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Abstract

Simplex Adjacency graphs represent the possible Simplex pivot operations (the edges) between pairs of feasible bases
(the nodes) of linear optimization models. These graphs aremainly studied so far in the context of degeneracy. The
more general point of view in this paper leads to a number of new results, mainly concerning the connectivity and the
feasibility-optimality duality in these graphs. Among others, we present a very short proof of a result of P. Zörnig and
T. Gall (1996) on the connectivity of subgraphs corresponding to optimal vertices, and we answer H.-J. Kruse’s (1993)
question on the connectivity of graphs related to the negative pivots in optimal vertices.
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1. Introduction

Graphs that have the feasible bases of a given linear
optimization model as nodes and the Simplex piv-

ots (both positive and negative) as edges are called in
this paper Simplex Adjacency (SA-)graphs. The succes-
sive Simplex tableaus that occur during the execution of
the Simplex algorithm form a path in such graphs: from
an initial feasible basis to an optimal feasible basis(see,
for example, Chvátal’s graph in Sierksma[13]). SA-
graphs are mainly studied in the context of degeneracy
(for an extensive account on degeneracy in linear opti-
mization, see Greenberg[10]), where they are called de-
generacy graphs; see [2–6,16,8,15,16]. In Gal[2] these
graphs are presented for the first time as a tool to study
properties of degenerate extreme points of polytopes.
This paper collects the interesting properties of SA-
graphs, and presents a number of solutions to open prob-
lems concerning the connectivity of such graphs.

2. Connectivity in Simplex Adjacency Graphs

We use the constraint collection representation of the
feasible region of a given linear optimization model,
namely

P = {Ax ≤ b; x ≥ 0},

with x ∈ Rn, A ∈ Rm×n, b ∈ Rm, (m, n ≥ 1). It is
assumed thatP is nonempty. Bypol(P ) is denoted the
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polyhedron inRn, corresponding to the inequalities in
P . A basis of P is a subset of{x1, . . . , xm+n} consist-
ing of m elements of which the associated columns in
[AIm] are independent, withx1, . . . , xn the entries of
x andxn+1, . . . , xm+n the slack variables ofAx ≤ b.
The Simplex Adjacency(SA−) graph of P , notation
SA(P ), is a graph of which the nodes are the feasible
bases ofP , and two nodes are connected by an edge
iff the two associated bases can be obtained from each
other by one single Simplex pivot operation.

Every feasible basis ofP corresponds to a vertex
of pol(P ), but a vertex ofpol(P ) may correspond
to several feasible bases, and hence to several nodes
of SA(P ). A vertex that is k-degenerate (see e.g.
Sierksma,Tijssen[14]) therefore corresponds to

(

n

k

)

nodes. An edge ofSA(P ) is called apositive (negative)
edgeif the associated pivot is performed on a positive
(negative) entry in the associated Simplex tableau. In
this paper we represent Simplex tableaus in the form of
the convenient Tucker Simplex tableaus; see e.g. Balin-
ski,Tucker[1], and Tijssen,Sierksma[14]. The subgraph
of SA(P ) that contains only the positive (negative)
edges of SA(P ) is called the positive(negative)
SA−graph, and is denoted bySA(P )+ (SA(P )−). In
Theorem 2, it will be shown thatSA(P ) is connected
for eachP . However, bothSA(P )+ andSA(P )− may
be disconnected.

In general, ifpol(P ) contains at least two vertices,
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thenSA(P )− is disconnected, since it is not possible
to move from one feasible basis in one vertex to an-
other feasible basis in another vertex by negative pivots
only. Therefore, ifSA(P )− is connected,pol(P ) con-
tains only one vertex. However, this is not sufficient for
the connectivity ofSA(P )−, as the following example
shows.

Consider the constraint collection:

P = {2x1 ≤ 0; x1 ≥ 0},

and usex2 as the slack variable of the first constraint.
Thenpol(P ) has only one vertex(x1 = x2 = 0), and
two basesB1 andB2 that are connected in the SA-graph
of P by an edge that corresponds to a positive Simplex
pivot. The two corresponding Tucker Simplex tableaus
then read (with rhs = right hand side):

rhs x1

g = 0 0
−x2 = 0 2

basisB1 : {x2}

rhs x2

g = 0 0
−x1 = 0 0.5

basisB2 : {x1}

The negative SA-graphSA(P )− of P consists of
the two vertices ofB1 andB2 and contains no edges.
Therefore,SA(P )− is not connected. In general, pos-
itive SA-graphs are connected. If no vertex ofpol(P )
is degenerate, every feasible basis can be reached from
any other feasible basis by means of positive pivots.
This is the usual case when the Simplex algorithm is
applied. It is however possible that a positive SA-graph
SA(P )+ is not connected; see the example below. First
we give a number of properties of a constraint collec-
tion P with a disconnected positive SA-graph. We use
the following concept. Letv be any vertex ofpol(P ).
The Simplex v-Adjacency graph, denoted bySA(P )v,
is the subgraph ofSA(P ) induced by the feasible
bases ofv. The subgraph ofSA(P )v that contains
the positive (negative) edges is denoted bySA(P )v

+

(SA(P )v
−

), respectively.

Theorem 1 Let SA(P )+ be a disconnected positive
SA-graph of the constraint collectionP . Then for each
vertexv of pol(P ), the following assertions hold.
(a) Each connected component ofSA(P )+ contains a
node corresponding tov;
(b) SA(P )v

+ is disconnected, and every vertex of
pol(P ) is degenerate;
(c) pol(P ) is unbounded.

Proof. (a) Let CC be a connected component of
SA(P )+, and letv ∈ CC. Construct a Tucker Simplex

tableau that corresponds tov. Then, take any vertex
of pol(P ), and choose an objective function for which
this vertex is optimal. Use a Simplex pivot rule, that
uses only positive pivots to solve this tableau. The
Simplex method creates a path inCC that connects the
selected node with a basis corresponding tov. Hence,
the arbitrary selected vertexv corresponds to a node
(basis) ofCC.
(b) Take any vertexv of pol(P ). Since SA(P )+ is
disconnected, and every component ofSA(P )+ con-
tains a node that corresponds to a basis ofv, SA(P )v

+

is also disconnected. Therefore,SA(P )v
+ contains at

least two nodes. Hencev is degenerate.
(c) Take any vertexv of pol(P ), and letB1 andB2 be
two bases ofv from different components ofSA(P )+.
The basic variables inv, that have a strictly positive
value, are in both bases, so that the difference between
the two bases concerns only the basic variables with
zero values. DefineQ = B1 \ B2, andR = B2 \ B1;
i.e. Q∪R is the symmetric difference ofB1 and B2.
We assumeQ and R to be as small as possible; i.e.
with a positive pivot it is not possible to makeQ
and R smaller. We will show that the Tucker Sim-
plex tableau corresponding toB1 contains a column
without positive entries, but with at least one negative
entry, meaning thatpol(P ) is in fact unbounded. Let
A1 be the sub matrix in the tableau ofB1 of which
the columns correspond to the nonbasic variables in
R, and the rows to the basic variables inQ. SinceB1

and B2 are both feasible bases,A1 is a nonsingular
sub matrix, and becauseQ andR are as small as pos-
sible,A1 has no positive entries, and every column of
A1 contains at least one nonzero entry. Letxr be a
nonbasic variable w.r.t.B1 in R, and letxq be a ba-
sic variable inQ that corresponds to a negative entry
in the column ofxr in A1. Pivoting on this negative
entry results in the basis(B1 \ {xq}) ∪ {xr}, which
is a feasible basis, since the value ofxq is zero. If the
column ofxr does not contain a positive entry, then the
value ofxr can be increased unlimitedly, and therefore
pol(P ) is unbounded. If, on the other hand, the column
of xr contains a positive entry, we can find a basic
variablexz, by means of a usual ratio test, such that
a pivot on this positive entry yields the feasible basis
(B1 \ {xz}) ∪ {xr}. After this pivot, the entry on the
intersection of the column ofxz and the row ofxq has
become positive. Pivoting on this positive entry results
in the basis(((B1 \ {xz}) ∪ {xr}) \ {xq}) ∪ {xz} =
(B1 \ {xq}) ∪ {xr}, which is again a feasible ba-
sis. Since the difference between this basis andB2 is
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smaller than the difference betweenB1 and B2, we
have a contradiction with the assumption that the dif-
ference betweenB1 and B2 is as small as possible.
Therefore, the column ofxr cannot contain a positive
entry, and hencepol(P ) is unbounded.

We will illustrate Theorem 1 by means of a small
example. Consider the following constraint collection:

P = {−x1 ≤ 0; −2x1+x2+x3 ≤ 1; x1, x2, x3 ≥ 0}.

The possible Simplex tableaus are (usingx4 andx5 as
slack variables):

rhs x1 x2 x3

g = 0 0 0 0
−x4 = 0 −1 0 0
−x5 = −1 −2 1 1

basisB1 : {x4, x5}

rhs x1 x2 x5

g = 0 0 0 0
−x4 = 0 −1 0 0
−x3 = −1 −2 1 1

basisB2 : {x4, x3}

rhs x1 x5 x3

g = 0 0 0 0
−x4 = 0 −1 0 0
−x2 = −1 −2 1 1

basisB3 : {x4, x2}

rhs x4 x2 x3

g = 0 0 0 0
−x1 = 0 −1 0 0
−x5 = −1 −2 1 1

basisB4 : {x1, x5}

rhs x4 x2 x5

g = 0 0 0 0
−x1 = 0 −1 0 0
−x3 = −1 −2 1 1

basisB5 : {x1, x3}

rhs x4 x5 x3

g = 0 0 0 0
−x1 = 0 −1 0 0
−x2 = −1 −2 1 1

basisB6 : {x1, x2}

The Simplex Adjacency graph of this example is de-
picted in Figure 1.
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Fig. 1. Simplex Adjacency Graph.

The vertices of the feasible region from Figure
1 satisfy: (x1 = x2 = x3 = x4 = 0, x5 = 1),
(x1 = x2 = x4 = x5 = 0, x3 = 1), and(x1 = x3 =
x4 = x5 = 0, x2 = 1). It is easy to see that every
vertex contains two different bases and is therefore
degenerate. Namely,B1 andB4 correspond to(x1 =
x2 = x3 = x4 = 0, x5 = 1), B2 andB5 correspond
to (x1 = x2 = x4 = x5 = 0, x3 = 1), andB3 and
B6 correspond to(x1 = x3 = x4 = x5 = 0, x2 = 1).
Furthermore,pol(P ) is unbounded, because the col-
umn of x1 in the tableau ofB1 contains no positive
entry. Note that the positive SA-graph consists of two
disconnected triangles(B1, B2, B3) and(B4, B5, B6).

The following theorem on the connectivity of SA-
graphs can also be found in Kruse[12].
Theorem 2 . The Simplex Adjacency graph of any con-
straint collection is connected.

Proof. Let SA(P ) be the Simplex Adjacency graph
of the constraint collectionP . In the trivial case that
SA(P ) contains only one feasible basis, the theorem
is obviously true. Assume that there exist two different
feasible bases, sayB1 andB2. Start with a Tucker Sim-
plex tableau withB1 as basis and an objective function
that is optimal forB2. Use a Simplex pivot rule, that
uses only positive pivots to solve this tableau. The Sim-
plex algorithm follows a path inSA(P )+ that connects
B1 with another basis, sayB3, such thatB2 andB3 cor-
respond to the same vertex. Similar as in the proof of
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Theorem 1, the matrixA1 can be constructed from the
current tableau ofB3, namely take the intersection of
the rows and columns that correspond to the symmet-
ric difference ofB2 andB3. By executing pivot oper-
ations on (positive or negative) entries ofA1, the sym-
metric difference ofB2 and the currentB3 can be made
smaller; the process stops when the currentB3 equals
B2. In this way a path fromB1 to B2 is constructed.
Hence,SA(P ) is connected.

3. Optimality in Simplex Adjacency Graphs

Consider the linear optimization model:

max{cT x | Ax ≤ b; x ≥ 0},

with A ∈ Rm×n, b ∈ Rm, c, x ∈ Rn. It is assumed
that this model has an optimal solution. As usual,P =
{Ax ≤ b; x ≥ 0}. For any optimal vertexv of pol(P ),
the optimal vSA-graph, OptSA(P )v , is the subgraph
SA(P )v induced by the optimal feasible bases corre-
sponding tov. The subgraph ofOptSA(P )v that con-
tains the positive (resp. negative) edges is called the
positive (resp.negative) optimal vSA-graph, and is
denoted byOptSA(P )v

+ (resp.OptSA(P )v
−

). A nat-
ural question is: for which constraint collectionsP is
the graph corresponding to all feasible bases ofv equal
to the graph corresponding to only the optimal feasible
bases ofv, i.e.

SA(P )v = OptSA(P )v?

In Kruse[12], it is shown that it may happen that all
basic feasible solutions of a degenerate vertex are opti-
mal. Kruse also gives an example of a linear optimiza-
tion model where the optimal vertex has a degeneracy
degree of one, and reports that examples with degen-
eracy degrees larger than one are not known. He even
conjectures that the latter case may never occur. Below
we show that Kruse’s conjecture is wrong. It can sim-
ply be shown by means of the following example. This
example even shows that optimal vertices, of which the
degeneracy degree has an arbitrary value, exist. Con-
sider the following linear optimization model:

min y

s.t. Ax ≤ 0
y ≤ 1

x ≥ 0
y ≥ 0

with A ∈ Rm×n, x ∈ Rm, andy ∈ R. Obviously, the
vertex with (y = 0, x = 0) is optimal. Pivoting inA

does not change the feasibility nor the optimality. A
pivot in the column corresponding toy destroys the
optimality. Therefore, all feasible bases corresponding
to (x = 0, y = 0) are optimal. The degeneracy degree
of this vertex ism.

In the following theorem we show that, using dual-
ity between optimality and feasibility, any optimal SA-
graph is isomorphic to (∼=) some SA-graph.
Theorem 3 Consider a linear optimization model of
whichv is an optimal vertex andpol(P ) is the feasible
region. Then there exists a constraint collectionP ′ such
that

OptSA(P )v ∼= SA(P ′).

Moreover,OptSA(P )v
+
∼= SA(P ′)−, andOptSA(P )v

−

∼= SA(P ′)+.
Proof. Let T be the Tucker Simplex tableau corre-

sponding toOptSA(P )v. Positive pivots in rows of T
that correspond to basic variables with a positive opti-
mal value are not allowed, since such pivots cause the
’leaving’ of the optimal vertex. So, these rows can be
deleted from T. We then obtain a reduced tableau, say
rT, that still correspondsOptSA(P )v . The linear opti-
mization model that corresponds to rT is called model
rT. This model consists only of the constraints that are
binding atv, and represents a convex cone with apex
v. The negative transpose of rT corresponds to a dual
model of which the SA-graph is isomorphic to the op-
timal SA-graph of the model rT. Every pivot on a posi-
tive entry in the dual tableau transforms it into a tableau
that is the negative transpose of the resulting rT tableau
after a pivot on the corresponding positive entry in the
rT tableau. Therefore, the positive optimal SA-graph
of model rT is isomorphic to the negative SA-graph of
the dual model, and the negative optimal SA-graph of
model rT is isomorphic to the positive SA-graph of the
dual model.

Let P be a constraint collection of some linear
optimization model. A constraint collectionP ′ from
Theorem 3 can be constructed as follows. LetP v be
the collection of constraints ofP that are binding at
the optimal vertexv. Note that these constraints form
a cone with apexv. We dualize the model with con-
straint collectionP v, instead ofP . This dual constraint
collection has a SA-graph isomorphic toSA(P )v. We
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will illustrate the construction of such a constraint col-
lection with the following example.

Consider the following linear optimization model:

max −4x4

s.t. −x4 ≤ 0 (slack: x5)
−2x2 −x3 +4x4 ≤ 0 (slack: x6)

−x1 −x2 +x3 +x4 ≤ 0 (slack: x7)
+x2 −3x3 ≤ 2 (slack: x8)

3x1 +2x2 −5x3 −5x4 ≤ 3 (slack: x9)
x1, x2, x3, x4 ≥ 0.

The corresponding optimal Tucker Simplex tableau is:

1 x1 x2 x3 x4

−f = 0 0 0 0 4
−x5 = 0 0 0 0 −1
−x6 = 0 0 −2 −1 4
−x7 = 0 −1 −1 1 1
−x8 = −2 0 1 −3 0
−x9 = −3 3 2 −5 −5

In the optimal vertex, corresponding to this tableau, only
the basic variablesx8 and x9 have a strictly positive
value. After removing the rows ofx8 andx9, and taking
the negative transpose of the new problem, we obtain
the following optimal dual tableau.

1 y5 y6 y7

−g = 0 0 0 0
−y1 = 0 0 0 1
−y2 = 0 0 2 1
−y3 = 0 0 1 −1
−y4 = −4 1 −4 −1

The corresponding constraint collection of this (dual)
model reads:

y7 ≤ 0 (slack: y1)
2y6 +y7 ≤ 0 (slack: y2)
y6 −y7 ≤ 0 (slack: y3)

y5 −4y6 −y7 ≤ 4 (slack: y4)
y5, y6, y7 ≥ 0,

which has a SA-graph that is isomorphic to the optimal
SA-graph of the original linear optimization model.

Theorem 3 immediately implies the following. First,
optimal SA-graphs are connected, since all SA-graphs
are connected (see Theorem 2). A proof of this fact is
also given in Zörnig and Gal[16]. Secondly, positive
optimal SA-graphs are in general disconnected, except

if all bases belong to one dual vertex, since negative
SA-graphs are in general disconnected, except if all
bases belong to the same vertex.

A further question asked in Kruse[12] is whether lack
of full dimensionality is a necessary condition for the
disconnectedness of negative optimal SA-graphs. This
question is answered in the following theorem.
Theorem 4 If OptSA(P )v

−
is disconnected for some

optimal vertexv of pol(P ), then pol(P ) is not fully
dimensional.

Proof. According to Theorem 3, a negative optimal
SA-graph is isomorphic to a positive SA-graph. The-
orem 1 shows that if a positive SA-graph is discon-
nected, its corresponding polyhedron is unbounded. For
this polyhedron there is a Tucker Simplex tableau that
has a column without any positive entry, and at least
one negative entry. Taking again the negative transpose
of this tableau, we obtain a tableau of the initial model
that has a row with nonnegative entries. This means that
the values of some variables are zero for every feasible
point, and hence, the feasible region is not fully dimen-
sional.

Simplex Adjacency graphs can be seen as special
cases of optimal SA-graphs in which all bases in a spec-
ified optimal vertex are optimal. This can be accom-
plished by taking an all-zero objective function in a
degenerate vertex. This is formulated in the following
theorem.
Theorem 5 Let P be the constraint collection of some
linear optimization model. Then for each vertexv of
pol(P ), there is a constraint collectionP ′ such that
SA(P ′) ∼= SA(P )v; moreover,SA(P )v

+
∼= SA(P ′)−,

andSA(P )v
−

∼= SA(P ′)+.
Proof. The proof is similar to the proof of Theorem

3. We use an all-zero objective function. Therefore, the
objective row in an optimal tableau will have zero en-
tries, as well as the right hand side in the negative trans-
pose.

So far we have constructed SA-graphs from a given
constraint collection. In general, we call a graphG a
SA-graph if there exists a constraint collectionP such
that G ∼= SA(P ). Similar definitions can be given for
vSA-graphs and OptSA-graphs.
Theorem 6 The three classes consisting of, respec-
tively, the SA-graphs, the vSA-graphs, and the OptSA-
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graphs are pair wise isomorphic.
Proof. This result follows immediately from Theo-

rem 3 and Theorem 5.

Since the classes of SA-, vSA-, and OptSA-graphs are
pair wise isomorphic, all properties of SA-graphs can
easily be translated to properties of vSA-graphs, and of
OptSA-graphs as well. In order to translate a property
of a SA-graph into a similar property of a vSA-graph
or an OptSA-graph, it suffices to construct the ‘negative
transpose’ of that property.
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