li+1 = di,li+1 − min{u, di,li+1},

d′i,ri
= di,ri

+ max{0, u − max{0, ai,ri−1 − airi
}},

d′ij = dij for j 6∈ {li+1, ri}.

With (12) we obtain
∑n

j=1 dij − min{u, di,li+1}} + max{0, u − max{0,

ai,ri−1 − airi
}}} ≤ c(A) − u,

hence

u − min{u, di,li+1} + max{0, u − max{0, ai,ri−1−
airi

}} ≤ gi

and this implies (11). �

Algorithm 3 summarizes our greedy approach for the
construction of aDT -optimal shape matrix decomposi-
tion with a smallDC.

6. Test results

We implemented Algorithm 3 in C++ and computed
decompositions for15 × 15−matrices, where the en-
tries are chosen uniformly and independently from
{0, . . . , L}. Table 2 shows the results for different val-
ues ofL, where for each row of the table we averaged
over 1000 sample matrices. In the second column we

Table 1

L DT DC DC CPU time
(plain) (reduced) (sec)

4 21.2 21.0 18.0 93
7 34.9 34.2 24.1 276
10 48.2 46.3 28.1 399
13 61.7 57.9 31.2 556
16 74.8 68.2 33.5 647

Test results for random15 × 15-matrices with entries
from {0, . . . , L}.

have the averageDT , which is the same as for the algo-
rithm of Kamath et al. [9]. The third column shows the
DC of a decomposition according to Algorithm 2 (or
equivalently the algorithm of Kamath et al.). Clearly,
this algorithm just aims at minimizing theDT with-
out taking theDC into account, hence theDC almost
equals theDT . In the fourth column we have theDC

of the decompositions according to Algorithm 3, and
we see that this approach yields considerable savings in
terms of the number of used shape matrices. The CPU
times (on a 2GHz workstation with 2GB RAM) in the
third columns show that the algorithm is practicable
for intensity matrices of the considered size (note that
the times are for the decomposition of 1000 matrices,
so the average time for a single matrix is still below
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Algorithm 3 (DT-optimal shape matrix decomposition with reduced DC).
while A 6= 0 do

Determine the complexityc(A) and the numbersu0(i, l, r) for
i ∈ [m], l ∈ [0, n], r ∈ [n + 1] according to Lemma 8
u := max{k : There is a pathP from D to D′ in Γ

with u0(i, l, r) ≥ k for all (i, l, r) ∈ P}
complete:=false;
while (not complete)do

for the pathsP in Γ with u0(i, l, r) ≥ k for all (i, l, r) ∈ P do
if (not complete)then

Let S be the shape matrix corresponding toP

if (u, S) is an admissible segmentation pairthen
complete:=true

if (not complete)u := u − 1
A := A − S

a second). But of course the backtracking for deter-
mining the maximal value ofu becomes very slow for
larger matrices, and more efficient methods are needed
for matrix dimensions of practical relevance.

In order to evaluate the influence of the TGC, in Table
3 we compare results for different types of constraints.

Table 2

L unconstrained only ICC ICC and TGC
DT DC DT DC DT DC

4 17.9 10.9 19.5 14.5 21.2 18.0
7 29.5 13.1 31.7 18.2 34.9 24.1
10 40.9 14.7 43.8 20.7 48.2 28.1
13 52.4 15.8 55.7 22.5 61.7 31.2
16 63.8 16.8 67.7 24.0 74.8 33.5

Test results for random15 × 15-matrices with entries
from {0, . . . , L} for different types of constraints.

Finally, we also tested our algorithm with 13 clini-
cal matrices, each with 10 fluence levels. The results
are shown in Table 4. The computation times for these
matrices were negligible (less than a second).

Clearly, the addition of the TGC causes an increase in
the DT and in the DC. Further investigations are neces-
sary in order to evaluate the potential tradeoff between
DT (and corresponding leakage) and tongue and groove
underdosage.

7. Conclusion

We have presented an algorithm for MLC shape ma-
trix decomposition taking into account the interleaf col-
lision constraint and eliminating tongue-and-groove un-
derdosage effects. We proved that our algorithm is op-
timal with respect to the total number of monitor units,
thus completing the argument of [9] where the opti-
mality was proved only for unidirectional schedules. In

Table 3

unconstrained with ICC with ICC and TGC
no. size DT DC DT DC DT DC

1 10 × 11 16 8 16 8 17 11
2 10 × 9 16 7 16 8 19 13
3 9 × 9 20 8 20 10 20 12
4 9 × 9 19 8 19 11 21 15
5 10 × 8 15 7 18 9 19 11
6 9 × 9 17 9 17 9 19 11
7 10 × 8 18 7 18 10 21 12
8 14 × 12 22 9 22 10 25 14
9 14 × 10 26 10 30 15 34 19
10 14 × 10 22 9 23 13 28 15
11 15 × 10 22 10 22 11 25 16
12 15 × 11 23 10 23 12 23 16
13 14 × 10 23 9 24 11 27 17

Test results for clinical matrices.

addition, we derived a heuristic approach to the reduc-
tion of the number of shape matrices. Two open ques-
tions arise immediately and are the subject of ongoing
research. 1. Is there a nice characterization for the min-
imal decomposition time if we have no interleaf con-
straint but still want to eliminate tongue-and-groove un-
derdosage? 2. What about a computationally more effi-
cient heuristic for the decomposition cardinality?
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