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M athematical models of the delay constrained routing problem
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Abstract

Given a network with known link capacities and traffic densggnohe can compute the paths to be used and the
amount of traffic to be send through each path by solving asiab multi-flow problem. However, more quality of
service constraints such as delay constraints, may be ietbasd the routing problem becomes difficult to solve. We
assume that the delay on each link depends on both its cgpacd the total flow on it. We show that satisfying the
delay constraints and the capacity constraints is an NPlete problem. We give a convex relaxation of the delay
constrained routing problem and present some ways to getrugpd lower bounds on the problem.

Key words: routing problems in telecommunications, convex prograngndelay.

1. Introduction semidefinite programming (see, e.g., [23]).

Even if minimizing the mean end-to-end delay is
useful, we think that more explicit constraints should
be added to model practical problems. When we solve
this problem, some paths with long delays may be used
which can deteriorate the quality of service.

Modern communication networks will be based on
different classes of service with different levels of qual-
ity of service. Some applications can accept long de-
lays, but others may require very short delays. Said an-
other way, we think that the right problem consists in
computing a minimum cost routing satisfying the de-
lay constraints of each demand in addition to capacity
and demand constraints. A first attempt to solve simi-
lar problems is presented in [2]. Some heuristics have
been proposed to minimize the number of used paths.
Moreover, there is a lot of work on constrained routing
in different contexts depending on the networking tech-
nology. However, it seems that only basic heuristics are
provided and the delay on a link is generally assumed
to be constant. Notice that our problem presentation is
mainly based on communication networks but most of
the material provided in this paper will also be useful
in the context of transportation networks.

The aim of this paper is to show how delay constraints

Given a traffic matrix and a network with known
link capacities, one of the most classical network
optimization problems consists in computing a multi-
path-routing satisfying the capacity constraints. This
problem is a multiflow problem solved by linear pro-
gramming techniques [1,19]. Another classical problem
consists in minimizing the mean end-to-end delay. The
delay through a linkl is generally computed on the
basis of the classical M/M/1 formula— wherec;
is the capacity of the link (in bytes per secon¢l¢) is
the traffic carried through the link (in bytes per second)
[18]. Using this notatlon— is the time needed to
carry one byte on link. The total delay needed to carry
a byte from a source to a sinkt¢ using a patho is
the sum of delays on the path ImkElep =7, One
can easily show that minimizing the mean end to-end
delay is equivalent to minimizind",_ , +2— where
E' is the set of all network links [8]. Tftle constraints
of the problem are the classical routing constraints:
all commodities (traffic demands) should be routed
through the network, and the flow on each link is al-
ways lower than its capacity. The problem described
above has been studied by many authors (see, e.g.,

[8,20]). It is now well-handled as a convex problem:
the cost function to be minimized is convex, and all

the constraints are linear. It can also be solved using
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can be integrated. First, we define the delay constrained
routing problem. Then, we study the theoretical com-
plexity of this problem in Section 3.. Some convex
relaxations are presented in Sections 4. to tackle the
problem. The constraints considered in both relaxations
are compared in Appendices B, C. Some algorithms are
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presented in Section 5. to compute upper bounds of the3. Complexity issues

problem solution. We propose in Section 6. a convex
optimization algorithm to solve the convex relaxation
of the problem in order to get a lower bound.

When the seP (k) of some demands contains an ex-
ponential number of paths, one can easily show that the

In order to keep this paper reasonably short, we intend delay constrained routing problem is NP-hard. This can

to provide numerical results elsewhere.

2. Notations

LetG = (V, E) be the undirected graph representing
the network.K denotes the set of commodities (traffic
demands) where a commoditye K has a source node
s(k), asink node (k) and a positive value;, (demand).
We denote byP(k) = {P}, ..., P,LP(’“)I} a set of paths
of G connectings(k) to t(k). Letay, be an upper bound
of the end-to-end delay that should be satisfied by all
the paths that will be used to carry the commodity
A real variabler! related toP{ denotes the proportion
of traffic carried through the path. A routing cast is
considered for each link It may depend on geographic
distances and any other link characteristics.

The problem that we aim to solve can be written as
follows:

Minimize > “w, f, 1)
IeE
=P
Y a>1VkeK (2)
=1
Y. Y du< iVl E ©)
kEK Pisl
hi<a,VieFl (4)
> <ap,Vke K, P}
S CL— Ji
leP]
such thatei >0 (5)

0<azi <1,fi>0,Vke€ K,P. € P(k),lc E (6)

The objective function (1) is the total routing cost.

Constraints (2) are the classical demand constraints: all
commodities should be satisfied. The second set of con- 4 andS\ A suchthaty" s;

straints (3) define the flow carried on each link. This
flow should be lower than the capacity (constraints (4)).

Constraints (6) express the fact that the flow variables

are positive and that! are proportions of traffic. The

be proved using a reduction from the multi-constrained
shortest path [12,16] and the equivalence of separation
and optimization. On the other hand, if only one path
is considered for each demand, the delay constrained
routing problem becomes a convex problem which is
easy to solve.

A more interesting question to settle consists in study-
ing the theoretical complexity when we consider more
than one path for some demands and we assume that
the setsP(k) are already given (i.e., they are a part of
the problem inputs).

We will show that the corresponding feasibility prob-
lem (described below) is NP-complete even if there are
exactly two paths for each demand.

The feasibility problem consists in checking whether
there is a routing solution satisfying the delay and the
capacity constraints. We assume here that each (@t
contains exactly two paths.

Feasibility: is there a solution of the problem below

i=|P(k)|
> oa =1, Vk
=1

Zixivkgﬁ, Vie E

keK Pisl

fi<a, VieE

< ay, Vk € K, P} such thatz}, > 0, 0 <

Z 1
lep} a—J
i <1, f,>0,Vke K,Pi € P(k),l€ E
To prove the NP-completeness of the feasibility prob-
lem we will use a reduction from the set partition prob-
lem. Consider a set of positive integets= {s1, ..., s, }
(n > 1). The partition problem consists in checking
wether it is possible to partition the set S in two subsets
> s;. The partition
s;€EA s;i€S\A
problem is a well known NP-complete problem [12].
Let us build a network withn + 4 nodes in the
following way. A nodez; is associated with each in-

delay constraints (5) express that the total delay throughtegers;. We also add four vertices, b, z,t , and the

any path that is really used is lower than the maximum
delay that can be accepted for commodityNotice that

if a path P} is not used i, = 0), there is no any delay
constraint related to this path.

following links: (x;,a), (z;,b), (a,t), (a, z), (b,t) and
(b,z). We consider two commodities for each vertex
x;: a commodityd! from z; to t whose value is; and
a second commodity? from z; to z whose value is
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1 4 s;. The capacity of both link§x;,a) and (x;,b)

is 1 + s;. We also assume that the capacity of links
(a,t) and (b, t) is 1+ 1 3" s;. Links (a,z) and (b, 2)
have an infinite capacity. Only two paths are allowed
for each commodity. Commodity can use the paths
z;, a, t andz;, b, t. Similarly, commodityd? can
only use paths;, a, z andz;, ,b, z. A delay con-
straint is defined for each commodit§: the delay on
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assumed that the paths are a part of the problem inputs,
we only have to keep those that satisfy the delay con-
straints and we get a convex problem that can be solved
using any polynomial convex optimization algorithm.

4. A convex relaxation of the delay constrained rout-
ing problem

any used path should be at most equal to 2. No delay  ongpraints (5) are equivalent to the following con-

constraint is added for commoditie§. Suppose that
the routing problem related to this network is feasi-
ble. Both links(a,t) and (b,t) will be used to carry
traffic and we necessarily havg, ) + f.) = > si-

At least one of the two links, let us say,t), sat-
isfies fa,0) = 32, 8i = C(a) — 1. This means that
— > 1. Moreover, there is at least one
Cla,t) = Jla,t)
commodity d§- using the pathxz;at, implying that

+
Cat) = flat)  Clasa) = fiaya)

. . o 1
two previous inequalities leadsto————— < 1.
C(Ij,a) - (Ijva)
Commodities?; andd; share the same links:;, a) and
(xj., b?. qupose that’, is also using the path;, b, t.
This implies thatf,, ») < ¢, = 1+ s, but we

< 2. Combining the

1 .
already assumed thatif < 1 which leads
C(zj,0) ~ J(zj,0)
10 fla;0) T flaja) < 2sjj+1. Then], it becomes impossi-
ble to carry both demand% andd:. Said another way,
if d§- uses pathz;, a, ¢, then it does not use the other

. 1
path and we necessarily have—— = 1. We
C(aj.a) = fla;.0)

should also havel— = 1. The same result
Cla,t) — flat)
is valid for link (b,t). In other terms, if the routing

Sq

problem is feasible thetf, ) = fu,) = and

each commodityl! is single path routed. A partition of
the set S is obtained by taking the set of commodities
flowing through(a, t) and those using linkb, t). The
other sense is trivial: having a partition, one can build
a solution of the routing problem. As the reduction is
polynomial, the feasibility problem is NP-complete.

Notice that the complexity of the feasibility problem
associated with the delay constrained routing problem

strongly depends on the expression of the dela%y—.
C

If we assume, for example, that the delay on e_ach link
[ is constant (does not depend on the flow), then the
feasibility problem becomes polynomial. Indeed, as we

straints

— O Soa

1
ch_fl

lep}

Vk € K, Pl € P(k). (7)

Since the mean delay problem stated in Section 1.
is now efficiently solved as a convex problem, a good
direction to get an efficient algorithm to solve our delay
constrained routing problem consist in finding a convex
model which can help in the solution of the problem.

All constraints (2, 3, 4) are linear constraints and thus
convex. However, one can easily show that constraints
(7) are not convex. We then propose to replace con-
straints (7) by the following convex constraints:

@? Y — -

lep}

— xhag <0,

(8)

Notice that this constraintis equivalentto the previous
one whenz! is boolean. However, only constraint (8)
is convex. This can be easily shown by computing the
Hessian matrix of the left hand side function. A@ak
is linear, to show the convexity of the constraint (8), it
is sufficient to prove thay : (%, fi) — (z%)? Clifl is
convex (wherd € P{). The Hessian matrig{ of g is
given below:

9 1
H = ; c—fi i
2171@(0[%]«[)2 (z},)?

H is clearly positive semidefinite.

If we use constraints (8) instead of constraints (5),
we obtain a relaxation which is a convex problem that
can be solved by convex programming techniques.

Another way to integrate the delay constraints (5)
consists in adding the following constraints:

P

Pisl

ca—fi

D

I€EE

_akgoa

9)
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Constraint (9) dominates constraints (8). However, The validity of these inequalities is obvious:
constraints (9) are also not convex. They become convex

; 1 : 1 :
> (@) > =}, Y ——+(1—x})
. ; o T Pisi 1 — fi 1 — fi
if we replacer;, by (x},)*. This leads to), —-——— lepy lery
_ _ IEE _ 1 . o
ar < 0. They can be written in the following way, Z 7 <z + (1 —zp)a),
G —Ji

()% x ( 3 q%}cl — a < 0. The obtained in- _lepk

P lepp These constraints are clearly convex.

equalities are now dominated by constraints (8). Said If we compare constraints (11) and constraints (8),
another way, replacing, by (z%)? does not seemto be one can easily see that constraints (8) dominate con-
very efficient. A more efficient way to transform con-  straints (11) if and only ifi%, is fractional and

straints (9) consists in considering the squareof z? . o
k

| = . S
Thus, we obtain the following inequalities: > T
lep}
i )2
(P;l ) This clearly shows that we should carefully compute the
Z e ag <0, (10) upper boundsy;, to obtain efficient constraints of type
ee A9~ Ji (11). Moreover, ifaj, is sufficiently large, constraints

(11) become very weak and do not dominate constraints
Constraints (10) are clearly valid for our delay con- (10). An example is given in Appendix (C) to show

strained routing problemz zi < 1implies that constraints (11) are generally not dominated by
B3l constraints (10).
_ _ Combining all the results of this section leads to the
(> =3)? > T, following convex relaxation of the delay constrained
Z Pi3t < Z Pt routing problem. Notice that the positivity of the routing
= a—h TiZma-fh o i=|P(k)|
€ € cost valuesw; implies that >~ zi = 1 for each

By combination with constraint (9), we obtain constraint demandk at optimality. The pzrf)lblem is rewritten as
(10). o
One can easily compute the Hessian matrix to show Minimize szfz
that constraints (10) are convex. Notice that there is ek
no any general domination relationship between con-
straints (10) and constraints (8). An example is given in
Appendix B to show this fact. =1 .

A third set of convex constraints can be obtained Z Z zpvk = fi, VI € E,
using the fact that the delay on each link is necessarily *€K PieP(k):leP]
upper bounded. Indeed, if a linkis not used, then P2 1

(1) Z

i=|P(k)|
Y ap=1,VkeK,

—xhoy, <0, Vk € K, P} € P(k)

s=F < o-Moreover, ifl is used by at least one demand o=

k, thenqifl < ag. Combining these two observations, i

one can easily deduce an upper boumc@resp.a};) for (Y i)

the delay on each link(resp. path?;). The upper bound Pis k

a} is assumed to be higher than. More details on > kj —ap <0, Vk €K,

the methods that can be used to get these upper bounds iz~ /!

are presented in Section 5.1.. Z 1 +zi(al —ag) —al <0
Assuming that the upper bounds, are given, we a—fi R b=

i ; . o lep}
introduce the following new set of inequalities: ,
Vk € K, P, € P(k),

Zc_fm;(a;—ak)—a;go (11) Oi% VkefiPkeP(k), ,
epy fi>0, i—q<0,ViecE. (12)
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5. Upper bounds of the delay constrained routing
problem

This section is dedicated to upper bounds. We will
first show how one can compute the numbeysand

. introduced in Section 4.. Then, we provide a set of
heuristics to compute an upper bound for the solution

of the whole problem.

5.1. On the upper bounds i, and «,

Let us first focus on the upper boundsof the delay
d = 5. > L. Afirst proce-
dure that can be used to compute an upper baupd
related to a linky may consist in solving the following
convex problem:

Minimize Z —f1e
I€E
i=|P(k)|

> a3 +1<0 VkeK

1=1
YN wo—fi<0 Vi€E
keK Pisl
Z Z —zpvk + fi, <0
keK Pislo

fl—CZSO Vie E
—— —ziay <0Vk € K, P} € P(k)
l

—a, <0 VkeK
lEE
0<2i <1,/,>0 Vke K,PicPk),lcFE
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P} € P(ly) is used, then—

T < ap —

>
leP} I#£lo “
A simple upper bound is then given by

1

1
max [ —, max aj — E
&}

Clo PLeP(lo) 1€P? £l
2

Notice that we can eliminate from the beginning all

paths P} such that Z > «ay because these paths
leP;

can never be used. Th|s implies that the upper bound is

simply

max ay — (13)
PieP(lo)

> o

lePi I+l !

di, <

This bound can be slightly improved using the fact
that the flow on a link is necessarily carried by the
paths of P(lp). In fact, there is at least one pafti €

P(ly) carrying at Ieas}fl—“ This implies that there is
a path such that

1 1

_— + (14)

— <
Frg = %k

1eP; 1£l, ©U T TP(o)]

It is easy to compute for each patti € P(ly) the
maximal value off;, such that inequality (14) is satis-
fied. Let f;,(P}) denote this value. The flow on link
will be lower than max f;,(P{) and the new upper

PieP(lo)

bound is
1

max
PIeP(lo)

dy, < (15)

.flo(P]i).

Cly —

The upper bounds, will be simply based on the

One can easily see that the convex problem above isvalues ofc; computed as explained above. More pre-

quite similar to the model of Section 4.. We only skip
constraints (11) (because they use the upper boujids
and we add the constraint ;K Y piste TkVk + fio <

k
0. The solution of the convex problem above will give
us the boundy, = #

Some other S|mple remarks can help to get an-
other upper bound. LeP(l) be the set of paths con-
taining I: P(l) = {P} € P(k),Pi > I,k € K}.

If a path P € P(lp) is used, then we should

have o ifz + X qifl < ay. This implies
0 IEP] I#£ly

that - fl + Cll < ag. In other terms, if
0

lePi I#lo

cisely, we definevi as follows:

Q, = max ozk,g o

lep}

(16)

5.2. Heuristics to compute upper bounds of the delay
constrained routing problem

A simple upper bound can be computed by adding
the delay constraind - f < «ay, for each path. Said
lep;
another way, even if the path is not used, we impose
the constraint. We obtain a convex problem that can
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be solved by convex optimization. Notice that adding
all these constraints may produce an infeasible problem
leading to an infinite upper bound. This upper bound can
be improved in some cases. When we solve the convex
problem integrating a delay constraint for each path, the
solution may not use all the paths. Then we can elimi-
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depending on howi; values are changed. For instance,
ifwe leth(di,...,d,...,dg) be the optimal value of
the above problem, we may look fdy, [ € E that min-
imize h. Notice that we already have an upper bound
for d;. This upper bounds should be taken into account
when the values of; are changed because there is no

nate all the constraints related to the non used paths anchope to find any feasible solution whefp > «;. Let

solve again the new restricted convex problem without
these path variables. This process can be repeated un
til all the paths considered in the master problem are
effectively used to carry traffic.

Minimize Zwlfl
IeE
i=|P (k)|
Y 2 >1VkeK

i=1
Y s < fiVieE

keK pPisi
figaVieE

> < oy, Vk € K, P} € P(k)

1
lep; a—f

0<a2i <1,fi>0Vke K,P. € P(k),lc E

In fact, any method to compute a feasible solution gives
an upper bound. Many other heuristics can be proposed
to compute a hopefully good solution. One can, for
example, fix the delayd; on the links and solve the
corresponding routing problem using only the paths sat-

isfying the delay constraint§, = > Q.
leP;

c— fz—

Minimize Zwlfl
I€E
i=|P (k)|
Y o >1VkeK

=1

> >

k€K Pisl,di<ay,

x};vk < fl,Vl ek
1
fi<g——=VleE
dy

0 <l <lai=0if di >y,
Vk e K, P € P(k)f, >0Vl € E
Then the values ofl; may be changed and the linear

problem solved again to decrease the value of the ob-
jective function. One can implement several heuristics

u; denote the dual variable corresponding to the con-
straintf; < ¢; — 7. If there is no current path}, using
the link I such thatd; is exactly equal tay, then a
small variation ofi; will not change the set of paths that
can be used for routing. Moreover, if we assume that
the current linear program is non degenerate, then we
Oh(dy, dl,...,d‘E‘)
od,

subgradient descent method can be |mpIemented to de-
crease the value df.

Finally, consider the following convex multicommod-
ity flow problem

know that —. A simple

1
—fi

Minimize Zlog( )

IEE

i=|P(k)|
Z > 1,Vke K
i=1

Z Z:C?e’t)k S.fl, VZEE,

keK lep}
0<figa, VieE
0<azj <1, Vke K, P} € P(k).

The Karush Kuhn Tucker conditions for this problem
state that each commodity will be routed through the
shortest paths in sense of the derivativel@f( —)

be the com—
mon vaIue of these shortest pathsﬁ}cf< ay, for each

k, the solution of the above problem provide an up-
per bound to the delay constrained routing problem. To
have a chance to get a feasible solution, we can inte-
grate the upper bounds in the problem formulation.
We only have to replace the constrairfis< ¢; by the
constraintsf; < ¢; — a% This is only a necessary con-
dition to get a feasible solution.

6. Solution methods for lower bounds

The aim of the paper was to present some mathemat-
ical models of the delay constrained routing problem
that can be handled by convex programming. An upper
bound is obtained from the algorithms of section 5.2.. In



100 Walid Ben Ameur and Adam Ouorou— Mathematical models of #laydconstrained routing problem

this section, we sketch some algorithmic solutions for
the convex problem (12) which provide a lower bound.
We think that the best way to deal with Problem (12)

is to relax the constraints (8), (10) and (11), and solve

the resulting dual problem. So, let ¢, n be the dual

variables associated respectively to these constraintsfunctiond(f;) = 1/(¢

Then the standard Lagrangian function is

L(‘rafalya Cv 77) = Zwlfl

I€E

0 > @)D Gty — )
keK PiecP(k) lep}

2 GQ R > @) -
keK  I€E PieP(k):lepP}

0 > (D gty + (ad — aw)ag — )

keK PieP(k) lep}

Reordering terms, the Lagrangian function may be
rewritten as

L((E, fa’77 Cv 77) = Z[wlfl + !

I€E —fi
(Z(Ck( Z )?
ke

PieP(k):leP}

+ > (hED )]
PicP(k):leP}

= > [Gar+ Y0
kEK PieP(k)

(Vianwh, + o, — i (g, — ar)a)]

The dual function is defined by

L(y, ¢, m) = Win L@, £ G n) an
where
|P (k)|
£ a= Z >
i=1 keK PicP(k):I€P!
ziop=fi, i—a <0,0<a, f;>0,}

If we definex(vy, ¢, n),f(v, ¢, n) as the solution
corresponding to the computation 6fv, ¢, 7), it is
well-known from convex analysis thaf (z(v, ¢, ),

fOn ¢ om)y gk(z(ve ¢ m), f(v, ¢ m) and

ki (x(v, ¢, m), f(y, ¢, n)) provide a subgradient to
the £ at (v, ¢, n). The functionsf;, gi andhi, corre-

For any(v, ¢, n), L(v, ¢, n) is a lower bound to the
optimal value of the problem (12) and hence a lower
bound to problem (1)-(6).

We can remove the capacity constraiffifs- ¢; < 0
using a trick proposed in [8] by replacing the delay
— fi) by a functiond( f;) which
is identical withd in [0, k¢;] and quadratic fof; > kc;.
The parameter is a real which must be chosen very
close to 1, but appropriate choices can be obtained in the
present context using the delay bmmldcomputed in
Section 5.1.. We can take=1 — a— This quadratic
function is chosen such thdandd has the same values,
first and second derivatives at;.

A possible algorithm for maximizing the dual func-
tion £ is the cutting plane type algorithm. This kind
of algorithm alternates between a master problem (us-
ing the linear approximatior; obtained from subgra-
dients collected at different points™, (", "), T =
0,...,t), and a subproblem (17). A solution of the later
provides a lower bound Problem (1)-(6). We outline a
general cutting plane algorithm as follows.

Algorithmic scheme

(1) Choosey?, ¢°, n > 0 and sett = 0.
(2) Solve Subproblem (17) and denote bfyyt, ¢,
), f(v4, ¢t, nt) the solution.
(3) Use fi(z(v*, ¢ "), f(¥" ¢ n'), gn(z(vt,
¢t ), f(¥5, ¢ ') and ki (v, ¢, n') to
update the linear approximatidghand use it to get
(1L, ¢t pttl). Sett = ¢t + 1 and go to Step
2.
The basic issue is how to get the next iterate
(yt+L, ¢t it The way in which these test points
are generated using the linear approximatién in
Step 3 makes the difference among the cutting planes
algorithms. Solving the current linear approximation

%12377)(201626(7’ ¢ n) (18)

and pick its optimal solution as the next test point, leads
to Kelley’s algorithm [17]. The use of the analytic cen-
ters of the polyhedrons made by the subgragients in-
equalities and the best upper bound obtained during the
previous iterations yields analytic center cutting plane
algorithm, see [13]. Bundle type algorithms [15] use the
master problem

(v ¢ I

. A
maX> Ct(% <a 77) - 5”(7’ <a 77) -

v, ¢, n=>0

spond to the constraints (8), (10) and (11) respectively. in place of (18), where\ is a positive parameter.
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Anyway, a new proposal has to be transmitted to (z%)’. The above problem splits inti§ linear programs
the subproblem (17) which will react to this test point

with new revised cutting plane to improve the linear ap- min Z
proximation. Now, assume that ¢, n, > 0 are fixed. PieP(k)

The Lagrangian subproblem (17) is a multicommod- |P(k)|

ity flow problem with a nonlinear differentiable convex st Z zh =1,

cost which can be solved in various ways [20]. Let us

consider the Frank-Wolfe algorithm because of its sim- x> 0,Pi € P(k)

plicity. At each iteration of this algorithm, a first-order
approximation of the objective function is used to find which can be solved by linear programming if we con-
a search direction and a line-search is performed in thatsider that the set of path(k) are inputs of the prob-
direction to improve the current iterate. Note that, the |em, see Section 3..

objective functionL in (17) can be seen as a function
of path flows variableri while preserving its convex-
ity (see Appendix A; however we still usg to denote

kEKPieP(zk:)lePi Tivx in order to alleviate typewrit- We defined the delay constrained routing problem
. k ok I ; where the delay is based on the classical M/M/1 waiting
ting). Th tial d tive of AANE ) . -
ing). The partial derivative oL(x,, ¢, n) Wr-t. (z}) time formula. We showed that the corresponding feasi-

7. Conclusion and further research

's given by bility problem is NP-complete even if we consider only
two paths for each commodity. Then, we gave a convex
P relaxation to compute lower bounds. We also proposed
ci(2k) = O L(x,7, €, n) some methods to compute upper bounds.
Z wy + Z d'(f) There are many possible extensions and research di-
leElep; IE rections related to delay constrained routing.
i First, we assumed that the path set is given for each
(Z(CP( Z p) demand, but it may be useful to generate paths using
pEK  PLEP(p)lER; a kind of column generation algorithm. The convex re-
+ Z (%( ) + ﬁp)))] laxation sho_uld be adapted to integrate new paths and
PieP(p)lePi new constraints.
i It is also possible to define a semidefinite relaxation
+2 Z d(fi) (v + G Z 9) of the delay constrained routing problem. More special-
leE:le Py P{ eP(k):1eP] ized algorithm should be used to solve the semidefinite
— ek + i (g — ). program.

To let the paper reasonably short, we do not include

computational experiments and postpone them to a sub-

The linearized subproblem (allowing to compute a Seéquent paper. They are necessary to evaluate the qual-
search direction) at iteratiom of the Frank-Wolfe ity of the gap we can obtain with our proposed method-

algorithm is as follows. ology. _ .
In addition to delay and capacity constraints, some

other constraints are sometimes imposed. One can for
Z Z example carry each commodity using only one path.
min Notice that single path routing has been studied by

keK PicP(k many authors (without delay constraints) [4,22]. Valid
PRI inequalities are generally added to improve the lin-
S.t. Z =1, keK, ear relaxation. When dealing with single path delay
i=1 _ constrained routing, these inequalities can also be used
z, 20, keK, P ePk) (19) to improve the convex relaxation.

Another kind of routing which is commonly used in
Internet networks is shortest path routing (see, for ex-
wherect ((z%)?) is the partial derivative at the current ample [5] and [11]). A weight is associated to each link
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and each commodity should be routed using the short- Af(z)+(1—X) f(z'). This leads td(A\x+ (1 —N)a’) =
est paths in sense of these link weights. An interesting g (Ax + (1 — M)/, Af(z) + (1 — M) f(2')).
problem may consist in computing a set of weights such By g convexity, we get
that the used shortest paths satisfy the delay and the
capacity constraints. g(Az + (1= N2’ A f(2) + (1 = N f(2"))

In the context of modern communication networks, it < A\g(z, f(x)) + (1 = N)g(a', f(z)).
becomes increasingly difficult to predict point-to-point o ) ) -
traffic demands [6,21]. In fact, several services which ~ Combining all the previous inequalities leads to
require variable bandwidths, have to use the network, / /
making traffic prediction very difficult. Since the delay Rz + (1= N)2) < Ab(z) + (1 = Mh(').
on each link depends on the flow on the link, the end-
to-end delay constraints may be unsatisfied when someB Comparison of constraints (8) and (10)
traffic configurations are considered. A new approach
proposed in [6] where traffic is modelled using a poly- ~ Let us consider a demaridwith two pathsP;} and
hedron instead of a matrix may be extended to integrate P that have only one common edge We assume
delay constraints. that P! (resp.P?) contains another link; (resp.iy).

In most of cases, the network should have some Constraints (8) corresponding with the two paths are:
survivability features: if a link fails, then the network

should be able to carry the traffic (see, for example, (2} )? ( 1 + 1 ) < apz},

[3], [7], [10], [19]). Since the paths used during failures = fo cw—Ju

may be required to satisfy some delay constraints, the (22)? ( 1 i 1 ) < apa?
models presented in the papers should be modified to K clo—fro c,—Jfi.) i

integrate this kind of constraints. .
9 On the other hand, constraint (10) becomes:

A Convexity of the objective function in (17) (z1)? 1 + (22)? 1 + (z) + 23)?
Cy — fll Cl, — flz
We claim that the objective function in (17) expressed L < ag.
in term of path flows is convex. We show this fact here. o — J1o —

Note that we can limit ourselves to the convexity of the
left hand side function in (8) expressed in terms of path
flows only, the proof is essentially the same for (9). Re-
call that we already proved that: )? > qufl —xy o, o 1 n 1
leP] k I 1
is a convex function when we consider th¢ )’s and the Co=fio =i
fi's as independent variables. Lebe the routing vec-  |n this case, it is easy to see that the solution
tor (whose components are thig],)’s) and letf be the
flow vector (whose components are tfi&s). Let g any 1 1
function of the form(z%)? > — 't oy, We know
lep}
that g(z, f? is convex. We aim to prove that(x) = T = o — T
g(z, f(z)) is convex where we expregsn terms of the clg—Fig " Ciy—Jig
components of: (i.e., fi = > 3 ziog).
keK PicP(k):leP}
Given any numbea in [0, 1], and any pair of vectors 1

r andz’, we have: (z)?

Moreover, we should have}, + 22 = 1.
We can also choose our parameters such that

)= 1.

1 1
ciy—fig + ciy—fiy

1 T and
c—fi ciy—fig ¢y —fiy
1

)

satisfies constraints (8), although

+ (z3)* + (z}, + 27)°

c, — fu L, — Ji,
h(Az + (1 = N)z') = g(A\x + (1 — N2/,

fOz + (1= X)z')).

= ayp + 2217

—_— > Q.
Cly — flo Cly — flo

In other words, constraints (10) are not dominated by
But f is linear inz so f(Axz + (1 — A)a’) = constraints (8).
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To show the opposite, we can assume that =

1 1 _ 1 1 )
11010*f10 and cy,—fiu — ay—fi, cio—Jfig " Con
straints (8) become;, < 1l andz} < 1i. Constraint
(10) can be written as followsz; )? + (27)* < 2. Sim-

14+4/1 1—4/%
Vi andz? = —X2

ple calculation show that} =

satisfy constraint (10) while the constrainf < % is
violated. Hence, constraints (8) are not dominated by
constraints (10).

C Comparison of constraints (11) and (10)

We already mentioned in Section 4. that constraints
(11) do not dominate constraints (10) at least when
the upper bounds:, are very large. We should show

here that constraints (11) are not dominated by con-

straints (10). We use the same example of Appendix B.
We assume again that, = 11 if and if =
Cig—Jig Cry 51
1

557~ We also suppose thaf, = aj, =
0 0

H 1
7, Constraints (11) becomg, < ¢ andz? <

1 =
ciy—figy
172 L

0
1 o1 1+/E 2 1=V o
- The solutionr; = —~* andx; = —* satisfy

constraint (10) while the constrainf, < % is violated.
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