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Mathematical models of the delay constrained routing problem
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Abstract

Given a network with known link capacities and traffic demands, one can compute the paths to be used and the
amount of traffic to be send through each path by solving a classical multi-flow problem. However, more quality of
service constraints such as delay constraints, may be imposed and the routing problem becomes difficult to solve. We
assume that the delay on each link depends on both its capacity and the total flow on it. We show that satisfying the
delay constraints and the capacity constraints is an NP-complete problem. We give a convex relaxation of the delay
constrained routing problem and present some ways to get upper and lower bounds on the problem.
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1. Introduction

Given a traffic matrix and a network with known
link capacities, one of the most classical network
optimization problems consists in computing a multi-
path-routing satisfying the capacity constraints. This
problem is a multiflow problem solved by linear pro-
gramming techniques [1,19]. Another classical problem
consists in minimizing the mean end-to-end delay. The
delay through a linkl is generally computed on the
basis of the classical M/M/1 formula : 1

cl−fl
wherecl

is the capacity of the link (in bytes per second),fl is
the traffic carried through the link (in bytes per second)
[18]. Using this notation, 1

cl−fl
is the time needed to

carry one byte on linkl. The total delay needed to carry
a byte from a sources to a sink t using a pathp is
the sum of delays on the path links:

∑

l∈p
1

cl−fl
. One

can easily show that minimizing the mean end-to-end
delay is equivalent to minimizing

∑

l∈E
fl

fl−cl
where

E is the set of all network links [8]. The constraints
of the problem are the classical routing constraints:
all commodities (traffic demands) should be routed
through the network, and the flow on each link is al-
ways lower than its capacity. The problem described
above has been studied by many authors (see, e.g.,
[8,20]). It is now well-handled as a convex problem:
the cost function to be minimized is convex, and all
the constraints are linear. It can also be solved using
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semidefinite programming (see, e.g., [23]).
Even if minimizing the mean end-to-end delay is

useful, we think that more explicit constraints should
be added to model practical problems. When we solve
this problem, some paths with long delays may be used
which can deteriorate the quality of service.

Modern communication networks will be based on
different classes of service with different levels of qual-
ity of service. Some applications can accept long de-
lays, but others may require very short delays. Said an-
other way, we think that the right problem consists in
computing a minimum cost routing satisfying the de-
lay constraints of each demand in addition to capacity
and demand constraints. A first attempt to solve simi-
lar problems is presented in [2]. Some heuristics have
been proposed to minimize the number of used paths.
Moreover, there is a lot of work on constrained routing
in different contexts depending on the networking tech-
nology. However, it seems that only basic heuristics are
provided and the delay on a link is generally assumed
to be constant. Notice that our problem presentation is
mainly based on communication networks but most of
the material provided in this paper will also be useful
in the context of transportation networks.

The aim of this paper is to show how delay constraints
can be integrated. First, we define the delay constrained
routing problem. Then, we study the theoretical com-
plexity of this problem in Section 3.. Some convex
relaxations are presented in Sections 4. to tackle the
problem. The constraints considered in both relaxations
are compared in Appendices B, C. Some algorithms are
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presented in Section 5. to compute upper bounds of the
problem solution. We propose in Section 6. a convex
optimization algorithm to solve the convex relaxation
of the problem in order to get a lower bound.

In order to keep this paper reasonably short, we intend
to provide numerical results elsewhere.

2. Notations

Let G = (V, E) be the undirected graph representing
the network.K denotes the set of commodities (traffic
demands) where a commodityk ∈ K has a source node
s(k), a sink nodet(k) and a positive valuevk (demand).
We denote byP (k) = {P 1

k , ..., P
|P (k)|
k } a set of paths

of G connectings(k) to t(k). Letαk be an upper bound
of the end-to-end delay that should be satisfied by all
the paths that will be used to carry the commodityk.
A real variablexi

k related toP i
k denotes the proportion

of traffic carried through the path. A routing costwl is
considered for each linkl. It may depend on geographic
distances and any other link characteristics.

The problem that we aim to solve can be written as
follows:

Minimize
∑

l∈E

wlfl (1)

i=|P (k)|
∑

i=1

xi
k ≥ 1, ∀k ∈ K (2)

∑

k∈K

∑

P i
k
∋l

xi
kvk ≤ fl, ∀l ∈ E (3)

fl ≤ cl, ∀l ∈ E (4)
∑

l∈P i
k

1

cl − fl

≤ αk, ∀k ∈ K, P i
k

such thatxi
k > 0 (5)

0 ≤ xi
k ≤ 1, fl ≥ 0, ∀k ∈ K, P i

k ∈ P (k), l ∈ E (6)

The objective function (1) is the total routing cost.
Constraints (2) are the classical demand constraints: all
commodities should be satisfied. The second set of con-
straints (3) define the flow carried on each link. This
flow should be lower than the capacity (constraints (4)).
Constraints (6) express the fact that the flow variables
are positive and thatxi

k are proportions of traffic. The
delay constraints (5) express that the total delay through
any path that is really used is lower than the maximum
delay that can be accepted for commodityk. Notice that
if a pathP i

k is not used (xi
k = 0), there is no any delay

constraint related to this path.

3. Complexity issues

When the setP (k) of some demands contains an ex-
ponential number of paths, one can easily show that the
delay constrained routing problem is NP-hard. This can
be proved using a reduction from the multi-constrained
shortest path [12,16] and the equivalence of separation
and optimization. On the other hand, if only one path
is considered for each demand, the delay constrained
routing problem becomes a convex problem which is
easy to solve.

A more interesting question to settle consists in study-
ing the theoretical complexity when we consider more
than one path for some demands and we assume that
the setsP (k) are already given (i.e., they are a part of
the problem inputs).

We will show that the corresponding feasibility prob-
lem (described below) is NP-complete even if there are
exactly two paths for each demand.

The feasibility problem consists in checking whether
there is a routing solution satisfying the delay and the
capacity constraints. We assume here that each setP (k)
contains exactly two paths.

Feasibility: is there a solution of the problem below

i=|P (k)|
∑

i=1

xi
k ≥ 1, ∀k

∑

k∈K

∑

P i
k
∋l

xi
kvk ≤ fl, ∀l ∈ E

fl ≤ cl, ∀l ∈ E

∑

l∈P i
k

1

cl − fl

≤ αk, ∀k ∈ K, P i
k such thatxi

k > 0, 0 ≤

xi
k ≤ 1, fl ≥ 0, ∀k ∈ K, P i

k ∈ P (k), l ∈ E
To prove the NP-completeness of the feasibility prob-

lem we will use a reduction from the set partition prob-
lem. Consider a set of positive integersS = {s1, ..., sn}
(n > 1). The partition problem consists in checking
wether it is possible to partition the set S in two subsets
A andS\A such that

∑

si∈A

si =
∑

si∈S\A

si. The partition

problem is a well known NP-complete problem [12].
Let us build a network withn + 4 nodes in the

following way. A nodexi is associated with each in-
tegersi. We also add four verticesa, b, z, t , and the
following links: (xi, a), (xi, b), (a, t), (a, z), (b, t) and
(b, z). We consider two commodities for each vertex
xi: a commoditydt

i from xi to t whose value issi and
a second commoditydz

i from xi to z whose value is
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1 + si. The capacity of both links(xi, a) and (xi, b)
is 1 + si. We also assume that the capacity of links
(a, t) and (b, t) is 1 + 1

2

∑

si. Links (a, z) and (b, z)
have an infinite capacity. Only two paths are allowed
for each commodity. Commoditydt

i can use the paths
xi, a, t and xi, b, t. Similarly, commoditydz

i can
only use pathsxi, a, z andxi, , b, z. A delay con-
straint is defined for each commoditydt

i: the delay on
any used path should be at most equal to 2. No delay
constraint is added for commoditiesdz

i . Suppose that
the routing problem related to this network is feasi-
ble. Both links(a, t) and (b, t) will be used to carry
traffic and we necessarily havef(a,t) + f(b,t) =

∑

si.
At least one of the two links, let us say(a, t), sat-
isfies f(a,t) ≥ 1

2

∑

si = c(a,t) − 1. This means that
1

c(a,t) − f(a,t)
≥ 1. Moreover, there is at least one

commodity dt
j using the pathxjat, implying that

1

c(a,t) − f(a,t)
+

1

c(xj ,a) − f(xj,a)
≤ 2. Combining the

two previous inequalities leads to
1

c(xj ,a) − f(xj,a)
≤ 1.

Commoditiesdt
j anddz

j share the same links(xj , a) and
(xj , b). Suppose thatdt

j is also using the pathxj , b, t.
This implies thatf(xj,b) < c(xj,b) = 1 + sj , but we

already assumed that
1

c(xj ,a) − f(xj,a)
≤ 1 which leads

to f(xj,b)+f(xj,a) < 2sj +1. Then, it becomes impossi-
ble to carry both demandsdt

j anddz
j . Said another way,

if dt
j uses pathxj , a, t, then it does not use the other

path and we necessarily have
1

c(xj,a) − f(xj ,a)
= 1. We

should also have
1

c(a,t) − f(a,t)
= 1. The same result

is valid for link (b, t). In other terms, if the routing

problem is feasible thenf(a,t) = f(b,t) =

∑

si

2
and

each commoditydt
i is single path routed. A partition of

the set S is obtained by taking the set of commodities
flowing through(a, t) and those using link(b, t). The
other sense is trivial: having a partition, one can build
a solution of the routing problem. As the reduction is
polynomial, the feasibility problem is NP-complete.

Notice that the complexity of the feasibility problem
associated with the delay constrained routing problem

strongly depends on the expression of the delay
1

c − f
.

If we assume, for example, that the delay on each link
l is constant (does not depend on the flow), then the
feasibility problem becomes polynomial. Indeed, as we

assumed that the paths are a part of the problem inputs,
we only have to keep those that satisfy the delay con-
straints and we get a convex problem that can be solved
using any polynomial convex optimization algorithm.

4. A convex relaxation of the delay constrained rout-
ing problem

Constraints (5) are equivalent to the following con-
straints

xi
k





∑

l∈P i
k

1

cl − fl

− αk



 ≤ 0,

∀k ∈ K, P i
k ∈ P (k). (7)

Since the mean delay problem stated in Section 1.
is now efficiently solved as a convex problem, a good
direction to get an efficient algorithm to solve our delay
constrained routing problem consist in finding a convex
model which can help in the solution of the problem.

All constraints (2, 3, 4) are linear constraints and thus
convex. However, one can easily show that constraints
(7) are not convex. We then propose to replace con-
straints (7) by the following convex constraints:

(xi
k)2

∑

l∈P i
k

1

cl − fl

− xi
kαk ≤ 0, (8)

Notice that this constraint is equivalent to the previous
one whenxi

k is boolean. However, only constraint (8)
is convex. This can be easily shown by computing the
Hessian matrix of the left hand side function. Asxi

kαk

is linear, to show the convexity of the constraint (8), it
is sufficient to prove thatg : (xi

k, fl) → (xi
k)2 1

cl−fl
is

convex (wherel ∈ P i
k). The Hessian matrixH of g is

given below:

H =

(

2 1
cl−fl

2xi
k( 1

cl−fl
)2

2xi
k( 1

cl−fl
)2 (xi

k)2 2
(cl−fl)3

)

H is clearly positive semidefinite.
If we use constraints (8) instead of constraints (5),

we obtain a relaxation which is a convex problem that
can be solved by convex programming techniques.

Another way to integrate the delay constraints (5)
consists in adding the following constraints:

∑

l∈E

∑

P i
k
∋l

xi
k

cl − fl

− αk ≤ 0, (9)
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Constraint (9) dominates constraints (8). However,
constraints (9) are also not convex. They become convex

if we replacexi
k by (xi

k)2. This leads to
∑

l∈E

∑

P i
k
∋l

(xi
k)2

cl−fl
−

αk ≤ 0. They can be written in the following way,
∑

P i
k

(xi
k)2 ×

(

∑

l∈P i
k

1
cl−fl

)

− αk ≤ 0. The obtained in-

equalities are now dominated by constraints (8). Said
another way, replacingxi

k by (xi
k)2 does not seem to be

very efficient. A more efficient way to transform con-
straints (9) consists in considering the square of

∑

P i
k
∋l

xi
k.

Thus, we obtain the following inequalities:

∑

l∈E

(
∑

P i
k
∋l

xi
k)2

cl − fl

− αk ≤ 0, (10)

Constraints (10) are clearly valid for our delay con-
strained routing problem:

∑

P i
k
∋l

xi
k ≤ 1 implies

∑

l∈E

(
∑

P i
k
∋l

xi
k)2

cl − fl

≤
∑

l∈E

∑

P i
k
∋l

xi
k

cl − fl

.

By combination with constraint (9), we obtain constraint
(10).

One can easily compute the Hessian matrix to show
that constraints (10) are convex. Notice that there is
no any general domination relationship between con-
straints (10) and constraints (8). An example is given in
Appendix B to show this fact.

A third set of convex constraints can be obtained
using the fact that the delay on each link is necessarily
upper bounded. Indeed, if a linkl is not used, then

1
cl−fl

≤ 1
cl

. Moreover, ifl is used by at least one demand

k, then 1
cl−fl

≤ αk. Combining these two observations,

one can easily deduce an upper boundαl (resp.αi
k) for

the delay on each linkl (resp. pathP i
k). The upper bound

αi
k is assumed to be higher thanαk. More details on

the methods that can be used to get these upper bounds
are presented in Section 5.1..

Assuming that the upper boundsαi
k are given, we

introduce the following new set of inequalities:

∑

l∈P i
k

1

cl − fl

+ xi
k(αi

k − αk) − αi
k ≤ 0 (11)

The validity of these inequalities is obvious:

∑

l∈P i
k

1

cl − fl

= xi
k

∑

l∈P i
k

1

cl − fl

+ (1 − xi
k)

∑

l∈P i
k

1

cl − fl

≤ xi
kαk + (1 − xi

k)αi
k

These constraints are clearly convex.
If we compare constraints (11) and constraints (8),

one can easily see that constraints (8) dominate con-
straints (11) if and only ifxi

k is fractional and

xi
k <

αi
k

∑

l∈P i
k

1
cl−fl

− 1.

This clearly shows that we should carefully compute the
upper boundsαi

k to obtain efficient constraints of type
(11). Moreover, ifαi

k is sufficiently large, constraints
(11) become very weak and do not dominate constraints
(10). An example is given in Appendix (C) to show
that constraints (11) are generally not dominated by
constraints (10).

Combining all the results of this section leads to the
following convex relaxation of the delay constrained
routing problem. Notice that the positivity of the routing

cost valueswl implies that
i=|P (k)|
∑

i=1

xi
k = 1 for each

demandk at optimality. The problem is rewritten as

Minimize
∑

l∈E

wlfl

i=|P (k)|
∑

i=1

xi
k = 1, ∀k ∈ K,

∑

k∈K

∑

P i
k
∈P (k):l∈P i

k

xi
kvk = fl, ∀l ∈ E,

(xi
k)2

∑

l∈P i
k

1

cl − fl

− xi
kαk ≤ 0, ∀k ∈ K, P i

k ∈ P (k)

∑

l∈E

(
∑

P i
k
∋l

xi
k)2

cl − fl

− αk ≤ 0, ∀k ∈ K,

∑

l∈P i
k

1

cl − fl

+ xi
k(αi

k − αk) − αi
k ≤ 0,

∀k ∈ K, P i
k ∈ P (k),

0 ≤ xi
k, ∀k ∈ K, P i

k ∈ P (k),

fl ≥ 0, fl − cl ≤ 0, ∀l ∈ E. (12)
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5. Upper bounds of the delay constrained routing
problem

This section is dedicated to upper bounds. We will
first show how one can compute the numbersαl and
αi

k introduced in Section 4.. Then, we provide a set of
heuristics to compute an upper bound for the solution
of the whole problem.

5.1. On the upper bounds αi
k and αl

Let us first focus on the upper boundsαl of the delay
dl = 1

cl−fl
. We obviously havedl ≥ 1

cl
. A first proce-

dure that can be used to compute an upper boundαl0

related to a linkl0 may consist in solving the following
convex problem:

Minimize
∑

l∈E

−fl0

−
i=|P (k)|
∑

i=1

xi
k + 1 ≤ 0 ∀k ∈ K

∑

k∈K

∑

P i
k
∋l

xi
kvk − fl ≤ 0 ∀l ∈ E

∑

k∈K

∑

P i
k
∋l0

−xi
kvk + fl0 ≤ 0

fl − cl ≤ 0 ∀l ∈ E

(xi
k)2

∑

l∈P i
k

1

cl − fl

− xi
kαk ≤ 0 ∀k ∈ K, P i

k ∈ P (k)

∑

l∈E

(
∑

P i
k
∋l

xi
k)2

cl − fl

− αk ≤ 0 ∀k ∈ K

0 ≤ xi
k ≤ 1, fl ≥ 0 ∀k ∈ K, P i

k ∈ P (k), l ∈ E

One can easily see that the convex problem above is
quite similar to the model of Section 4.. We only skip
constraints (11) (because they use the upper boundsαi

k)
and we add the constraint− ∑

k∈K

∑

P i
k
∋l0

xi
kvk + fl0 ≤

0. The solution of the convex problem above will give
us the boundαl0 = 1

cl0
−fl0

.
Some other simple remarks can help to get an-

other upper bound. LetP (l) be the set of paths con-
taining l: P (l) = {P i

k ∈ P (k), P i
k ∋ l, k ∈ K}.

If a path P i
k ∈ P (l0) is used, then we should

have 1
cl0

−fl0

+
∑

l∈P i
k
,l 6=l0

1
cl−fl

≤ αk. This implies

that 1
cl0

−fl0

+
∑

l∈P i
k
,l 6=l0

1
cl

≤ αk. In other terms, if

P i
k ∈ P (l0) is used, then 1

cl0
−fl0

≤ αk −
∑

l∈P i
k
,l 6=l0

1
cl

.

A simple upper bound is then given by

max





1

cl0

, max
P i

k
∈P (l0)

αk −
∑

l∈P i
k
,l 6=l0

1

cl



 .

Notice that we can eliminate from the beginning all
pathsP i

k such that
∑

l∈P i
k

1
cl

> αk because these paths

can never be used. This implies that the upper bound is
simply

dl0 ≤ max
P i

k
∈P (l0)

αk −
∑

l∈P i
k
,l 6=l0

1

cl

. (13)

This bound can be slightly improved using the fact
that the flow on a linkl0 is necessarily carried by the
paths ofP (l0). In fact, there is at least one pathP i

k ∈
P (l0) carrying at least

fl0

|P (l0)|
. This implies that there is

a path such that

1

cl0 − fl0

+
∑

l∈P i
k
,l 6=l0

1

cl − fl0

|P (l0)|

≤ αk (14)

It is easy to compute for each pathP i
k ∈ P (l0) the

maximal value offl0 such that inequality (14) is satis-
fied. Letfl0(P

i
k) denote this value. The flow on linkl0

will be lower than max
P i

k
∈P (l0)

fl0(P
i
k) and the new upper

bound is

dl0 ≤ 1

cl0 − max
P i

k
∈P (l0)

fl0(P
i
k)

. (15)

The upper boundsαi
k will be simply based on the

values ofαl computed as explained above. More pre-
cisely, we defineαi

k as follows:

αi
k = max



αk,
∑

l∈P i
k

αl



 (16)

5.2. Heuristics to compute upper bounds of the delay
constrained routing problem

A simple upper bound can be computed by adding
the delay constraint

∑

l∈P i
k

1
cl−fl

≤ αk for each path. Said

another way, even if the path is not used, we impose
the constraint. We obtain a convex problem that can
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be solved by convex optimization. Notice that adding
all these constraints may produce an infeasible problem
leading to an infinite upper bound. This upper bound can
be improved in some cases. When we solve the convex
problem integrating a delay constraint for each path, the
solution may not use all the paths. Then we can elimi-
nate all the constraints related to the non used paths and
solve again the new restricted convex problem without
these path variables. This process can be repeated un-
til all the paths considered in the master problem are
effectively used to carry traffic.

Minimize
∑

l∈E

wlfl

i=|P (k)|
∑

i=1

xi
k ≥ 1, ∀k ∈ K

∑

k∈K

∑

P i
k
∋l

xi
kvk ≤ fl, ∀l ∈ E

fl ≤ cl, ∀l ∈ E
∑

l∈P i
k

1

cl − fl

≤ αk, ∀k ∈ K, P i
k ∈ P (k)

0 ≤ xi
k ≤ 1, fl ≥ 0,∀k ∈ K, P i

k ∈ P (k), l ∈ E

In fact, any method to compute a feasible solution gives
an upper bound. Many other heuristics can be proposed
to compute a hopefully good solution. One can, for
example, fix the delaysdl on the links and solve the
corresponding routing problem using only the paths sat-
isfying the delay constraintsdi

k =
∑

l∈P i
k

1
cl−fl

≤ αk.

Minimize
∑

l∈E

wlfl

i=|P (k)|
∑

i=1

xi
k ≥ 1, ∀k ∈ K

∑

k∈K

∑

P i
k
∋l,di

k
≤αk

xi
kvk ≤ fl, ∀l ∈ E

fl ≤ cl −
1

dl

, ∀l ∈ E

0 ≤ xi
k ≤ 1,xi

k = 0 if di
k > αk,

∀k ∈ K, P i
k ∈ P (k)fl ≥ 0, ∀l ∈ E

Then the values ofdl may be changed and the linear
problem solved again to decrease the value of the ob-
jective function. One can implement several heuristics

depending on howdl values are changed. For instance,
if we let h(d1, . . . , dl, . . . , d|E|) be the optimal value of
the above problem, we may look fordl, l ∈ E that min-
imizeh. Notice that we already have an upper boundαl

for dl. This upper bounds should be taken into account
when the values ofdl are changed because there is no
hope to find any feasible solution whendl > αl. Let
ul denote the dual variable corresponding to the con-
straintfl ≤ cl − 1

dl
. If there is no current pathP i

k using
the link l such thatdi

k is exactly equal toαk, then a
small variation ofdl will not change the set of paths that
can be used for routing. Moreover, if we assume that
the current linear program is non degenerate, then we

know that
∂h(d1, . . . , dl, . . . , d|E|)

∂dl

= − ul

dl
2 . A simple

subgradient descent method can be implemented to de-
crease the value ofh.

Finally, consider the following convex multicommod-
ity flow problem

Minimize
∑

l∈E

log(
1

cl − fl

)

i=|P (k)|
∑

i=1

xi
k ≥ 1, ∀k ∈ K

∑

k∈K

∑

l∈P i
k

xi
kvk ≤ fl, ∀l ∈ E,

0 ≤ fl ≤ cl, ∀l ∈ E

0 ≤ xi
k ≤ 1, ∀k ∈ K, P i

k ∈ P (k).

The Karush Kuhn Tucker conditions for this problem
state that each commodity will be routed through the
shortest paths in sense of the derivative oflog( 1

cl−fl
)

(i.e., 1
cl−fl

). For each commodityk, let βk be the com-
mon value of these shortest paths. Ifβk ≤ αk for each
k, the solution of the above problem provide an up-
per bound to the delay constrained routing problem. To
have a chance to get a feasible solution, we can inte-
grate the upper boundsαl in the problem formulation.
We only have to replace the constraintsfl ≤ cl by the
constraintsfl ≤ cl − 1

αl
. This is only a necessary con-

dition to get a feasible solution.

6. Solution methods for lower bounds

The aim of the paper was to present some mathemat-
ical models of the delay constrained routing problem
that can be handled by convex programming. An upper
bound is obtained from the algorithms of section 5.2.. In
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this section, we sketch some algorithmic solutions for
the convex problem (12) which provide a lower bound.

We think that the best way to deal with Problem (12)
is to relax the constraints (8), (10) and (11), and solve
the resulting dual problem. So, letγ, ζ, η be the dual
variables associated respectively to these constraints.
Then the standard Lagrangian function is

L(x, f, γ, ζ, η) =
∑

l∈E

wlfl

+
∑

k∈K

∑

P i
k
∈P (k)

γi
k((xi

k)2
∑

l∈P i
k

1
cl−fl

− αkxi
k)

+
∑

k∈K

ζk(
∑

l∈E

1
cl−fl

(
∑

P i
k
∈P (k):l∈P i

k

xi
k)2 − αk)

+
∑

k∈K

∑

P i
k
∈P (k)

ηi
k(
∑

l∈P i
k

1
cl−fl

+ (αi
k − αk)xi

k − αi
k)

Reordering terms, the Lagrangian function may be
rewritten as

L(x, f,γ, ζ, η) =
∑

l∈E

[wlfl +
1

cl − fl

(
∑

k∈K

(ζk(
∑

P i
k
∈P (k):l∈P i

k

xi
k)2

+
∑

P i
k
∈P (k):l∈P i

k

(γi
k(xi

k)2 + ηi
k)))]

−
∑

k∈K

[ζkαk +
∑

P i
k
∈P (k)

(γi
kαkxi

k + ηi
kαi

k − ηi
k(αi

k − αk)xi
k)]

The dual function is defined by

L(γ, ζ, η) = min
(x,f)∈X

L(x, f, γ, ζ, η) (17)

where

X =
{

(x, f) :

|P (k)|
∑

i=1

xi
k = 1,

∑

k∈K

∑

P i
k
∈P (k):l∈P i

k

xi
kvk = fl, fl − cl ≤ 0, 0 ≤ xi

k, fl ≥ 0,
}

If we definex(γ, ζ, η), f(γ, ζ, η) as the solution
corresponding to the computation ofL(γ, ζ, η), it is
well-known from convex analysis thatf i

k

(

x(γ, ζ, η),
f(γ, ζ, η)

)

, gk

(

x(γ, ζ, η), f(γ, ζ, η)
)

and
hi

k

(

x(γ, ζ, η), f(γ, ζ, η)
)

provide a subgradient to
theL at (γ, ζ, η). The functionsf i

k, gk andhi
k corre-

spond to the constraints (8), (10) and (11) respectively.

For any(γ, ζ, η), L(γ, ζ, η) is a lower bound to the
optimal value of the problem (12) and hence a lower
bound to problem (1)-(6).

We can remove the capacity constraintsfl − cl ≤ 0
using a trick proposed in [8] by replacing the delay
functiond(fl) = 1/(cl − fl) by a functiond(fl) which
is identical withd in [0, κcl] and quadratic forfl > κcl.
The parameterκ is a real which must be chosen very
close to 1, but appropriate choices can be obtained in the
present context using the delay boundαl computed in
Section 5.1.. We can takeκ = 1 − 1

αlcl
. This quadratic

function is chosen such thatd andd has the same values,
first and second derivatives atκcl.

A possible algorithm for maximizing the dual func-
tion L is the cutting plane type algorithm. This kind
of algorithm alternates between a master problem (us-
ing the linear approximation̂Lt obtained from subgra-
dients collected at different points(γτ , ζτ , ητ ), τ =
0, . . . , t), and a subproblem (17). A solution of the later
provides a lower bound Problem (1)-(6). We outline a
general cutting plane algorithm as follows.

Algorithmic scheme

(1) Chooseγ0, ζ0, η0 ≥ 0 and sett = 0.
(2) Solve Subproblem (17) and denote byx(γt, ζt,

ηt), f(γt, ζt, ηt) the solution.
(3) Usef i

k(x(γt, ζt, ηt), f(γt, ζt, ηt)), gk(x(γt,
ζt, ηt), f(γt, ζt, ηt)) and hi

k(γt, ζt, ηt) to
update the linear approximation̂L and use it to get
(γt+1, ζt+1, ηt+1). Sett = t + 1 and go to Step
2.

The basic issue is how to get the next iterate
(γt+1, ζt+1, ηt+1). The way in which these test points
are generated using the linear approximationL̂t in
Step 3 makes the difference among the cutting planes
algorithms. Solving the current linear approximation

max
γ, ζ, η≥0

L̂t(γ, ζ, η) (18)

and pick its optimal solution as the next test point, leads
to Kelley’s algorithm [17]. The use of the analytic cen-
ters of the polyhedrons made by the subgragients in-
equalities and the best upper bound obtained during the
previous iterations yields analytic center cutting plane
algorithm, see [13]. Bundle type algorithms [15] use the
master problem

max
γ, ζ, η≥0

L̂t(γ, ζ, η) − λ

2
‖(γ, ζ, η) − (γt, ζt, ηt)‖2

in place of (18), whereλ is a positive parameter.
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Anyway, a new proposal has to be transmitted to
the subproblem (17) which will react to this test point
with new revised cutting plane to improve the linear ap-
proximation. Now, assume thatγ, ζ, η,≥ 0 are fixed.
The Lagrangian subproblem (17) is a multicommod-
ity flow problem with a nonlinear differentiable convex
cost which can be solved in various ways [20]. Let us
consider the Frank-Wolfe algorithm because of its sim-
plicity. At each iteration of this algorithm, a first-order
approximation of the objective function is used to find
a search direction and a line-search is performed in that
direction to improve the current iterate. Note that, the
objective functionL in (17) can be seen as a function
of path flows variablexi

k while preserving its convex-
ity (see Appendix A; however we still usefl to denote
∑

k∈K

∑

P i
k
∈P (k):l∈P i

k

xi
kvk in order to alleviate typewrit-

ting). The partial derivative ofL(x, γ, ζ, η) w.r.t. (xi
k)

is given by

ci
k(xi

k) = ∂xi
k
L(x, γ, ζ, η)

= vk[
∑

l∈E:l∈P i
k

wl +
∑

l∈E

d
′(fl)

(
∑

p∈K

(ζp(
∑

P i
p∈P (p):l∈P i

p

xi
p)

2

+
∑

P i
p∈P (p):l∈P i

p

(γi
p(x

i
p)

2 + ηi
p)))]

+2
∑

l∈E:l∈P i
k

d(fl)(γ
i
kxi

k + ζk(
∑

P i′

k
∈P (k):l∈P i′

k

xi′

k ))

− γi
kαk + ηi

k(αi
k − αk).

The linearized subproblem (allowing to compute a
search direction) at iterationt of the Frank-Wolfe
algorithm is as follows.

min
∑

k∈K

∑

P i
k
∈P (k)

ci
k((xi

k)t)xi
k

s.t.
|P (k)|
∑

i=1

xi
k = 1, k ∈ K,

xi
k ≥ 0, k ∈ K, P i

k ∈ P (k) (19)

whereci
k((xi

k)t) is the partial derivative at the current

(xi
k)t. The above problem splits intoK linear programs

min
∑

P i
k
∈P (k)

ci
k((xi

k)t)xi
k

s.t.
|P (k)|
∑

i=1

xi
k = 1,

xi
k ≥ 0, P i

k ∈ P (k),

which can be solved by linear programming if we con-
sider that the set of pathsP (k) are inputs of the prob-
lem, see Section 3..

7. Conclusion and further research

We defined the delay constrained routing problem
where the delay is based on the classical M/M/1 waiting
time formula. We showed that the corresponding feasi-
bility problem is NP-complete even if we consider only
two paths for each commodity. Then, we gave a convex
relaxation to compute lower bounds. We also proposed
some methods to compute upper bounds.

There are many possible extensions and research di-
rections related to delay constrained routing.

First, we assumed that the path set is given for each
demand, but it may be useful to generate paths using
a kind of column generation algorithm. The convex re-
laxation should be adapted to integrate new paths and
new constraints.

It is also possible to define a semidefinite relaxation
of the delay constrained routing problem. More special-
ized algorithm should be used to solve the semidefinite
program.

To let the paper reasonably short, we do not include
computational experiments and postpone them to a sub-
sequent paper. They are necessary to evaluate the qual-
ity of the gap we can obtain with our proposed method-
ology.

In addition to delay and capacity constraints, some
other constraints are sometimes imposed. One can for
example carry each commodity using only one path.
Notice that single path routing has been studied by
many authors (without delay constraints) [4,22]. Valid
inequalities are generally added to improve the lin-
ear relaxation. When dealing with single path delay
constrained routing, these inequalities can also be used
to improve the convex relaxation.

Another kind of routing which is commonly used in
Internet networks is shortest path routing (see, for ex-
ample [5] and [11]). A weight is associated to each link
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and each commodity should be routed using the short-
est paths in sense of these link weights. An interesting
problem may consist in computing a set of weights such
that the used shortest paths satisfy the delay and the
capacity constraints.

In the context of modern communication networks, it
becomes increasingly difficult to predict point-to-point
traffic demands [6,21]. In fact, several services which
require variable bandwidths, have to use the network,
making traffic prediction very difficult. Since the delay
on each link depends on the flow on the link, the end-
to-end delay constraints may be unsatisfied when some
traffic configurations are considered. A new approach
proposed in [6] where traffic is modelled using a poly-
hedron instead of a matrix may be extended to integrate
delay constraints.

In most of cases, the network should have some
survivability features: if a link fails, then the network
should be able to carry the traffic (see, for example,
[3], [7], [10], [19]). Since the paths used during failures
may be required to satisfy some delay constraints, the
models presented in the papers should be modified to
integrate this kind of constraints.

A Convexity of the objective function in (17)

We claim that the objective function in (17) expressed
in term of path flows is convex. We show this fact here.
Note that we can limit ourselves to the convexity of the
left hand side function in (8) expressed in terms of path
flows only, the proof is essentially the same for (9). Re-
call that we already proved that(xi

k)2
∑

l∈P i
k

1
cl−fl

−xi
kαk

is a convex function when we consider the(xi
k)’s and the

fl’s as independent variables. Letx be the routing vec-
tor (whose components are the(xi

k)’s) and letf be the
flow vector (whose components are thefl’s). Let g any
function of the form(xi

k)2
∑

l∈P i
k

1
cl−fl

−xi
kαk. We know

that g(x, f) is convex. We aim to prove thath(x) =
g(x, f(x)) is convex where we expressf in terms of the
components ofx (i.e.,fl =

∑

k∈K

∑

P i
k
∈P (k):l∈P i

k

xi
kvk).

Given any numberλ in [0, 1], and any pair of vectors
x andx′, we have:

h(λx + (1 − λ)x′) = g(λx + (1 − λ)x′,

f(λx + (1 − λ)x′)).

But f is linear in x so f(λx + (1 − λ)x′) =

λf(x)+(1−λ)f(x′). This leads toh(λx+(1−λ)x′) =
g (λx + (1 − λ)x′, λf(x) + (1 − λ)f(x′)).

By g convexity, we get

g(λx + (1 − λ)x′, λf(x) + (1 − λ)f(x′))

≤ λg(x, f(x)) + (1 − λ)g(x′, f(x′)).

Combining all the previous inequalities leads to

h(λx + (1 − λ)x′) ≤ λh(x) + (1 − λ)h(x′).

B Comparison of constraints (8) and (10)

Let us consider a demandk with two pathsP 1
k and

P 2
k that have only one common edgel0. We assume

that P 1
k (resp.P 2

k ) contains another linkl1 (resp.l2).
Constraints (8) corresponding with the two paths are:

(x1
k)2
(

1

cl0 − fl0

+
1

cl1 − fl1

)

≤ αkx1
k,

(x2
k)2
(

1

cl0 − fl0

+
1

cl2 − fl2

)

≤ αkx2
k.

On the other hand, constraint (10) becomes:

(x1
k)2

1

cl1 − fl1

+ (x2
k)2

1

cl2 − fl2

+ (x1
k + x2

k)2

1

cl0 − fl0

≤ αk.

Moreover, we should havex1
k + x2

k = 1.
We can also choose our parameters such that

αk(
1

1
cl0

−fl0

+ 1
cl1

−fl1

+
1

1
cl0

−fl0

+ 1
cl2

−fl2

) = 1.

In this case, it is easy to see that the solution

x1
k = αk

1
1

cl0
−fl0

+ 1
cl1

−fl1

and

x2
k = αk

1
1

cl0
−fl0

+ 1
cl2

−fl2

,

satisfies constraints (8), although

(x1
k)2

1

cl1 − fl1

+ (x2
k)2

1

cl2 − fl2

+ (x1
k + x2

k)2

1

cl0 − fl0

= αk + 2x1
kx2

k

1

cl0 − fl0

> αk.

In other words, constraints (10) are not dominated by
constraints (8).
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To show the opposite, we can assume thatαk =
11 1

cl0
−fl0

and 1
cl1

−fl1

= 1
cl2

−fl2

= 15 1
cl0

−fl0

. Con-

straints (8) becomex1
k ≤ 11

16 andx2
k ≤ 11

16 . Constraint
(10) can be written as follows:(x1

k)2+(x2
k)2 ≤ 2

3 . Sim-

ple calculation show thatx1
k =

1+
√

1

3

2 andx2
k =

1−
√

1

3

2
satisfy constraint (10) while the constraintx1

k ≤ 11
16 is

violated. Hence, constraints (8) are not dominated by
constraints (10).

C Comparison of constraints (11) and (10)

We already mentioned in Section 4. that constraints
(11) do not dominate constraints (10) at least when
the upper boundsαi

k are very large. We should show
here that constraints (11) are not dominated by con-
straints (10). We use the same example of Appendix B.
We assume again thatαk = 11 1

cl0
−fl0

and 1
cl1

−fl1

=
1

cl2
−fl2

= 15 1
cl0

−fl0

. We also suppose thatα1
k = α2

k =

17 1
cl0

−fl0

. Constraints (11) becomex1
k ≤ 1

6 andx2
k ≤

1
6 . The solutionx1

k =
1+

√
1

3

2 andx2
k =

1−
√

1

3

2 satisfy
constraint (10) while the constraintx1

k ≤ 1
6 is violated.

Hence, constraints (11) are not dominated by constraints
(10).
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