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Abstract

One of the main tasks in computational biology is the computation of alignments of genomic sequences to reveal
their commonalities. In case of DNA or protein sequences, sequence information alone is usually sufficient to compute
reliable alignments. RNA molecules, however, build spatial conformations, which can be represented by graph-like
secondary structures. Often, secondary structures are more conserved than the actual sequence. Hence, computing reliable
alignments of RNA molecules should take this additional information into account.

We present a novel framework for the computation of exact multiple sequence-structure alignments. We give a graph-
theoretic representation of the sequence-structure alignment problem and phrase it as an integer linear program. We
identify a class of constraints that make the problem easier to solve and relax the original integer linear program in a
Lagrangian manner. We run experiments on data from the RFAM database and compare the performance of our model to
heuristically inferred multiple structural alignments. Finally, experiments on a recently published benchmark show that
in the pairwise case our algorithm achieves results comparable to those obtained by more costly dynamic programming
algorithms while needing less computation time.
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1. Motivation

Recent advances in modern molecular biology would
have been impossible without the application of sophis-
ticated algorithmic and mathematical modelling tech-
niques. Some of the most eminent examples are the de-
termination of the genomic sequences of human and
fruit fly [1,49] that marked a milestone in modern biol-
ogy. Besides that, biologists use programs like BLAST
[6] as an everyday tool to find similar sequences in large
databases.

Advanced combinatorial optimization entered the
field around the mid 1990s when Kececioglu in-
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troduced the notion of a maximum trace [33], and
has been extended to various fields in subsequent
years [3, 5, 8, 14, 35, 39, 44]. The interested reader
is referred to [24] where the authors give a survey
on combinatorial optimization problems appearing in
computational biology.

Sequence analysis of proteins, RNA, and DNA is still
the core application in computational biology. The hu-
man genome, for example, can be seen as an approxi-
mately three billion character long string over the four-
letter DNA alphabet Σ = {A,G,C, T}. The first step
in almost every analysis is the computation of an align-
ment of two sequences in order to detect their common-
alities: a pairwise sequence alignment of sequences a
and b denotes an arrangement of a and b such that iden-
tical or similar characters are written in one column.
This is accomplished by inserting a so called gap char-
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CGCG

C-CG

global: local:

Fig. 1. Given the two input sequences to the left, one possible
global alignment (aligning the entire sequences) is shown in
the middle, whereas the right-hand side shows one possible
local alignment (aligning two subsequences)
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Fig. 2. Alignment graphs. Vertices correspond to characters
in a sequence, solid lines to alignments of characters: Given
the input sequences on the left, we construct a complete
bipartite graph. The subset of edges shown in bold represent
the alignment on the right side

acter, usually “-”, into the sequences. Scores for pairs
of symbols express the benefit or penalty for aligning
these two symbols. The seminal paper of Needleman
and Wunsch described an algorithm to compute an op-
timal global alignment of two strings [42], which has
been subsequently modified to detect locally similar
subsequences [47]. Figure 1 shows an illustration for
both global and local sequence alignment.

A different way to model sequences and alignments
is by weighted graphs: We set the nucleotides as the
nodes in the graph, and we insert edges between every
node from the first to the second sequence. The edge
weights correspond to the score of aligning the first
to the second nucleotide. An alignment is then a non-
crossing matching of maximum weight in a bipartite
graph. See Fig. 2 for an illustration.

Although the variety and applications of alignment
problems tremendously increased over the years, the
core algorithms are largely based on dynamic pro-
gramming (DP). In [44] the authors describe the first
graph-theoretical formulation for the NP-hard problem
of aligning multiple sequences and solve it exactly
using branch-and-cut.

Another important class of molecules in the cell are
RNAs. Until very recently, the central dogma of molecu-
lar biology was that DNA is transcribed into its working
copy RNA, and RNA sequences in turn are translated
into proteins, the actual functional units in the cell. In
the last years, however, it became evident that RNA it-
self is able to trigger or inhibit important functions in
the cell [40], boosting the interest in the study of RNA
molecules.

From an algorithmic point of view, the sequence
alignment algorithms for DNA still apply in case of
RNA sequences, the only difference is that the four-
letter alphabet Σ contains a U instead of the T . It has
been shown, however, that the sequence alone does not
carry all information to compute reliable alignments.
An RNA sequence folds back onto itself and forms
hydrogen bonds between pairs of (G,C), (A,U), and
(G,U). These bonds lead to the distinctive secondary
structures of an RNA sequence. Figures 4 and 5 show
common representations of small toy examples of RNA
sequences together with their secondary structure.

In the course of evolution, RNA sequences mutate at
a much higher rate than the structure that they are form-
ing, following the structure-function paradigm: RNA
molecules with different sequences but same or simi-
lar secondary structure are likely to belong to the same
functional family, in which the secondary structure is
conserved by selective pressure. This in turn means
that the computation of reliable alignments should take
structural information into account. Figure 3 shows an
example of two possible alignments of two RNA se-
quences and structures, where the first maximizes the
structural similarity and the second maximizes the se-
quence similarity.

Figure 3 also contains a so called pseudoknot de-
picted by the red line crossing the other lines in the
secondary structure. Pseudoknots do occur naturally
in some classes of RNA families. Their presence or
absence in the corresponding computational models
plays an important role for the computational com-
plexity of the corresponding optimization problems.
Allowing pseudoknots makes the problems computa-
tionally hard [23]. Hence, most approaches assume
a pseudoknot-free, nested structure as their input. A
nested structure can be drawn as an outer-planar graph
in its circular representation (see Fig. 5 on the right
side for an illustration): Nested structures allow a
straightforward decomposition of the entire structure
into smaller substructures leading to polynomial time
algorithms based on the principle of dynamic program-
ming. In addition it is well known that the multiple
alignment problem is NP-hard [50] even without con-
sidering secondary structure.

Subsuming the above introductory discussion, we aim
at solving the sequence-structure alignment problem:
Given two or more RNA sequences, we want to find an
optimal multiple sequence-structure alignment.

More specifically, let A denote an alignment of the
sequences. We define by sS(A) the sequence score
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GCGGAUAACCCCU
GGAUACCAUCG

-GCGGAUAACCCCU
GG-AUA-CCA-UCG

GCGGAUAACCC-CU
--GGAUA-CCAUCG

(a) (b) (c)

Fig. 3. Given two RNA sequences with their corresponding secondary structure (a), alignment that maximizes sequences and
structure score (in grey) (b), alignment maximizing sequence score alone (in light grey) (c)
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Fig. 5. Graph-based representations of RNA structures. The left side shows the standard graph representation, whereas on the
right side a circular graph representation is given. Adding the dotted red edge yields a pseudoknot, i.e., crossing base pairs, in
the secondary structure
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Fig. 4. Two ways to depict an RNA sequence and correspond-
ing secondary structure. Left: the bracket notation in which
pairing brackets indicate base pairs. Right: an alternative way
to represent the structure using a graph

of alignment A and by sP (A) the score of structural
matches that are realized by the alignment A. We
aim at maximizing the combined sequence-structure
score, that is, finding an alignment A∗ that maximizes
sS(A∗) + sP (A∗).

2. Previous Work

Sankoff described the first algorithm for the simul-
taneous alignment of sequence and folded structure
in his seminal paper [45]: the original dynamic pro-
gramming algorithm takes O(n3k) and O(n2k) in time

and space, where k is the number of sequences and
n their maximal length. This makes the algorithm ap-
plicable only to short sequences even in the pairwise
case. Consequently, light-weight implementations were
subsequently developed that restricted the original re-
cursions in various ways, like banding [30], or by
keeping some aligned positions fixed a priori [19, 29].
Bafna et al. [7] give recursions for the simultaneous
alignment of sequence and structure that build the basis
for subsequent work [28, 48].

In [52] the authors gave an alternative model for com-
paring RNA sequences. They view the nested structures
as a tree and compute the minimal number of node oper-
ations (node substitution, node insertion, and node dele-
tion) to transform one tree into the other. Along these
lines the authors of [32] propose an alternative view by
introducing the alignment of trees.

Jiang et al. [31] introduce so called edit operations on
RNA structures to transform on structure into the other.
A cost function gives the score for each edit operation:
the goal is then to find a series of operations of minimal
cost to transform one RNA structure into the other.

Evans presented the model of an arc-annotated
sequence in [21] and reduces the computation of
sequence-structure alignments to the computation of
the longest arc-preserving common subsequence. The
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authors of [18] present a novel computational model for
aligning multiple RNA structures based on the notion
of a linear graph.

Lenhof et al. [39] gave a different approach for com-
paring RNA structures: they phrase their graph-based
model as an integer linear program, which they solve
using the branch-and-cut principle. They align RNA
sequences with known structure to those of unknown
structure by maximizing the sequence and structure
score. Their approach allows for pseudoknots and is
able to tackle problem instances with a sequence length
of approximately 1400 bases. However, for many prob-
lem instances of that size their algorithm already needs
prohibitive resources. Lancia and coworkers developed
a branch-and-cut algorithm [36] that is similar to [39]
for the related problem of aligning contact maps. In
subsequent work [14] Lancia and Caprara introduced
Lagrangian relaxation to the field of computational
biology: Their formulation is based on previous work
in the field of quadratic programming problems like
the Quadratic Knapsack Problem [15] or the Quadratic
Assignment Problem [16].

In [8] the authors adapt the Lagrangian relaxation for-
mulation to the problem of aligning two RNA structures:
Their implementation yields an algorithm that is an or-
der of magnitude faster than the algorithm from [39]
for solving the same instances with respect to the same
objective function. Along these lines, [10] describes an
initial integer linear programming formulation for solv-
ing multiple RNA structures simultaneously. Althaus
et al. [4] give a formulation for aligning multiple se-
quences with arbitrary gap costs which also contains ex-
tensive polyhedral studies about facet-defining inequal-
ities.

In this paper we present a graph-based model that uni-
fies the formulations given in [10] and [4] for the simul-
taneous alignment of multiple RNA structures. Here, we
concentrate on a sound description of our mathematical
basis, a first formulation for multiple structural RNA
alignments including arbitrary gap costs in the graph-
based framework, and our algorithmic contribution. In
a companion paper, we focus on the heuristic applica-
tion and comparison of our new method to state-of-the
art tools [11].

Section 3. describes the graph-based model. In
Sect. 4. we give an integer linear programming (ILP)
formulation for our model and show how we find
(near-)optimal solutions using Lagrangian relaxation.
Section 5. contains computational experiments on data
from the RFAM database: we compare the objective

function values of truly multiple structural alignments
and heuristically inferred ones. Furthermore, we briefly
report on computational results on the recently pub-
lished benchmark set BRALIBASE [51]. We show that
our approach yields comparable results in the pairwise
case to other state-of-the-art programs while needing
less computation time.

3. Graph-theoretic framework

We first give some basic definitions that we use
throughout the rest of the paper. Afterwards, we de-
scribe our graph-theoretical model, which is based on
the formulations given in [8] and [4].

3.1. Basic Definitions

Definition 1. Let Σ be some alphabet excluding the gap
character “-”, and let Σ̂ = Σ ∪ {-}. Given a set S of k
strings s1, . . . , sk over Σ, we call A = (ŝ1, . . . , ŝk) a
multiple alignment of the sequences in S if and only if
the following conditions are satisfied: (a) The sequences
ŝi, 1 ≤ i ≤ k, are over the alphabet Σ̂, (b) all sequences
ŝi have the same length |A|, (c) sequence ŝi without “-
” corresponds to si, for 1 ≤ i ≤ k, and (d) there is no
index j such that ŝi

j = “-”, 1 ≤ i ≤ k. By si
j we refer

to the jth character in sequence si. We define Mi(j) as
the mapping of si

j to its position in the alignment, and
refer by M−1

i (j) to the mapping from the position in
the alignment to the actual position in the sequence. If
ŝi

j 6= “-” and ŝl
j 6= “-”, 1 ≤ j ≤ |A|, then we say that

si
M−1

i
(j)

is aligned to sl
M−1

l
(j)

, and to a gap otherwise.
Alphabets commonly used in computational biology

are the four letter alphabet Σ = {A,G,C, T} or Σ =
{A,G,C,U} in case of DNA or RNA sequences, re-
spectively. We define a scoring function σ : Σ̂×Σ̂→ R
that represents the benefit of aligning the two charac-
ters. Usually, pairs of identical characters receive a high
score, whereas different characters get a low score. We
extend the score definition to alignments:
Definition 2. Given a set S of k strings s1, . . . , sk,
an alignment A consisting of strings ŝ1, . . . , ŝk, and a
scoring function σ, the sum-of-pairs (SPS) score of A
is defined by

SPS(A, σ) =
k−1∑
i=1

k∑
j=i+1

|A|∑
l=1

σ(ŝi
l, ŝ

j
l ) .

Intuitively speaking, the sum-of-pairs score adds up
all scores of pairs of aligned characters in the alignment
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AAAAAA
AAA

(a)

AAAAAA
A-A-A-

(b)

AAAAAA
AAA---

(c)

Fig. 6. Given the sequences from (a), a linear gap function
would assign the same gap score to the alignment of (b) and
(c). The beginning of a gap, however, should be penalized
higher compared to subsequent gap characters, and therefore
the alignment of (c) is biologically more accurate

A. Usually, we are interested to find an optimal multiple
sequence alignment under the scoring function σ.
Definition 3. Given a scoring function σ and a set S of
sequences, we aim at computing an alignment A∗ with

SPS(A∗, σ) = max
A∈A

SPS(A, σ) ,

whereA is the set of all possible multiple alignments for
S. We call A∗ an optimal multiple sequence alignment
of S under the scoring function σ.

This score model does not explicitly model gaps; they
are inherently present by the alignment of a gap char-
acter to a non-gap character. Hence, it is not possible to
penalize different numbers of consecutive gaps differ-
ently. For example a gap of length three—e.g., align-
ing three ‘A’s to three gaps—achieves the same score
as three separate individual gaps, see Fig. 6 (b) and (c).

Biological findings motivate a more complicated gap
model: the beginning of a gap should be penalized
higher compared to subsequent gap characters. This
leads to affine gap costs that score a gap of length x by
a + (x − 1)b, where a > b are the gap open and gap
extension penalties. Using this model clearly favors the
single gap, see Fig. 6 (c), over the three individual gaps,
see Fig. 6 (b).

We therefore introduce the following score which
models gaps explicitly and hence can assign affine gaps
costs (or any other gap cost) to the gaps in an align-
ment. We denote a gap of length ` in sequence i at po-
sition j by a triple (i, j, `) and assign it a penalty score
γ(i, j, `) ∈ R≤0.
Definition 4. Given a set S of k strings s1, . . . , sk, an
alignmentA consisting of strings ŝ1, . . . , ŝk, a sequence
scoring function σ, and a gap penalty function γ. We
denote the gaps in A with

G(A) :={(i, j, `) | sequence i has a gap of length `
at position j in A}

The gapped sum-of-pairs (GSPS) score of A is de-

fined by

GSPS(A, σ, γ) =
k−1∑
i=1

k∑
j=i+1

|A|∑
l=1

σ(ŝi
l, ŝ

j
l )+∑

(i,j,`)∈G(A)

γ(i, j, `) .

Note that γ assigns negative scores to gaps in the
alignments.

As described in Sect. 1., sequence alignments are
in general not sufficient enough to build reliable RNA
alignments. Therefore, in addition to the gaps, we pro-
pose to incorporate structural information. This leads to
the notion of annotated sequences.
Definition 5. Let s = s1, . . . , sn be a sequence of
length n over the alphabet Σ = {A, C, G, U}. A pair
(si, sj) is called an interaction if i < j and nucleotide
i interacts with j. In most cases, these pairs will be
(G,C), (C,G), (A,U), (U,A), (G,U), or (U,G). The
set p of interactions is called the annotation of sequence
s. Two interactions (se, sf ) and (sg, sh) are said to be
inconsistent, if they share one base; they form a pseudo-
knot if they “cross” each other that is if e < g < f < h
or g < e < h < f . A pair (s, p) is called an annotated
sequence. Note that a structure where no pair of inter-
actions is inconsistent with each other forms a valid
secondary structure of an RNA sequence, possibly with
pseudoknots.
Definition 6. Given a sequence alignment A =
(ŝ1, . . . , ŝk) of k sequences, consider two annotated
sequences (si, pi) and (sj , pj). We call two interactions
(si

e, s
i
f ) ∈ pi and (sj

g, s
j
h) ∈ pj a structural match if si

e

is aligned with sj
g and si

f is aligned with sj
h. Two struc-

tural matches (ŝi
e, ŝ

i
f ), (ŝj

e, ŝ
j
f ) and (ŝi

g, ŝ
i
h), (ŝj

g, ŝ
j
h)

are inconsistent if either e = g, f = g, e = h, or
f = h. We define a scoring function τ : Σ4 → R that
assigns a score to quadruples of characters representing
the benefit of matching the two interactions.

In other words, in case of a structural match of two in-
teractions, their “left” and “right” endpoints are aligned
by A. Two structural matches are inconsistent, if they
share an aligned column: In case of RNA sequences,
we allow each nucleotide to be paired with at most one
other nucleotide, inconsistent matches represent pair-
ings with two or more nucleotides which we do not al-
low in case of RNA sequences.

This leads to the definition of sequence-structure
alignments of RNA structures.
Definition 7. Given a set S of k strings s1, . . . , sk and
an alignment A consisting of strings ŝ1, . . . , ŝk. Let
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-GCGGAUAACCCC

GG-AUA-CCA-UC

U--GAC-CCU-CC

ŝ1

ŝ2

ŝ3

Fig. 7. Realized structural matches are highlighted with grey
edges: the structural match x = [(ŝ2

1, ŝ
2
5), (ŝ3

1, ŝ
3
5)] (the

red dotted edges) is inconsistent with the structural match
y = [(ŝ2

5, ŝ
2
10), (ŝ3

5, ŝ
3
10)], that is we either score x or y

G(A) be the set of all gaps of A, and let σ, τ , γ be
functions for scoring sequence, structural matches, and
gaps. Then the gapped structural sum-of-pairs score of
A is defined by

GSSPS(A, σ, τ, γ) =
k−1∑
i=1

k∑
j=i+1

 |A|∑
l=1

σ(ŝi
l, ŝ

j
l )+

|A|−1∑
l=1

|A|∑
m=l+1

τ(ŝi
l, ŝ

j
l , ŝ

i
m, ŝ

j
m)

+

∑
(i,j,`)∈G(A)

γ(i, j, `) ,

which does not score inconsistent structural matches,
that is, every base is part of at most one structural match.

Figure 7 gives an illustration for the definitions given
above. In analogy to the optimal sequence alignment
problem, we consider the optimal sequence-structure
alignment of RNA structures:
Definition 8. Given scoring functions σ, τ , and γ for
scoring sequence, structural matches and gaps. Let S be
a set of k sequences s1, . . . , sk. We aim at computing
an alignment A∗ with

GSSPS(A∗, σ, τ, γ) = max
A∈A

GSSPS(A, σ, τ, γ) ,

whereA is the set of all possible multiple alignments for
S. We call A∗ an optimal multiple sequence-structure
alignment of S.

3.2. Graph-Theoretical Model for Structural RNA
Alignment

3.2.0.1 Basic Model We are given a set of k anno-
tated sequences {(s1, p1), . . . , (sk, pk)} and model the
input as a mixed graph (V,L ∪ F ∪ D ∪ G). The set
V denotes the vertices of the graph, in this case the
bases of the sequences, and we write vi

j for the jth
base of the ith sequence. The set L contains undirected

G A A G C

G A G C G

C U G G

U

s2

s1

s3

v1
1 v1

2 v1
3

. . .

v2
1 v2

2 v2
3

. . .

v3
1 v3

2 v3
3

. . .

Fig. 8. Basic graph model of three annotated sequences con-
taining lines (grey solid lines) and interaction edges (bold
dotted edges). For sake of clarity we do not show all align-
ment edges, only the ones incident to v1

1

alignment edges between vertices of two different input
sequences—for sake of better distinction called lines. A
line l ∈ L with l = (vi

k, v
j
l ), i 6= j represents the align-

ment of the k-th character in sequence i with the l-th
character in sequence j. The set Lij represents all lines
between sequences i and j. We address the source node
and target node of line l by s(l) and t(l), respectively
(i.e., for l = (vi

k, v
j
l ) we have s(l) = vi

k and t(l) = vj
l ).

The set Lij
vi

k

is the subset of Lij containing only align-

ment edges whose source node is vi
k. Observe that the

graph (V,L) is k-partite.
The edge set F models the annotation of the input

sequences in our graph. Consequently, we have interac-
tion edges between vertices of the same sequence, i.e.,
edges (vi

k, v
i
l) representing the interaction between ver-

tices vi
k and vi

l . Figure 8 illustrates these definitions.

3.2.0.2 Consecutivity and Gap Arcs In addition to
the undirected alignment and interaction edges we aug-
ment the graph by the set D of directed arcs represent-
ing consecutivity of characters within the same string.
We have an arc that runs from every vertex to its “right”
neighbor, i.e., D = {(vi

j , v
i
j+1) | 1 ≤ i ≤ k, 1 ≤ j <

|si|}.
At this point, gaps are not represented in our graph

model. Hence, we introduce the edge setG: for each pair
of sequences (i, j) we have an edge aij

ef from vi
e to vi

f

representing the fact that no character of the substring
si

e . . . s
i
f is aligned to any character of the sequence j,

whereas si
e−1 (if e > 1) and si

f+1 (if f + 1 ≤ |sj |)
are aligned with some characters in sequence j. We say
that vi

e, . . . , v
i
f are spanned by the gap arc aij

ef . The
entire set G is partitioned into distinct subsets Gij with
i, j = 1, . . . , k, i 6= j, and Gij = {aij

lm ∈ G | 1 ≤
l ≤ m ≤ |si|}. Intuitively spoken, for each sequence i
we have k− 1 arcs between each pair of nodes (vi

e, v
i
f )

in order to represent gaps between the actual sequence
and the remaining k − 1 sequences.

Two gap arcs aij
ef , aij

mn ∈ Gij ,w.l.o.g. e < m, are in



136 Bauer, Klau and Reinert – Exact Multiple RNA Sequence-Structure Alignment

s1

s2

AGGCAGC
AG----A

G C A G C

A G A

G CA G

Fig. 9. A longer gap cannot be split into two shorter gaps:
the two dashed gap edges are in conflict with each other and
are replaced by the solid gap edge spanning the two shorter
gap edges

G A A G C

G A G C G

C U G G

U

s2

s1

s3

(a)

G A A G C

G A G C G

C U G G

U

(b)

Fig. 10. (a) Basic graph model augmented by gap edges
(interaction edges are not displayed) , (b) showing an instance
of a mixed cycle

conflict with each other if {e, . . . , f+1}∩{m, . . . , n} 6=
∅, that is, we do not allow overlapping or even touch-
ing gap arcs. This is intuitively clear, because we do not
want to split a longer gap into two separate gaps; as a
result there has to be at least one aligned character be-
tween two realized gap arcs. We define a set C contain-
ing all maximal sets of pairwise conflicting gap arcs.
Finally, we define Gij

vi
e↔vi

f

as the set of gap arcs that

span the nodes vi
e . . . v

i
f . See Fig. 9 for an illustration.

3.2.0.3 Mixed Cycles A path in (V,L ∪D) is an al-
ternating sequence v1, e1, v2, e2, . . . of vertices vi ∈ V
and lines or arcs ei ∈ L∪D. It is a mixed path if it con-
tains at least one arc in D and one line in L. A mixed
path is called a mixed cycle if the start and end vertex
are the same. A mixed cycle represents an ordering con-
flict of the letters in the sequences. In the two-sequence
case a mixed cycle corresponds to lines that cross each
other. The set of all mixed cycles is denoted by M. A
subset L ⊆ L corresponds to an alignment of the se-
quences s1, . . . sk if L ∪ D does not contain a mixed
cycle [33, 44]. In this case, we use the term alignment
for L.

3.2.0.4 Interaction Match Two interaction edges
o = (vi

k, v
i
l) ∈ pi and p = (vj

m, v
j
n) ∈ pj form an inter-

action match if two lines e = (vi
k, v

j
m) and f = (vi

l , v
j
n)

exist such that e and f do not cross each other. A subset
L ⊂ L realizes the interaction match (e, f) if e, f ∈ L.

G

G

C

G

C

G

l

k

m

(a)

G A A G C

G A G C G

C U G G

U

s2

s1

s3

GAAGC--

C-UGG--

GA-GCGU

(b)

Fig. 11. (a) Transitive edges must be realized: If k and l are
part of the alignment, then m has to be realized as well. (b)
Example of a valid gapped structural trace of three annotated
sequences. Three interaction matches are conserved by the
alignment

Observe that the definition of an interaction match is
a graph-theoretical reformulation of a structural match
as defined in Sect. 3.1.. The set I contains all possible
interaction matches of L.

3.2.0.5 Gapped Structural Trace A triple (L, I,G)
with L ⊆ L, I ⊆ I , and G ⊆ G denotes a valid gapped
structural trace if and only if the following constraints
are satisfied:
(1) For i, j = 1, . . . , k, i 6= j we defineLij = Lij∩L:

Then, for l = 1, . . . , |si| the vertex vi
l is incident

to exactly one alignment edge e ∈ Lij or spanned
by a gap arc g ∈ Gij .

(2) An alignment edge l can realize at most one single
interaction match (l,m).

(3) There is no mixed cycle M ∈ M such that M ∩
L = M .

(4) There are no two gaps arcs aij
kl, a

ij
mn ∈ G such that

aij
kl is in conflict with aij

mn.
(5) Given L, we denote byH(L) the transitive closure

of L. Then
H(L) = L

must hold true. This makes sure that alignment L
also realizes all transitive edges induced by L: See
Fig. 11(a) for an illustration.

See Fig. 11(b) for an illustration of a gapped structural
trace.
Observation 1. There is a one-to-one mapping be-
tween alignments realizing structural matches and
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gapped structural traces.

Proof. The correspondence follows the observation in
[4]. In our case, however, we have to additionally map
structural matches to realized interaction matches in the
gapped structural trace. Due to the one-to-one mapping
between structural matches and interaction matches, this
is straightforward.

We assign positive weights wl and wij to each line
l and each interaction match (i, j), respectively, repre-
senting the benefit of realizing the line or the match.
Although we are able to set each weight independently,
line weights are usually given by empirically derived
mutation score matrices where σ(si

k, s
j
l ) gives a high

value in case of identical (or similar) characters. We as-
sign scores to interaction edges by calculating base pair
probabilities [41]. The base pair probability bpp(vi

k, v
i
l)

gives the probability that nucleotides si
k and si

l fold onto
each other, i.e., bpp(vi

k, v
i
l) will be close to 1 if vi

k is
very likely to form a hydrogen bond with vi

l . To use the
probabilities in an additive scoring scheme, we perform
a logarithmic transformation, i.e., the actual score pi

kl

for an interaction between si
k and si

l is given by

pi
kl = lg

(
bpp(vi

k, v
i
l)

pmin

)
where pmin is the minimal probability that we con-
sider. The weight wı̂̂ for an interaction match of lines
ı̂ = (vi

k, v
j
m) and ̂ = (vi

l , v
j
n) is then given by wı̂̂ =

pi
kl + pj

mn, i.e., the sum of the scores of the realized
interaction edges.

Note that since each interaction edge occurs in two
interaction matches (m, l) and (l,m) we divide the
weight of these edges by two. Finally, we assign neg-
ative weights to gap edges aij

kl representing the gap
penalty for aligning substring si

k . . . s
i
l with gap charac-

ters in sequence j.

3.3. Complexity

Jiang and Wang showed that computing an optimal
multiple sequence alignment is NP-hard [50]. Along
these lines, Elias proves that the problem remains NP-
hard for different scoring functions [20].

The complexity of sequence-structure alignments de-
pend on the input of the problem and on the actual model
one is using: optimal pairwise sequence-structure align-
ments of RNA structures—as defined in Sect. 3.1.—
where pseudoknots are not allowed can be computed in
polynomial time [7]. Goldman et al. show in [23] that

computing the maximal contact map overlap—a prob-
lem similar to RNA alignment—is NP-hard in the pair-
wise case. They also state that the computation of the
maximal contact map overlap, where every node has a
maximum degree of 1, is already NP-hard. This prob-
lem corresponds exactly to the sequence-structure align-
ment of RNA structures in our model. Hence, comput-
ing sequence-structure alignments of two RNA struc-
tures of arbitrary structure, i.e., with pseudoknots, is
already NP-hard in the pairwise case.

In [21] Evans gave an NP-hardness proof for the com-
putation of the longest arc-preserving common subse-
quence. Along these lines, Blin et al. give several NP-
completeness proofs [12, 13] for variants of the arc-
annotated sequence model.

Computing sequence-structure alignments in the gen-
eral edit-model of [31] turns out to be MAXSNP-hard,
even if we do not allow crossing interactions. If one
limits the number of edit-operations by choosing appro-
priate costs per edit operations, the authors give polyno-
mial time algorithms based on dynamic programming.

4. Integer Linear Program and Lagrangian Relax-
ation

This section begins with our integer linear program-
ming formulation for the multiple sequence-structure
alignment problem, which is based on the graph-
theoretical model from the previous section. We then
show how to compute solutions to this integer linear
program (ILP) using the Lagrangian relaxation method.

4.1. Integer Linear Program

We associate binary variables with each line, interac-
tion match, and gap edge, and model the constraints of
a valid gapped structural trace by suitable inequalities
in the ILP.

The handling of lines and gap edges is straightfor-
ward: We associate an x and a z variable to each line
and gap edge, respectively, with the following interpre-
tation: xl = 1 if and only if line l ∈ L is part of the
alignment L, and za = 1 if and only if gap edge a ∈ G
is realized.

Interaction matches, however, are treated slightly dif-
ferently: Instead of assigning an ILP variable to each
interaction match, we split an interaction match (l,m)
into two separate directed interaction matches (l,m)
and (m, l) that are detached from each other. A directed
interaction match (l,m) is realized by the alignment L
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l m

G A U C

G A U CG

G A U C

G A U CG

Fig. 12. One interaction match is split into two directed in-
teraction matches

if l ∈ L. We then have ylm = 1 if and only if the di-
rected interaction match (l,m) is realized (note again
that ylm and yml are distinct variables). Figure 12 gives
an illustration of the variable splitting. Note that this
does not change the underlying model, it just makes the
ILP formulation more convenient for further processing.

Splitting interaction matches has first been proposed
by Caprara and Lancia in the context of contact map
overlap [14], whereas variable splitting, or Lagrangian
decomposition, is a well-known technique in mathemat-
ical programming [26].

max
∑
l∈L

wlxl +
∑
g∈G

wgzg +
∑
l∈L

∑
m∈L

wlmylm (1)

s. t.
∑

l∈L∩M

xl ≤ |L ∩M | − 1∀M ∈M (2)

xl + xk − xm ≤ 1 ∀(l, k,m) ∈ L, (xl, xk, xm)
forming a cycle (3)∑

a∈C

za ≤ 1 ∀C ∈ C (4)∑
l∈Lij

s(m)

xl +
∑

a∈Gij

s(l)↔s(l)

za = 1

1 ≤ i, j ≤ k, i 6= j,∀m ∈ Lij (5)∑
m∈L

ylm ≤ xl ∀ l ∈ L (6)

ylm = yml ∀ l,m ∈ L (7)
xl ∈ {0, 1} ∀l ∈ L (8)
ylm ∈ {0, 1} ∀l,m ∈ L (9)
zg ∈ {0, 1} ∀g ∈ G (10)

Fig. 13. Master ILP

Definition 9. We call the ILP (1)–(10) of Fig. 13 the
master ILP.

Note that we set the weights wl, wg , and wlm for
l,m ∈ L and g ∈ G as described in Sect. 3.2., and
therefore we have wg < 0 for g ∈ G.
Lemma 4..1. A feasible solution to the ILP (1)–(10)
corresponds to a valid gapped structural trace and vice
versa.

Proof. We first prove that a feasible solution (x̂, ŷ, ẑ)
of the ILP describes a valid multiple gapped structural
trace.

Let L̂ = {l ∈ L | x̂l = 1}. Observe that constraints
(2) guarantee that L̂ does not contain mixed cycles. If
L̂ generated a mixed cycle M , then |L̂ ∩M | = |M |.
But this would contradict (2) that

∑
l∈L̂∩M xl ≤ |L̂ ∩

M | − 1. Furthermore, there cannot be lines k, l ∈ L̂
such that there exists a line m 6∈ L̂ that is induced by k
and l, i.e., m is the transitive edge induced by k and l.
If this was the case, we have a sum of 2, contradicting
constraints (3).

Constraints (4) guarantee that there are no mutually
crossing gap edges: Assume there exists two gap edges
aij

kl and aij
mn that cross each other. Consequently, they

are in the same set C ∈ C of conflicting gap edges
contradicting that the sum of (4) is constrained by 1.

Equality (5) guarantees that every node is incident to
exactly one alignment edge or spanned by exactly one
gap edge. If a node was not incident to any line or gap
edge, we had a sum of 0. There cannot be any node
incident to a line and spanned by a gap edge, because
this implies a sum of 2.

Finally, a line cannot realize more than one directed
interaction match, otherwise this violates constraints
(6).

To complete the proof, we have to show that a valid
gapped structural trace represents a feasible solution to
the ILP. Given (L, I,G) withL ⊆ L, I ⊆ I , and G ⊆ G
that form a valid multiple gapped structural trace. Set
the values of the x̂, ŷ, and ẑ variables in correspondence
if the respective edges are part of L, I, or G.

Definition 10. We call the relaxed ILP consisting of
(1)–(10) without (7) the slave ILP.
Lemma 4..2. The slave ILP is equivalent to the multiple
sequence alignment problem with arbitrary gap costs.

Proof. The key observation is that after the removal of
constraints (7), variables ylm appear only in constraints
(6); thus, each variable xl is associated with a set of
ylm, the set of outgoing interaction matches that l can
realize.
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Hence, we have to distinguish two cases, depending
on whether a line l is part of an alignment or not. First,
assume xl = 0. In this case, as a consequence of (6),
all ylm must be zero as well

If, however, a line l = (vi
k, v

j
l ) is part of an alignment,

its maximal contribution to the score is given by solving

pl := max wl +
∑
m∈L

wlmylm +
∑

a∈Gij

s(l)↔s(l),G
ji

t(l)↔t(l)

waza

(11)

s. t.
∑
m∈L

ylm ≤ 1 (12)∑
a∈Gij

s(l)↔s(l),G
ji

t(l)↔t(l)

za = 0 (13)

xl ∈ {0, 1} ∀l ∈ L (14)
ylm ∈ {0, 1} ∀l,m ∈ L (15)
zg ∈ {0, 1} ∀g ∈ G (16)

Inequality (12) states that we can choose only one
single interaction match from the set of outgoing inter-
action matches that alignment edge l can possibly real-
ize. According to the objective function (11) it is clear
that this will be the one with the largest weight wlm.
Furthermore, there cannot be a gap arc that spans ver-
tex vi

k or vj
l , since otherwise constraints (13) would be

violated. This ILP (for each line l) is easily solvable by
just selecting the most profitable outgoing interaction
match (l, m̂) such that l and m̂ are not in conflict, which
can be done in linear time. Therefore, the profit a line
can possibly achieve is solely computed by considering
the weights of line l and of the best directed interaction
match (l, m̂) that line l can realize, i.e., pl = wl +wlm̂.

In the second step, we compute the optimal overall
profit by solving the ILP consisting of the remaining
constraints, which is given in Fig. 14.

The remaining ILP only considers x and z variables,
because due to the case distinction described above the
values of the y variables depend on the value of the cor-
responding x variables. Then, the remaining constraints
correspond to the multiple sequence alignment formu-
lation given in [4].

Let (x∗, z∗) be the solution to this problem. We claim
that an optimal solution of the relaxed problem is given
by (x∗, y∗, z∗) by setting y∗lm = x∗mylm̂ (remember that
ylm̂ is the highest scoring directed interaction match
that l can realize), and by setting the x and z variables
according to the solution of the multiple sequence align-
ment problem. First, it is easy to see that (x∗, y∗, z∗) is

max
∑
l∈L

plxl +
∑
g∈G

wgzg

s. t.
∑

l∈L∩M

xl ≤ |L ∩M | − 1 ∀M ∈M

xl + xk − xm ≤ 1 ∀(l, k,m) ∈ L, (xl, xk, xm)
forming a cycle∑

a∈C

za ≤ 1 ∀C ∈ C∑
l∈Lij

s(m)

xl +
∑

a∈Gij

s(l)↔s(l)

za = 1

1 ≤ i, j ≤ k, i 6= j,∀m ∈ Lij

xl ∈ {0, 1} ∀l ∈ L
zg ∈ {0, 1} ∀g ∈ G

Fig. 14. Computing the profit

indeed a feasible solution of the relaxed problem, since
(x∗, z∗) represent a valid alignment (with arbitrary gap
costs) and our choice of y∗ does not violate the restric-
tions given in (6). To see that (x∗, y∗, z∗) is optimal,
observe that its value is given by

∑
l∈L

plx
∗
l +

∑
g∈G

wgz
∗
g =

∑
l∈L

(wl + wlm̂)x∗l +
∑
g∈G

wgz
∗
g

=
∑
l∈L

wlx
∗
l +

∑
g∈G

wgz
∗
g︸ ︷︷ ︸

optimal sol. for MSA

+

∑
l∈L

∑
m∈L

wlmy
∗
lm︸ ︷︷ ︸

optimal sol. for ylm̂ due to (11)–(16)

We now proof that (x∗, y∗, z∗) is indeed the opti-
mal solution. Assume that there exists a valid solution
(x̄∗, ȳ∗, z̄∗) that has a higher objective function value
than (x∗, y∗, z∗). Clearly, (x∗, z∗) and (x̄∗, z̄∗) differ
in at least one position, and both form valid alignments
(we have to consider only x and z variables, because the
values of y follow from the choice of x). If, however,
(x̄∗, z̄∗) forms a valid sequence alignment, we would
have found it in the first place, because we are comput-
ing optimal multiple sequence alignments.
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4.2. Lagrangian Relaxation

Obviously we have not yet solved the master ILP,
since we dropped equalities (7). Instead of just dropping
them, we relax the master ILP in a Lagrangian fash-
ion: We move the dropped constraints into the objective
function and assign a penalty term—the Lagrangian
multiplier—to each dropped constraint. The multipliers
represent a penalty to the objective function in case the
dropped constraint is not satisfied.

Moving constraints (7) into the objective function
yields the Lagrangian dual, which is the slave ILP with
objective function

max
∑
l∈L

wlxl +
∑
g∈G

wgzg +
∑
l∈L

∑
m∈L

wlmylm+∑
l∈L

∑
m∈L

λlm(ylm − yml) .

(17)

Exploiting the fact that λlm = −λml, which we ensure
below, (17) can be reformulated to

max
∑
l∈L

wlxl+
∑
g∈G

wgzg+
∑
l∈L

∑
m∈L

(wlm+λlm)ylm .

(18)
Note that, according to Lemma 4..2, we can solve in-

stances of the Lagrangian problem by solving a multiple
sequence alignment problem with arbitrary gap costs
where the profits of the interaction matches are coded
in the weights of the lines.

The task is now to find Lagrangian multipliers that
provide the best bound to the original problem. In prac-
tice, iterative subgradient optimization as proposed by
Held and Karp [27] is widely used. This method deter-
mines the multipliers of the current iteration by adapt-
ing the values from the previous iteration.

More formally, we set λ1
lm = 0,∀m, l ∈ L and

λi+1
lm =


λi

lm if si
lm = 0

λi
lm − γi if si

lm = 1
λi

lm + γi if si
lm = −1

where si
lm = y∗lm−y∗ml and δi = µ

vU − vL∑
l,m∈L

(si
lm)2

.

Here, µ is a common adaption parameter and vU and
vL denote the best upper and lower bounds, respectively.

In each iteration of the subgradient optimization pro-
cedure we get a value for the Lagrangian dual. Given
this series (v1, v2, . . . , vn) we can set vU to min{vi |
1 ≤ i ≤ n}, the lowest objective function value of the
Lagrangian dual solved so far. To obtain a high lower
bound is more involved and we show in Sect. 4.3. how to
use the information computed in the Lagrangian prob-
lem in order to deduce a good feasible solution.

In our computational experiments we also tried more
advanced methods to solve the Lagrangian dual, for ex-
ample bundle methods [38]. However, currently the de-
scribed subgradient optimization exhibits better conver-
gence properties than bundle methods.

Note that unless the lower and the upper bound vL

and vU coincide, we cannot guarantee optimality. Even
if we had already found the optimal value v∗ of the
Lagrangian dual, the solution corresponding to v∗ is
not necessarily a valid solution in the primal problem.
Our experiments, however, show that in case of in-
stances that share medium or high structural similar-
ity, the lower and upper bound often coincide yielding
provable optimal solutions for our original problem. If,
however, the two bounds do not match, an incorpora-
tion of the Lagrange bounds into a branch-and-bound
framework is straightforward.

4.3. Computing a Feasible Solution

A solution (x∗, y∗, z∗) of the Lagrangian dual yields
a multiple alignment L (represented by x∗) plus some
information about interaction matches coded by the y∗-
values; see Fig. 15 (a). If for all lines l and m the
equation y∗lm = y∗ml holds, then the solution is a fea-
sible multiple structural alignment, and we have found
an optimal solution to the original problem. Otherwise,
some pairs y∗lm and y∗ml contradict each other. For a
valid secondary structure, however, we have to ensure
that y∗lm = y∗ml for all pairs of l,m ∈ L.

The set of lines and gap edges that constitute the
alignment is fixed: the problem is to find a subset Î
of interaction edges of maximum weight such that the
structural information for each sequence is valid, that
is, each base is paired with at most one other base. Fig-
ure 15 (a) illustrates the problem: Given the alignment
L = (l, k,m, n, o), we have different possibilities to
augment L by structural matches: We can for example
either realize the structural match (l,m) or (l, n), but
not both. Realizing both interaction matches would re-
sult in an invalid secondary structure. We therefore de-
fine the problem of finding the best structural comple-
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G G U C U A

A G C U A G G

l k m n ol k m n o

(a) (b)

G G U C U A

A G C U A G G

l k m n o

(c)

Fig. 15. Given the alignment L = (l, k, m, n, o) , we have
different possibilities to augment the alignment with struc-
tural matches. Creating an interaction matching graph (b) and
calculating a general matching of maximum weight yields
the best structural completion of L (c)

tion of an alignment L.
Definition 11. Given an alignment L and a set I of
interaction matches that L realizes. Find a subset Î ⊆
I such that Î forms a valid secondary structure—the
structural completion—of maximal weight on L.

We can formulate this problem as a general weighted
matching problem in an auxiliary graph MS , the inter-
action matching graph: MS = (V,E) where the set V
and E constitute vertices and edges, respectively. We
have V = (v̂1, . . . , v̂|L|) where v̂i corresponds to the
ith element of L. We insert an edge ei = (v̂i, v̂j) if
and only there exists a pair of interaction edges (vi

k, v
i
l)

and (vj
m, v

j
n) whose endpoints are adjacent to a pair

(o, p) ∈ L × L (see Fig. 15 (b)). The weight of edge
ei is given by the weight of the two interaction edges
(vi

k, v
i
l) and (vj

m, v
j
n).

Lemma 4..3. A matching of maximum weight in the
interaction matching graph MS corresponds to the best
structural completion of L.

Proof. The equivalence follows directly from the con-
struction of MS and the definition of a matching.

5. Computational Results

MLARA is our prototypical implementation of the
formulation for multiple structural alignments presented
in the previous section and is publicly available as part
of the open source library LISA [34]. The actual algo-
rithm is easy to implement and does not depend on com-
mercial LP-solvers. For the computation of the lower
bound, however, we use the matching routines from the
LEDA library [37]. According to Lemma 4..2, the solu-
tion to an instance of the Lagrangian problem amounts
to the computation of an exact multiple sequence align-
ment problem with arbitrary gap costs. Although this
problem is NP-hard, the branch-and-cut algorithm of
Althaus et al. [4] is able to solve medium-sized instances

within reasonable computation time, and we use their
code as a subroutine.

Table 1

Instance lara mLARA

tRNA #0 1072.37 1193.34 (0.94)
#1 1188.72 1194.33 (0.94)
#2 1431.85 1453.06 (0.99)
#3 1439.87 1469.63 (0.98)
#4 958.19 1014.61 (0.83)
#5 1167.46 1184.89 (0.88)
#6 1285.38 1299.14 (0.97)
#7 1262.62 1304.31 (0.98)
#8 1808.26 1772.04 (1.00)
#9 1141.16 1193.55 (0.92)
#10 1130.97 1134.20 (0.90)
#11 1134.41 1043.95 (0.80)
#12 1109.39 1113.45 (0.91)
#13 1274.95 1323.94 (0.97)
#14 1299.85 1254.51 (0.96)
#15 1275.82 1077.07 (0.88)
#16 857.06 1019.92 (0.88)
#17 1110.28 1133.84 (0.85)
#18 1280.29 1320.11 (0.99)
#19 1314.67 1366.26 (0.99)

5S
#0 1853.12 1922.20 (0.96)
#1 1810.34 2097.22 (0.99)
#2 2233.86 2259.01 (1.00)
#3 2008.30 2049.05 (0.98)
#4 1687.17 1735.34 (0.92)
#5 1702.27 1696.58 (0.88)
#6 1605.52 1682.68 (0.93)
#7 1911.39 1740.73 (0.90)
#8 2198.24 1956.62 (0.89)
#9 2014.57 2107.10 (1.00)
#10 2048.08 1946.53 (0.93)
#11 1693.10 1715.54 (0.92)
#12 1927.36 2023.18 (0.99)
#13 2208.30 1996.10 (0.86)
#14 2224.99 2267.25 (0.99)
#15 1954.85 2064.64 (0.97)
#16 2076.54 2116.64 (0.99)
#17 1915.61 1884.92 (0.94)
#18 2096.72 2171.81 (0.99)
#19 2131.44 2407.99 (0.99)

The comparison between the objective function values of
LARA and MLARA on 40 randomly generated tRNA and
5S RNA instances. The numbers in brackets give the level of
optimality. Note that in some cases the heuristic algorithm
produces better results, which is possible due to the time limit
and the fact that T-COFFEE adds more alignment edges to
the graph

In the following we will give a proof-of-concept of
our approach by running experiments on real data of
moderate size, setting all gap costs to zero. From the
RFAM database [25] we downloaded sequences that be-
long to the families of ribosomal L19 leader proteins,
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tRNAs, and ribosomal 5S RNAs (the RFAM IDs are
RF00556, RF00005, and RF00001, respectively).

As a first example we take L19 leader pro-
tein sequences (accession numbers: AL935256.1,
AE014216.1, and AP006627.1) and compute the op-
timal multiple alignment given the complete k-partite
graph containing 4106 alignment edges. We find a
provably optimal solution after 19 hours of computa-
tion. There are two interesting observations: First, the
optimal solution to the input instance is found within
the first 10 iterations of the computation, that is, only
70 seconds after starting the program. MLARA spends
the remaining time on proving the optimality of this
solution. Second, although we need the complete k-
partite graph to ensure optimality, many alignment
edges are not very likely to be part of the optimal
structural alignment, e.g., edges running from the first
vertex in the first sequence to the last vertex in the
second sequence. As one can see on the left side of
Fig. 16, the number of alignment edges greatly influ-
ences the running time for computing an exact multiple
structural alignment. We therefore follow the strategy
that we already employed in previous work [8–10, 39]:
We generate a set of reasonable alignment edges by
computing a conventional sequence alignment with
affine gap costs and subsequently insert all alignment
edges realized by any suboptimal alignment scoring
better than a fixed threshold s below the optimal score.
Although we cannot guarantee that the set of alignment
edges always contains the edges forming the optimal
multiple structural alignment, our experiments on the
RFAM database show that RFAM reference alignments
consist of alignment edges of small suboptimality.

We again take the sequences from our first example
and compute the multiple structural alignment based
on a reduced set of alignment edges: Already a sub-
optimality level of 5 suffices to generate all alignment
edges that are part of the provably optimal solution.
The reduced number of alignment edges—465 instead
of 4106—brings the overall running time down from 19
hours to 43.35 seconds.

In our experiments we realized that not only the
number of alignment edges influences the overall com-
putation time. As described in Sect. 4.2. we resort to
subgradient optimization to solve the Lagrangian dual.
By iteratively adapting the Lagrangian multipliers and
computing the multiple sequence alignment afterwards,
we observe an increase in the running time per itera-
tion over the course of all iterations. The right side of
Fig. 16 shows the development for an instance of three
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Fig. 16. Typical behavior for the multiple case. Left: The time
to compute an exact multiple sequence alignment increases
non-linearly with the number of alignment edges. Right: The
time to compute one single iteration for an instance contain-
ing 4106 alignment edges increases rapidly with the number
of iterations. This is due to the adaption of the Lagrangian
multiplier

L19 leader protein sequences.
As a second experiment, we assess the improvement

of the objective function value between heuristically
inferred multiple structural alignments [11] and prov-
ably optimal or near-optimal solutions of the exact
multiple sequence-structure model described in this
article: To this end, we randomly drew 20 instances
containing three input sequences of either tRNA or
ribosomal 5S RNA sequences (RFAM IDs: RF00001
and RF00005), resulting in 40 instances in total. Us-
ing our tool LARA, which yields the best results on
the BRALIBASE benchmark set [11], we compute all
pairwise alignments of a given instance and feed them
to the T-COFFEE software [43] to heuristically in-
fer a consistency-based multiple structural alignment.
Given this alignment, we again evaluate it under the
sum-of-pair objective function of MLARA.

Then, we take MLARA and compute the multiple
structural alignments: We allow a maximal computation
time of three hours per instance. If MLARA does not
terminate within three hours, we stop the computation
and report the best solution found so far. We then com-
pare the objective function values. We want to stress the
fact that we use exactly the same settings for both pro-
grams, i.e., we use the same scoring scheme and gener-
ate the same alignment edges such that the results are
comparable.

Table 1 shows the objective function values of the
alignments generated by LARA and MLARA on the 40
instances. Generally, MLARA reaches higher objective
function values than those computed by LARA. There
are, however, some instances where the heuristically in-
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Fig. 17. Left: The computation time per iterations oscillates
dramatically even between instances having almost the same
number of alignment edges: the circles and stars represent
the iterations of tRNA instances #2 (1755 edges) and #4
(1756 edges) from Tab. 1, respectively. Right: The solution
process may get stuck between two solutions and jumps back
and forth between these two, and therefore does not find the
global optimal solution. The plot shows the solution process
of the 5S instance #13 from Tab. 1

ferred alignments yield better objective function values
than MLARA. A closer inspection of those instances
reveals the following reasons:
• The computation time limit is too tight. Hence,

our program performs only a small number of it-
erations, and is therefore not able to adapt the La-
grangian multipliers accordingly.

In many instances, the time spent on one sin-
gle iteration is not predictable: The left side of
Fig. 17 shows the computation time per iteration
of the tRNA instances #2 (1755 alignment edges,
represented by the circles) and #4 (1756 alignment
edges, represented by the stars) from Tab. 1. Al-
though the number of alignment edges differs only
by one, the computation time per iterations varies
dramatically: Consequently, MLARA performs 80
and only 9 iterations for instances #2 and #4, re-
spectively.

• The right side of Fig. 17 shows the solution pro-
cess for 5S instance #13 from Tab. 1. After 110
iterations MLARA gets stuck between two solu-
tions and oscillates between these two (represented
by the two parallel lines from iterations 110-165).
From this point on, the algorithm is not able to
further converge to the global optimal solution.

• The T-COFFEE software potentially augments
the set of alignment edges when it heuristically
builds a multiple structural alignment based on all
pairwise alignments. This happens, for example,
for instance #8.

As described above and shown in Fig. 16, the over-

all running time of MLARA depends on the way we
solve the multiple sequence alignment problem, which
appears as the Lagrangian dual. The computation of op-
timal multiple structural alignments requires at least a
couple of hours of computation time making the so-
lution process rather tedious: We nevertheless want to
analyze the performance of our model on a large data
set such as the recently published BRALIBASE bench-
mark set of RNA sequence-structure alignments [51].
We therefore restrict ourselves to the special case of
computing pairwise sequence-structure alignments: in
the pairwise case standard dynamic programming algo-
rithms always solve the Lagrangian relaxed problem in
time O(nm), with n and m being the lengths of the
two input sequences, independent from the values of
the Lagrangian multipliers. This means that the running
time per iteration remains constant over the course of
all iterations.

We want to show that our model yields on aver-
age comparable or better alignments than other state-
of-the-art programs that build upon more costly dy-
namic programming algorithms. We do believe that this
comparison is useful, because it shows that the actual
model works: The limiting factor for computing larger
instances of multiple structural alignments faster is the
code that solves the multiple sequence alignment prob-
lem. In recent months there has been progress with re-
spect to this matter, as new algorithms for the exact
multiple-sequence-alignment problem are being pub-
lished, e.g., [2]. As soon as these programs become
available, we can simply plug them into our model
and will then able to solve larger instances of multiple
sequence-structure alignments.

Note that the following description of the pairwise
instances is just a short summary of the extensive analy-
sis that we give in our companion paper: The interested
reader is referred to [11] for the full description of our
results on the entire BRALIBASE data set.

Gardner et al. observe in [22] that structure-based
alignment programs produce significantly better align-
ments compared to sequence-based programs if the se-
quence similarity drops below approximately 50-60 per-
cent. For our tests, we therefore excluded all instances
that had a pairwise sequence similarity greater than 50
percent, resulting in 2251 instances containing two in-
put sequences.

We compared our algorithm to three other sequence-
structure alignment programs: FOLDALIGNM [48]
which is based on a variant of the Sankoff algorithm,
MARNA [46], and STRAL [17]. These programs have
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Fig. 18. Results of our implementation on instances contain-
ing two input sequences. One dot corresponds to one align-
ment, the lines represent the Lowess function, i.e., they give
the trend of the computed alignments. A line at 1.0 means
that every alignment is identical to the reference alignment:
Hence, the closer the line is to 1.0, the better the alignments
are on average. The left side shows all 2251 pairwise in-
stances, whereas the right side shows only instances of an
average pairwise sequence identity below 40%

running times of O(nm∆2), O(n2m2), and O(nm),
with n andm being the sequence lengths, and ∆ being a
FOLDALIGNM-specific parameter. All these programs
do not consider pseudoknots, i.e., crossing interactions.
Additionally, we took MUSCLE to compare our align-
ments with a program that is purely sequence-based.

Figure 18 shows the results of our experiments: the
x-axis denotes the pairwise sequence similarity of the
input instances, whereas the y-axis gives the COM-
PALIGN score of the computed alignment: The COM-
PALIGN score codes the degree of similarity to a refer-
ence alignment given by the percentage of columns that
are identically aligned as in the reference alignment. A
value of 1 states that the reference and test alignment
are the same, whereas a value of 0 denotes that no col-
umn was correctly aligned with respect to the reference
alignment. Hence, the higher the value, the bigger is the
similarity of an alignment to the reference alignment.

In the pairwise case LARA and FOLDALIGNM show
almost the same COMPALIGN performance: over all
2251 input instances LARA and FOLDALIGNM reach
an average value of 0.60 and 0.61, respectively. LARA,
however, only needs 86 minutes to compute all 2251
pairwise sequence-structure alignment. On the same in-
put set FOLDALIGNM needs 172 minutes. The other
structural alignment programs, STRAL and MARNA,
yield worse average COMPALIGN scores of 0.58 and
0.41 in 2.5 and 941 minutes of computation time, re-
spectively. The purely sequence based program MUS-
CLE reaches an average value of 0.58 in only 12 seconds
of computation time. The left side of Fig. 18 shows the

trend of the results for the tested programs using the
Lowess function, i.e., locally weighted regression.

Looking at these values, the rather small difference of
0.02 in the average COMPALIGN values between LARA
and STRAL does not seem to justify the higher running
time of LARA. Concentrating, however, on the hard-to-
align input instances that show very little sequence con-
servation, i.e., sequences showing an average pairwise
sequence identity below 40%, the picture changes:

For these 884 instances LARA, FOLDALIGNM,
STRAL, MARNA, and MUSCLE reach average COM-
PALIGN values of 0.60, 0.60, 0.52, 0.35, and 0.49,
respectively, see also the plot on the right side of
Fig. 18. This clearly shows that it indeed does pay off
using slower but exact methods when aligning input
instances of low average pairwise sequence identity,
where sequence information does not suffice to build
good alignments.
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