
Algorithmic Operations Research Vol.1 (2006) 79–93

Preemptive scheduling with position costs

Francis Sourda

aLIP6 - CNRS - Université Paris 6, 4, place Jussieu 75252 PARIS CEDEX 05

Abstract

This paper is devoted to basic scheduling problems in which the scheduling cost of a job is not a function of its
completion time. Instead, the cost is derived from the integration of a cost function over the time intervals on which
the job is processed. This criterion is specially meaningful when job preemption is allowed. Polynomial algorithms are
presented to solve some special cases including a one-machine problem with a common due date and a two-machine
problem with linear nondecreasing cost functions.

Key words: Scheduling algorithm, preemption, primal-dual algorithm, dynamic programming.

1. Introduction

In most scheduling models presented in the litera-
ture [5,14], the cost for scheduling a jobJi is a func-
tion of its completion time, usually denoted byCi.
When preemption is not allowed, the job must be wholly
scheduled in the time interval[Ci − pi, Ci) wherepi

denotes the processing time ofJi. Hence, the process-
ing period ofJi is unambiguously defined byCi. When
preemption is allowed, there may be an infinite number
of ways to scheduleJi so that it completes atCi. There-
fore, a model in which the cost ofJi only depends on
Ci might be insufficient especially when the material
produced by the execution ofJi is continuously deliv-
ered to the consumer, that is a fraction of the material
is delivered as soon as it is produced instead of being
entirely delivered at its completion time.

However, it does not mean that the problem was
ignored by practitioners and researchers. In fact, it is
usually considered at the planning level. The planning
horizon is divided into time periods. In these models,
the whole production is not processed in a single pe-
riod, and production and holding costs are introduced
in order to penalize a part of the production that would
be processed in a bad time period with respect to the
demand. More details about lot-sizing problems can be
found in recent surveys [15,3]. The notion of preemp-
tion is also central in problems of balancing produc-
tion lines: the production of different products must be
rotated to satisfy the different types of demands while
limiting inventories and shortages. A survey of these

Email: Francis Sourd [Francis.Sourd@lip6.fr].

problems can be found in [12].

In this paper, we consider a new model which cor-
responds to a new criterion in the classic machine
scheduling theory [5]. As detailed in Section 2., the
main interest of the model is to avoid the use of time
periods (the number of time periods is usually not
polynomial). A cost functionfi is attached to each job
Ji. It can be interpreted as follows: for an infinitesimal
positive duration dt, fi(t)dt is the cost for processing
Ji betweent and t + dt (mathematical assumptions
aboutfi are given later). Therefore, the total cost of job
Ji —called position costof Ji— is

∫ ∞

0
fi(t)xi(t)dt,

wherexi is a 0-1 function that indicates whetherJi

is processed or not at each time. For obvious practical
reasons,xi should be constrained to have a finite num-
ber of discontinuities, which means that the number of
interruptions of each jobJi is finite. We will prove, for
all the models presented in this paper, that the proposed
algorithms compute optimal solutions which satisfy this
condition. Finally, we observe that the condition thatJi

is completely processed is expressed by the equation
∫ ∞

0 xi(t)dt = pi. As a trivial consequence, we have
that if the cost functions are modified by an additional
constant, that is the cost functions arefi(t) + λi, the
change of the cost of a feasible schedule is

∑

i λipi,
which is a constant. Therefore, an optimal schedule is
invariant with respect to the choice of theλi.

The optimization criterion for the problems addressed
in this paper is the minimization of the sum of the
position costs of all the jobs, which will be denoted by
∑

∫

fi in the γ-field of the usualα |β | γ notation. Al-
ternatively, the max criterionmax

∫

fi could also be of

c© 2006 Preeminent Academic Facets Inc., Canada. Online version: http://www.facets.ca/AOR/AOR.htm. All rights reserved.

80 Francis Sourd – Preemptive scheduling with position costs

interest but is not studied here. Moreover, the jobs are
assumed to be independent, that is there is no prece-
dence constraint between any pair of jobs.

Preemptive scheduling in order to minimize the total
position costs also stems from the need of lower bounds
for non-preemptive scheduling problems. An early ap-
proach was proposed by Gelders and Kleindorfer [9]
for the single machine weighted tardiness problem. An
extension of this approach has been proposed by Clif-
ford and Posner [7] for the earliness-tardiness problem
with a common due date and by Sourd and Kedad-
Sidhoum [18] and Bülbül et al. [6] for the problem
with general due dates. These lower bounds are shown
to be efficient and can be used in a branch-and-bound
method [18] and in lower-bound based heuristics [18,6].
In these papers, the lower bounds are not strictly de-
fined as problems with position costs, instead the jobs
are decomposed into unary operations, each operation
being given a cost function. Sourd [16] introduces a po-
sition cost based model to compute a lower bound for
the earliness-tardiness problem and presents the rela-
tionships between the new model and the ones of [18]
and [6].

Section 2. provides some generalities and related re-
sults. It is explained that no efficient strongly polyno-
mial algorithms for problems with the

∑∫

fi criterion
have been proposed in the literature. Therefore, the aim
of the paper is to study classes of problems which can
be well solved by combinatorial algorithms. Section 3.
is then devoted to two special cases of the one-machine
problem. In Section 4., a parallel machine problem with
two machines is studied. Finally, Section 5 underlines
the originality of the techniques used to solve these
problems with position costs and indicates some open
problems.

2. Generalities and motivation

Let us first consider the more general problem
P | |

∑∫

fi. We first observe that this problem is equiv-
alent to the problem with release dates and deadlines
P | ri, d̄i |

∑
∫

fi because the value offi can be set
to an arbitrarily large value outside the time interval
[ri, d̄i). Classically, the number of jobs is denoted byn
and, for eachi in {1, . . . , n}, pi denotes the processing
time of Ji.

We also introduce some assumptions about the cost
functionsfi andxi in order to avoid technical issues.
First, in order that the integral

∫ ∞

0
fi(t)xi(t)dt always

exists, we assume that all thefi are piecewise continu-

ous. Second, iffi(t) is nonincreasing whent becomes
infinite, thenJi should be scheduled at an infinitely late
date. Therefore,fi is assumed to be nondecreasing on
a time interval[Ai,∞) whereAi ≥ 0 is defined with
respect tofi. It can then be observed that there is an
optimal schedule in which no job is processed after the
horizonT = maxi Ai +

∑

i pi. This assumption on the
cost functionsfi implies that there is an optimal solu-
tion in which the number of interruptions is finite [16].
Therefore, we will limit our attention to these schedules,
which also means that we use the Riemann integral.

Let us now assume that all the job starts and inter-
ruptions must occur at integer time points. Then, a job
Ji running or starting att is processed within the whole
interval [t, t + 1) and the contribution of this part ofJi

to the total cost is equal to
∫ t+1

t fi(t)dt. The problem
is classicaly solved as atransportationproblem (see for
instance [1,5]).

As the processing times of the jobs are generally
greater than 1, the resulting network is generallyun-
balanced, which means that the number of demands
(sinks) is significantly greater than the number of sup-
pliers (sources). Hence, the problem can be efficiently
solved by some variants of the classical network flow al-
gorithms for unbalanced bipartite networks (Ahuja and
al. [2]). Sourd and Kedad-Sidhoum [18] also presented
a variant of the Hungarian algorithm that solves the
problem in the special casem = 1.

The main advantage of solving the scheduling prob-
lem as a transportation problem is the generality of the
approach: it works as soon as

∫ t+1

t
fi can be computed

—or approximated by a numerical method— for anyt.
However, whenfi can be compactly encoded, the ap-
proach is not so efficient. For instance, let us consider
the case where we simply havefi(t) = |t− di|, that is
the function is encoded inO(log di) space. Then, the
horizon T is not polynomial in the size of the input
of the problem even if it is bounded by a polynomial
in the valuesp1, . . . , pn andd1, . . . , dn. Therefore, the
transportation-based algorithm is not polynomial but
pseudo-polynomial. We can also interpret this problem
as the problem of scheduling

∑n
i=1 pi unit operations.

As thepi unit operations derived fromJi are identi-
cal, the problem is related to the field of high multiplic-
ity scheduling (see [4] for a recent discussion of these
problems). In particular, Clifford and Posner [7] study
several common due date earliness-tardiness scheduling
problems in the context of high multiplicity. They pro-
pose polynomial algorithms which relies on the solving
of several linear programs. In particular, they show that

Francis Sourd – Algorithmic Operations Research Vol.1 (2006) 79–93 81

when the processing times of the jobs are equal to 1,
the problem is polynomial. This problem is similar to
the problem we study in Section 3.2. when we add the
constraint that interruptions must happen at integer time
points. In contrast, we show that in our model with po-
sition costs, the algorithm is simpler and more efficient.

In what concerns position cost as defined in this
paper, Sourd [16] studies the one-machine scheduling
problem when the cost functionsfi are piecewise lin-
ear (job interruptions are no more forced to occur at
integer times). It can be shown that the dual of this
problem is the maximization of a non-smooth concave
function and, as there is no duality gap, the problem
is polynomial. When there are parallel machines in-
stead of a single machine, the problem can be similarly
solved (Kedad-Sidhoum et al. [11]). However, in a com-
putational view, obtaining the optimal schedule, even if
polynomial, is not so easy because the optimum often
corresponds to a non-smooth point. Furthermore, the
algorithm is not combinatorial and not strongly polyno-
mial.

This observation motivates the study presented in this
paper. Some special cases of the single and parallel ma-
chine problems are considered and polynomial combi-
natorial algorithms to solve them are given.

3. One-machine problems

3.1. Release dates and linear cost functions

We first consider that the cost functions are of the
form

fi(t) =

{

∞ if t < ri

wit otherwise

whereri ≥ 0 is the release dateof Ji andwi > 0 is
theslopeof its cost function. We show that an optimal
schedule can be obtained by scheduling the job accord-
ing to the preemptive “largest slope first” rule, which is
more formally described by Algorithm 1.

The algorithm can be proved by a classic interchange
argument. As mentioned in Section 2., we limit our at-
tention to schedules with a finite number of preemp-
tions. Let us consider a schedule such that there is an
interval [t1, t1 + δ1) in which the scheduled job (say
Ji) violates the “largest slope first” rule. As the rule
is violated, there is a time interval[t2, t2 + δ2) with
t2 > t1 in which the scheduled jobJj verifieswj > wi

andrj ≤ t1. Let us defineδ = min(δ1, δ2). The part
of Ji scheduled in[t1, t1 + δ) can the be swapped

Algorithm 1 Preemptive “largest slope first” rule

let t = mini ri

repeat
selectJi⋆ with ri ≥ t andpi > 0 with the minimal
slopewi

let t′ = min (t + pi⋆ , min{ri | ri > t})
scheduleJi⋆ betweent andt′

decreasepi⋆ by t′ − t
let t = max (t′, min{ri, pi > 0})

until pi = 0 for all jobs

with the part ofJj in [t2, t2 + δ). Simple calculations
show that the change of the cost of the schedule is
(wi − wj)(t2 − t1) < 0, which proves that the initial
schedule was not optimal.

The algorithm can clearly be implemented in
O(n log n) time. Since the processing of a job can only
be interrupted by the release of another job, there are
at mostn − 1 interruptions in the schedule. In partic-
ular, there is no job interruption when all the jobs are
simultaneously released.

3.2. Earliness-tardiness around a common due date

In this section, we consider that the cost functions are
of the formfi(t) = αi max(d− t, 0)+βi max(t−d, 0)
for a commondue dated > 0. For each jobJi, we also
haveαi ≥ 0 and βi > 0 because a job withβi = 0
can be scheduled after all the other jobs and there is
no release dates. A part of a job scheduled befored is
said to beearly otherwise it islate. We assume without
loss of generality thatαi 6= αj and βi 6= βj for any
i 6= j. This assumption is based on [16, Remark 3] that
shows that we sligthly modify the value of the slopes
with a very small perturbation the optimal schedule is
very slightly modified. Moreover, while this assumption
makes the proof shorter, the algorithm we propose can
be easily implemented to deal with equal slopes without
explicitly introducing the small perturbations.

This problem is clearly related to the class of schedul-
ing problems with earliness and tardiness penalties and a
common due date. Two recent surveys of these problems
have been proposed by Gordon et al. [10] and by Lauff
and Werner [13] but only non-preemptive scheduling is
addressed in both articles. As mentionned in Section 2.,
the closest model is the one proposed by Clifford and
Posner [7] that considers unit jobs, which is similar to
constrain interruption times to be integer.

We first observe that there is an optimal solution with-
out idle time that completes at some timet such that

82 Francis Sourd – Preemptive scheduling with position costs

t− P ≤ d ≤ t with P =
∑n

i=1 pi. For a given sched-
ule and for anyi, let p+

i denote the length ofJi sched-
uled afterd and letp−i = pi − p+

i be the length ofJi

which is early. Clearly, according to Section 3.1., in an
optimal schedule, the late part of any job is not inter-
rupted and the parts of jobs are sequenced in the or-
der of nonincreasingβi-costs. Similarly, the early parts
are sequenced in the order of nondecreasingαi-costs.
Therefore, these dominant schedules are mathematically
defined by the vectorp+ = (p+

1 , . . . , p+
n): from this

vector, we can easily derive the early parts of the jobs
and the start times of both early and tardy parts. Let us
define thepseudo start timeof Ji t−i = d−

∑

αj≥αi
p−j

and itspseudo completion timet+i = d +
∑

βj≥βi
p+

j .

If p+
i = 0, Ji is wholly earlyand is scheduled in the in-

terval [t−i , t−i + pi) otherwise it is —at least partially—
late and it completes att+i . If p+

i = pi, Ji is wholly late
and is scheduled in the interval[t+i − pi, t

+
i) otherwise

it is —at least partially— early and it starts att−i . The
cost of the schedule is then denoted byCOST(p+).

In order to solve the problem1 , we define the pa-
rameterized problemP(t), which is the variant of our
problem in which the jobs are forced to be scheduled
in the time interval[t− P, t):

P(t) : min

n
∑

i=1

∫ t+P

t

fi(θ)x
t
i(θ)dθ (1)

s.t.
n

∑

i=1

xt
i(θ) ≤ 1∀θ ∈ [t, t + P) (2)

∫ t+P

t

xt
i(θ)dθ = pi∀i ∈ {1, . . . , n} (3)

xt
i(θ) ∈ {0, 1}∀θ ∈ [t, t + P) ∀i ∈ {1, . . . , n} (4)

For any t ∈ [d, d + P], we will consider the opti-
mal solutionxt of P(t) that also verifies the above
dominance properties. This solution is described by the
vector p+(t) =

(

p+
1 (t), . . . , p+

n (t)
)

where p+
i (t) =

∫ t+P

d
xt

i(θ)dθ.
Clearly, if t = d + P , all the jobs are wholly late

so that they are sequenced in the order of the nonin-
creasingβi. Conversely, ifP ≤ t ≤ d (if possible),
all the jobs are wholly early and they are sequenced
in the order of their nondecreasingαi-values. There-
fore, we study the problem whent varies in the interval

1 An animated demonstration of the algorithm can be down-
loaded from the site of the author
http://www-poleia.lip6.fr/∼sourd/project/position.

[max(d, P), d+P]. The aim of the proposed algorithm
is to enumerate the optimal schedules whent varies in
this interval in order to find the optimal cost ofP(t),
denoted byOPT(t), and given by

In our approach, we are going to solve the dual prob-
lem of (1-4) which consists in the unconstrained maxi-
mization of

qt(µ) =

n
∑

i=1

µipi +

∫ t+P

t

min
1≤i≤n

(fi(θ)− µi)dθ (5)

for µ ∈ R
n . The optimal solution of this dual problem

is denoted byµ(t). Then, the optimal costOPT(t), is
equal toCOST(p+(t)) = qt(µ(t)). For a given value
of µ, we can build a dual pseudo-schedule that execute,
for each timeθ ∈ [t−P, t], the jobJi that minimizes the
valuefi(θ)−µi). In general, this pseudo-schedule is not
feasible because the time spent to process a job differs
from the required processing time but it is feasible (and
optimal) whenµ = µ(t). The relationship between the
primal and dual solutions is central in the rest of the
section. The reader can refer to [16] for more details.

We now present the main theorem of the section that
shows howP(t− ǫ) can be efficiently solved when the
optimal solution ofP(t) has already been computed. It
is illustrated by Figure 1. In the proof of the theorem
and in the following,P(t) is considered as the “current”
problem so that the reference tot will be omitted in
notations, that isp+ andµ will denotep+(t) andµ(t).

Theorem 1 For any t > max(P, d), there exists a
valueδ > 0 and a job indexi⋆ ∈ {1, . . . , n} such that,
for any ǫ ∈ [0, δ],

p+
i (t− ǫ) =

{

p+
i (t) if i 6= i⋆

p+
i⋆(t)− ǫ if i = i⋆

In other words, an optimal solution ofP(t−ǫ) is derived
from the solution ofP(t) by making early the tardy
quantityǫ of some jobJi⋆ , which is called thetransfered
job.

PROOF. In this proof, we consider the pair(p+, µ)
formed by the primal and dual solutions ofP(t) and
we build the optimal pair(p+(t − ǫ), µ(t − ǫ)). From
the dual solutionµ, let us define the sets

Francis Sourd – Algorithmic Operations Research Vol.1 (2006) 79–93 83

t− P − ǫ

Ē

T̄

T̄

Ē

Ji⋆

Ji⋆ Ji⋆

Ji⋆

d

t

t− ǫt+ − ǫ

t+t−

t− − ǫ

t− P

Fig. 1. FromP(t) to P(t − ǫ)

E = E(t) = {Ji | ∃θ ∈ [d, t], ∀j, fi(θ) − µi

≤ fj(θ)− µj}

T = T (t) = {Ji | ∃θ ∈ [t− P, d], ∀j, fi(θ)

−µi < fj(θ)− µj}

M =M(t) = E ∩ T

None of these sets is empty because they all contain the
job Ji such thatfi(d)−µi is minimal. Let us define as
Ji⋆ the job inMwhose earliness costαi is minimal. We
first show that the tardiness costβi⋆ of this job is also
minimal inM, that isβi⋆ = min{βi, Ji ∈ M}. From
the definition ofE , for any jobJi ∈ M − {Ji⋆}, we
have thatfi(θ)−µi ≤ fi⋆(θ)−µi⋆ for someθ ≤ d. As
αi⋆ ≤ αi, we havefi(d)−µi ≤ fi⋆(d)−µi⋆ . If we had
βi < βi⋆ , we would have thatfi(θ)−µi ≤ fi⋆(θ)−µi⋆

for any θ ≥ d andJi⋆ /∈ T , which is a contradiction.
Thereforeβi⋆ ≤ βi andβi⋆ = min{βi, Ji ∈M}.

Then, we can define the setĒ = {Ji ∈ E |αi < α⋆
i }

and the time pointt− = t−i⋆ . By definition of Ji⋆ , all
the jobs of Ē are wholly early and scheduled in the
intervalI(Ē) = [t−P, t−]. Symmetrically, letT̄ be the
set{Ji ∈ T |βi < β⋆

i }, these jobs are scheduled in the
intervalI(T̄) = [t+, t] with t+ = t+i⋆ . We also observe
that, since the tardy jobs are sequenced according to the
tardiness costs, the tardy part ofJi⋆ is scheduled just
beforeT̄ , in the interval[t+ − p+

i⋆ , t+]. Therefore, for
any ǫ ∈ [0, p+

i⋆], we can build a feasible schedule for
P(t− ǫ) by left-shifting the jobs of̄E ∪ T̄ by ǫ and by
moving ǫ units ofJi⋆ from the interval[t+ − ǫ, t+) to
[t−− ǫ, t−) (see Figure 1). A simple calculation shows
that the cost of a jobJi in Ē (resp. inT̄ increases by
αipiǫ (resp. decreased by−βipiǫ). Then, the change of
the cost of the schedule with respect toǫ is

∑

Ji∈Ē

αipiǫ−
∑

Ji∈T̄

βipiǫ +

∫ t−

t−−ǫ

fi⋆(θ)dθ

−

∫ t+

t+−ǫ

fi⋆(θ)dθ (6)

t+d tt− P

fi⋆(θ)− µi⋆

θt−

g−(θ, t)

g+(θ, t)

Fig. 2. The functionsθ 7→ g−(θ, t) andθ 7→ g+(θ, t)

We now show that, ifǫ is sufficiently small (less than
some valueδ to be determined), then the constructed
schedule is optimal forP(t− ǫ). To this end, we build
the following dual feasible solution:

µi(t− ǫ) =

µi(t)− (αi⋆ − αi)ǫ if Ji ∈ Ē ,

µi(t) + (βi⋆ − βi)ǫ if Ji ∈ T̄ ,

µi(t) otherwise.

The end of the proof is to evaluate the variation of the
cost of the dual solutionqt−ǫ(µi(t − ǫ)) − qt(µi(t))
in order to show that it matches the cost of the primal
solution. We only give the main steps of the calculation.
Let us consider the two functions depicted in Figure 2:

g−(θ, t) = min
Ji∈Ē

(fi(θ) − µi(t))

g+(θ, t) = min
Ji∈T̄

(fi(θ)− µi(t))

Simple calculations show that, for allθ ∈ I(Ē),
g−(θ−ǫ, t−ǫ) = g−(θ, t)+αi⋆ǫ and, for allθ ∈ I(T̄),
g+(θ − ǫ, t − ǫ) = g+(θ, t) − βi⋆ǫ. By construc-
tion of Ē and T̄ , we have that, for allθ ∈ I(Ē),
g−(θ, t) < g+(θ, t). By continuity of g+, there ex-
ists δ′ > 0 such that, for anyǫ ∈ [0, δ′], we have
g+(θ, t− ǫ) > minJi /∈T̄ (fi(θ − ǫ)− µi(t− ǫ)). Then,

84 Francis Sourd – Preemptive scheduling with position costs

for ǫ ≤ δ′, we have (detailed calculations are omitted):

min
1≤i≤n

(fi(θ − ǫ)− µi(t− ǫ))

=

g−(θ − ǫ, t− ǫ) = g−(θ, t) + αi⋆ǫ if θ ∈ I(Ē)

g+(θ − ǫ, t− ǫ) = g+(θ, t)− βi⋆ǫ if θ ∈ I(T̄)

min1≤i≤n (fi(θ − ǫ)− µi(t)) otherwise.

Using this result, we can compute

∫ t−ǫ

t−P−ǫ

min
Ji∈T̄

(fi(θ)− µi(t− ǫ))dθ

=

∫ t

t−P

min
Ji∈T̄

(fi(θ − ǫ)− µi(t− ǫ))dθ

=

∫ t

t−P

min
Ji∈T̄

(fi(θ)− µi(t))dθ + αi⋆

∑

Ji∈Ē

piǫ

− βi⋆

∑

Ji∈T̄

piǫ +

∫ t−

t−−ǫ

fi⋆ −

∫ t+

t+−ǫ

fi⋆

So, we finally have

qt−ǫ(µi(t− ǫ))− qt(µi(t)) =
∑

Ji∈Ē

αipiǫ

−
∑

Ji∈T̄

βipiǫ +

∫ t−

t−−ǫ

fi⋆ −

∫ t+

t+−ǫ

fi⋆ (7)

We have then proved that the variation of the cost of the
dual solution is equal to the variation of the cost of the
primal solution given by (6) so that the proposed primal
solution is optimal. Therefore, we have shown that if we
chooseJi⋆ andδ = min(p+

i⋆ , δ′), the theorem is valid.

The theorem gives the main idea of the algorithm to
compute all the valuesOPT(t) whent varies. If we first
consider a “continuous” version of the algorithm, we
have to determine at any timet the transfered jobJi⋆ .
The proof of Theorem 1 shows how to select this job but,
in order to have a simpler algorithm, we give a second
characterization of the transfered job. We consider the
change of the cost of the schedule, when the quantity
ǫ ∈ (0, p+

i] of a jobJi is transfered.

∑

αj<αi

αjp
−
j ǫ−

∑

βj<βi

βjp
+
j ǫ +

∫ t−
i

t−
i
−ǫ

fi(θ)dθ

−

∫ t+
i

t+
i
−ǫ

fi(θ)dθ.

Sinceǫ can be arbitrarily small, we define themarginal
transfer costmi of Ji that correspond to the limit of the
transfer cost whenǫ tends to0+:

mi =
∑

αj<αi

αjp
−
j −

∑

βj<βi

βjp
+
j + αi

∑

αj≥αi

p−j

− βi

∑

βj≥βi

p+
j

=
∑

j

min(αj , αi)p
−
j −min(βj , βi)p

+
j (8)

In order that the schedule obtained after the transfer of
a very small quantityǫ of Ji is optimal, the transfered
job must be the job with the minimal transfer costmi.
If there are several jobs that minimizemi, the proof of
Theorem 1 shows that we must select the job with the
smallest valueαi.

Corollary 2 The functiont 7→ OPT(t) is convex.

PROOF. From the definition of the marginal costsmi,
we have that the derivativeOPT′(t) = −min1≤i≤n mi

(t). For anyt, t′ such thatmax(P, d) ≤ t ≤ t′ ≤ d+P ,
we have, for anyj, p+

j (t) ≤ p+
j (t′) andp−j (t) ≥ p−j (t′).

Therefore, for anyi, mi(t) ≥ mi(t
′) and therefore

OPT′(t) ≤ OPT′(t′), which proves the convexity of
OPT.

Once the transfered jobJi⋆ is selected, we must deter-
mine the quantity to be transfered. Clearly, the transfer
of Ji⋆ must be stopped when one of the four following
events is met:
(1) Ji⋆ has been wholly transfered (that isp+

i⋆ becomes
null),

(2) when there is no room left in[0, d] to realize the
transfer,

(3) when the minimum ofOPT(t) has been reached,
(4) when another job becomes more critical.

We now study the fourth type of events and, to this end,
we consider the variation of the transfer costs whileJi⋆

is transfered. Since onlyp−i⋆ andp+
i⋆ in (8) are modified

during the transfer, we have for anyJi with p+
i > 0:

mi(t− ǫ) =mi(t) + si(t)ǫ with

si(t) = min(αi, αi⋆) + min(βi, βi⋆) (9)

Therefore, the variation of the transfer cost of each job
is linear. Clearly, ifsi > si⋆ , we will havemi(t− ǫ) ≥
mi⋆(t−ǫ) for anyǫ > 0 and, conversely, by considering

Francis Sourd – Algorithmic Operations Research Vol.1 (2006) 79–93 85

the casessi < si⋆ , we find thatmi⋆(t − ǫ) is ensured
to be less thanmi(t− ǫ) as long as

ǫ ≤ min

{

mi −mi⋆

si⋆ − si
, p+

i > 0 andsi < si⋆

}

.

We now consider the case where the optimum of the
problem is reached after that the quantityǫ of Ji⋆ was
transfered (third type of events). WhileJi⋆ is being
transfered, since the derivative of the optimal cost is
OPT′(t) = −mi⋆(t), the event cannot happen unless
mi⋆(t− ǫ) = 0, that isǫ = −mi⋆

si⋆
= −mi⋆

αi⋆+βi⋆
(note that

mi⋆ ≤ 0 andαi⋆ + βi⋆ > 0).
The first two events are obviously detected inO(1)

time and we can now write Algorithm 2 that computes
the optimal schedule for the problem. The main loop
corresponds to the events that are iteratively met while
the jobs are transfered.

Algorithm 2 Solve the common due date problem

t← d + P
for each i: let p+

i = pi

for each i: initialize mi = −
∑n

j=1 min(βi, βj)pj

repeat
let Ji⋆ be the job that minimizes(mi, αi, βi) in the
lexicographical order
for each i: compute si = min(αi, αi⋆) −
min(βi, βi⋆)

let δ = min
(

p+
i⋆ , t− P, min

{

mi−mi⋆

si⋆−si
, p+

i > 0

andsi < si⋆

}

, −mi⋆

si⋆

)

t = t− δ
decreasep+

i⋆ by δ
for each i: updatemi = mi + siδ

until t = max(P, d) or mi⋆ = 0
build the schedule according to thep+

i and compute
its cost

The main difficulty to analyze the complexity of this
algorithm is to bound the number of events that may
occur. To this end, we first prove the following lemma.

Lemma 3 When the transfered jobJi⋆ is changed but
p+

i⋆ > 0, the new transfered jobJj is wholly late (p+
j =

pj).

PROOF. According to the proof of Theorem 1, for any
job Ji with p−i > 0 andp+

i > 0, we haveαi ≥ αi⋆ and
βi ≥ βi⋆ . Therefore, by (9),si ≥ si⋆ , which means that
the transfer costmi(t−ǫ) of Ji cannot become less than
mi⋆(t− ǫ) while Ji⋆ has not been wholly transfered.

Theorem 4 The common due date scheduling problem
can be solved inO(n2) time.

PROOF. The first event can happen at mostn times,
the second and the third at most once and the fourth
at most n times according to the previous lemma.
Consequently, the main loop of the algorithm is run
O(n) times. Clearly the instructions inside the loop re-
quire O(n) time. Furthermore, the initialization of the
marginal transfer costs is done inO(n2) time. Then, the
time complexity of the proposed algorithm isO(n2).

In the optimal schedule built by the algorithm, each
job is interrupted at most once but the job in process
at timed is not interrupted, so there are at mostn− 1
interruptions in the schedule.

In the special case whereαi = βi for all i ∈
{1, . . . , n}, the problem can be solved inO(n log n).
First, if the common due dated is unrestricted, the
problem is clearly symmetric and there is an optimal
schedule such thatp+

i = p−i = pi/2 for each job
Ji. The corresponding schedule can be scheduled in
O(n log n) and it is optimal wheneverd ≥ P/2. We
observe that this schedule has exactlyn − 1 inter-
ruptions. If d < P/2, we first order the jobs in the
decreasing order of theαi’s and we then compute the
vectorp− (and thereafterp+) by Algorithm 3.

Algorithm 3 Solve the common due date problem with
symmetric costs

i = 1
t− = P
repeat

p−i = min(pi/2, t−)
decreaset− by p−i and increasei

until t− = 0 or i = n
while i ≤ n do

p−i = 0
increasei

end while

A last special case is when the jobs can be renum-
bered such thatα1 ≤ · · · ≤ αn andβ1 ≥ · · · ≥ βn.
Then, the transfer of a job is never interrupted and the
schedule has no preemption (the jobs are sequenced in
the order of their indices). Since the job are simply trans-
fered in the same order, the choice of the transfered job
is easy and the fourth event cannot happened. There-
fore, Algorithm 2 can be simplified to run inO(n) time
(once the jobs are sorted).

86 Francis Sourd – Preemptive scheduling with position costs

4. A two-machine problem

When preemption is not allowed, we often have a
strong relationship between one-machine scheduling
around a common due date and two-machine schedul-
ing: the schedule of the first (resp. second) machine
in the two-machine problem corresponds to the late
(resp. early) jobs in the common due date problem.
However, this relationship disappears in preemptive
scheduling because we have the constraint that a job
cannot be scheduled on two different machines at a
single time. This constraint makes the preemptive two-
machine deeply different from the problem addressed
in Section 3.2..

This section is then devoted to the two-machine prob-
lem. Then jobs J1, . . . , Jn have to be processed by
m = 2 identical parallel machines. They are all avail-
able at time0. As in Section 3.1., we consider that
fi(t) = wit with wi > 0. We also assume that the jobs
are non-increasingly sorted according to their slopes
(w1 ≥ · · · ≥ wn > 0).

As in the previous section, the algorithm is presented
in the case where the slopes are assumed to be all dif-
ferent (w1 > · · · > wn) in order to avoid some techni-
calities in the proofs. Ifwi = wi+1 for some jobJi, we
can change the weightwi = wi + ǫ for a very smallǫ.

4.1. Dominance properties

Any feasible schedule can be described by the two
functionsJ1 andJ2 : R+ → {1, . . . , n,∞}. Abusing
notation,Jj(t) will both denote the job running att on
machinej and its index.Jj(t) =∞ means that no job
is processed. As the objective function is regular and
there is no release dates, there clearly exists an optimal
solution with no idle time inserted, which means that if
Jj(t) =∞ for somet, thenJj(t

′) =∞ for all t′ ≥ t.

Lemma 5 There is an optimal schedule such that if
J1(t) = J1(t

′) andJ2(t) = J2(t
′) for somet < t′ then

J1(θ) = J1(t) andJ2(θ) = J2(t) for all θ ∈ [t, t′].

PROOF. The proof is based on the simple interchange
argument illustrated by Figure 3. JobJi and Jj are
respectively scheduled on machine 1 and 2 during the
intervals (t1, t

′
1) and (t2, t

′
2). Let B1 and B2 be the

parts of jobs processed in between the two intervals on
machine 1 and 2 respectively. LetpB

k be the amount (in
processing time) of jobJk scheduled betweent′1 and
t′2 in B1 or in B2. Let WB =

∑n
k=1 wkpB

k . Simple

calculations show that if we swap the left part ofJi with
B1 and the left part ofJj with B2 the variation of the
cost is equal to

−
(

WB − (wi + wj)(t2 − t′1)
)

(t′1 − t1)

Similarly, if we swap the right part ofJi with B1 and
the right part ofJj with B2 the variation of the cost is
equal to

(

WB − (wi + wj)(t2 − t′1)
)

(t′2 − t2)

Therefore either one move improves the schedule or
both moves let the cost unchanged, which means that at
least one of the two interchanges does not increase the
cost. By iterating such interchanges, we prove that an
optimal schedule satisfies the conditions of the lemma.

We observe that the schedules that satisfy the condi-
tions of the lemma have at mostn(n + 1) job interrup-
tions since there are at mostn(n + 1) different job as-
signments for the two machines. The following lemma
reinforces the dominance properties.

Lemma 6 There is an optimal schedule with no idle
time such that the two following conditions hold:
(1) for anyt ≥ 0, J1(t) < J2(t)
(2) for any0 ≤ t < t′ andj ∈ {1, 2}, Jj(t) ≤ Jj(t

′)

PROOF. From any optimal schedule, another optimal
schedule satisfyingJ1(t) < J2(t) can be built by swap-
ping the parts of jobs between the machines. Therefore,
we assume we have an optimal schedule that satisfies
the first property. LetS be the set of optimal schedule
with no idle time that satisfy the first property and the
conditions of Lemma 5. Since these schedule have at
mostn(n + 1) interruptions, the setS is compact. For
each schedule inS, let us consider the timet of theear-
liest violationof the second condition, that is the earliest
t such that there existst′ > t such thatJ1(t) > J1(t

′)
or J2(t) > J2(t

′). If there is no schedule that satisfy
the second condition, all the schedules have an earliest
violation and we consider the schedule with the latest
earliest violationt (such a schedule exists sinceS is
compact).

Let ǫ be such that there is no preemption in the two
intervals[t, t + ǫ) and [t′, t′ + ǫ). For example,J1(t)
denotes theonly job scheduled on machine 1 in time
interval[t, t+ ǫ) and, since there is no ambiguity,J1(t)
is also used to denote the part of jobJ1(t) scheduled
in the interval[t, t + ǫ).

Francis Sourd – Algorithmic Operations Research Vol.1 (2006) 79–93 87

Machine 1

Ji

Jj

B1

B2

Ji

Jj

Ji

Jj

Ji

Jj

B1

B2

Ji

Jj

Ji

Jj

B1

B2

Move 2

Machine 2

Machine 1

Machine 2

Machine 1

t1 t′
1

t2 t′
2

Move 1

Machine 2

Fig. 3. Proof of Lemma 5

• If there is a violation on both machines, that is
J1(t) > J1(t

′) andJ2(t) > J2(t
′), we can swap

J1(t) with J1(t
′) and, simultaneously,J2(t) with

J2(t
′). The swap operation does not increase the

cost, does not violate the first condition but removes
the violation of the second condition at timet, which
contradicts the maximality oft.
• If J1(t) > J1(t

′) andJ2(t) ≤ J2(t
′), we have that

J2(t
′) ≥ J2(t) > J1(t) > J1(t

′) so thatJ1(t)
andJ1(t

′) can be swapped without violating the first
constraint. Once again, the violation of the second
condition at timet disappears.
• If J1(t) ≤ J1(t

′) andJ2(t) > J2(t
′), we symmetri-

cally have thatJ1(t
′) ≥ J1(t) > J2(t) > J2(t

′) and
we have the same conclusion when swappingJ2(t)
andJ2(t

′).
As the maximality oft is contradicted in every case,
there is an optimal schedule that satisfy the two condi-
tions.

Even if our approach for solving is based on dynamic
programming, we first introduce a quadratic program-
ming formulation of the problem which will be useful to
clearly define the subproblems of the dynamic program.

4.2. Quadratic programming formulation

As a corollary of Lemma 6, jobJ1 is scheduled with-
out preemption on the first machine between0 andp1

— hence its cost isw1p1
2/2. Similarly, jobJn is also

scheduled in an interval of lengthpn and it can be com-
pletely scheduled on the second machine (see Figure 4).

Machine 2

x2 x3 x4 = p4 x5 x7 p8

p1 p2 − x2 p6 − x6 = p6

Machine 1

Fig. 4. Variables of the quadratic program

Note that, in order to satisfy the conditions of Lemma 6,
the part ofJn scheduled after the completion of the first
machine should be moved from machine 2 to machine 1.

A dominant schedule withn jobs is then described by
n−2 variablesx2, . . . , xn−1 wherexi is the part of job
Ji schedule on the second machine. For convenience,we
introduce the variablesXi =

∑i
j=1 xj (with X1 = 0).

According to the dominance rules,Ji (1 < i < n) starts
on the second machine atXi−1 and is interrupted atXi.
Then, with the notationPi =

∑i
j=1 pj , the processing

is resumed on the first machine atPi−1 − Xi−1 until
it completes atPi − Xi. Finally, Jn is processed be-
tweenXn−1 andXn−1 + pn. Our problem can now be
formulated as a quadratic programQP.

min
(

w1p1
2/2 +

n
∑

i=2

wi(Xi−1 + xi/2)xi

+

n
∑

i=2

wi(Pi−1 −Xi−1 + (pi − xi)/2)(pi − xi)

+ wn(Xn−1 + pn/2)pn

)

(10)

88 Francis Sourd – Preemptive scheduling with position costs

s.t. ∀1 < i < n 0 ≤ xi ≤ pi (11)

∀1 ≤ i < n Xi =

i
∑

j=1

xj (12)

∀1 < i < n 2Xi−1 + xi ≤ Pi−1 (13)

The objective function (10) can be expressed in function
of thexi’s using (12) so that it becomes a quadratic poly-
nomial in x2, . . . , xn−1 where all the quadratic terms
have a nonnegative coefficient. Equations (13) mean that
Ji can start on the first machine only after it is stopped
on the second machine.

4.3. Dynamic programming recursion

In this section, we propose a dynamic programming
approach to solve the two-machine problem. The main
idea is similar to other classic dynamic programming
algorithms for two-machine problems (for example
P2||Cmax [5]). The jobs are added to the partial sched-
ule in the order of their slopes and for each partial
schedule, the dynamic program records all the optimal
solutions for all the possible completion time of the
second machine. More formally, letfk(t) be the min-
imal cost for scheduling the firstk jobs such that the
second machine completes att (which means that the
first machine completes atPk − t). While scheduling
algorithms usually consider all the possible integer
values oft, we here consider all the real values oft.
It means that the functionsfk will not be recorded as
an array of values but we will use a more compact
data structure using the property that the functions are
piecewise quadratic.

By an immediate adaptation of the proof of Lemma 6,
it can be shown that the dominance properties remain
valid when this new constraint on the completion time of
the second machine is added. Therefore we can modify
QP in order thatfk(t) is given by the optimum of the
quadratic programQPk(t):

min
(

w1p1
2/2 +

k
∑

i=2

wi(Xi−1 + xi/2)xi

k
∑

i=2

wi(Pi−1 −Xi−1 + (pi − xi)/2)(pi − xi)
)

(14)

s.t. 0 ≤ xi ≤ pi ∀1 < i ≤ k (15)

Xi =
∑i

j=1 xj ∀1 ≤ i ≤ k (16)

2Xi−1 + xi ≤ Pi−1 ∀1 < i ≤ k (17)

Xk ≤ t (18)

The objective function takes into account that the job
Jk can now be preempted (note also the presence of the
variablexk). Equations (15), (16) and (17) respectively
correspond to (11), (12) and (13). Finally, equation (18)
indicates that the second machine must complete before
t. Clearly, all the functionsfk(t) become constant when
t becomes large, letTk be the smallest time point such
that fk is constant on the interval[Tk,∞). For anyk,
we observe that0 ≤ Tk ≤ Pk/2.

For the purpose of illustration, let us first consider
f1(t). Clearly,J1 is scheduled without preemption on
M1 so thatf1(t) =

∫ p1

0 w1θdθ = 1
2w1p1

2 for any t,
which means thatT1 = 0. When a second job is added,
the job can be scheduled without interruption between
0 andmin(p1, t) on M2. If the jobJ2 is not completed
at this time,J2 is interrupted and restarts onM1 at p1.
Therefore, simple calculations give

f2(t) =

1
2 (w1p1

2 + w2p2
2) if t ≥ min(p1, p2)

1
2

(

w1p1
2

+w2(2t2 − 2t(p1 + p2)

+2p1p2 + p2
2)

)

otherwise

and the derivative is

f ′
2(t) =

{

0 if t > min(p1, p2)

w2(2t− P2) if t < min(p1, p2)

Clearly, we haveT2 = min(p1, p2). If p1 6= p2, f ′(T2)
does not exist but the left and right derivatives exist.
As T2 ≤ P2, we have thatf ′

2(t) ≤ 0 andf ′
2 is piece-

wise linear and nondecreasing. Therefore, the function
f2 is nonincreasing, convex and piecewise quadratic.
Furthermore,f ′′

2 (t) = 2w2 for any t ∈ [0, T2).
We now show by induction that, for anyk ≥ 2, we

have the three following properties:
(1) the functionfk is nonincreasing, convex and piece-

wise quadratic,
(2) the derivativef ′

k is nondecreasing and piece-
wise linear and continuous on[0, Tk) and
f ′

k(0) ≤ −wkPk,
(3) the second derivativef ′′

k is piecewise constant and
for anyt ∈ [0, Tk), f ′′

k (t) ∈ {2w2, . . . , 2wk} (if it
is defined) andf ′′

k (t) = 0 for t > Tk.
Clearly, the three properties are true fork = 2 (for

k = 1, we havef ′1(0) = 0 6≤ −w1P1 but the other

Francis Sourd – Algorithmic Operations Research Vol.1 (2006) 79–93 89

p

Ts⋆ P − s⋆ s⋆ T = P − s⋆

p

Fig. 5. The two cases when computingT

properties are satisfied). We then assume that, for some
k > 2, they are true forfk−1, f ′

k−1 andf ′′
k−1 and we

are going to buildfk and show that it satisfies the above
properties. In order to have simpler notations, let us
definef = fk−1, P = Pk−1, J = Jk, w = wk, p = pk,
F = fk andT = Tk. Let s denote the start time ofJ
on the second machine.

We first compute the timeT whenF becomes con-
stant. We then solve the problemQPk(∞), which cor-
respond to the removal of equation (18). It was noted in
the previous subsection that, in an optimal solution of
this problem, the last job, that isJ , is not interrupted.
Therefore, the cost of the schedule isf(s)+

∫ s+p

s
θdθ =

f(s)+wp(s+p/2) wheres is the start time ofJ . Since
f has both left and right derivative — respectively de-
noted byf ′

− and f ′
+ — and f ′ is nondecreasing, the

start times must satisfyf ′
−(s) ≤ −wp ≤ f ′

+(s) in the
optimal schedule. As−wp < 0, we haves < Tk−1 and
there is a unique solution, denoted bys⋆ — we con-
ventionally definef ′

−(0) = −∞ to ensure the existence
of s⋆. Figure 5 represents the two cases that can hap-
pen: either jobJ completes before machine 1 comple-
tion (so thatT = s⋆ + p) or it completes later (so that
T = P − s⋆).

In an optimal solution ofQPk(t) with t < T , J starts
ats on the second machine and is interrupted att then it
is resumed atP − s on the first machine and completes
at P + p − t (possibly,s = t or P − s = P + p − t).
Therefore, the cost of the schedule is

F (t) = F (s, t) = f(s) + w

∫ t

s

θdθ + w

∫ P+p−t

P−s

θdθ

= f(s) +
w

2
(

t2 − s2 + (P + p− t)2 − (P − s)2
)

(19)

In fact, the variables is subject to feasibility constraints
so thatF (t) can also be expressed as the following
mathematical program, which is in fact a unidimen-
sional parameterized problem (the variable iss while t

P/2s̄

t=152

338000

337500

337000

120 125 130 135 140 145

Start time s of J

339000

C
o
s
t

t=148

t=149

t=150

t=151

338500

Fig. 6. Functionsϕt for different values oft

is a fixed parameter in[0, T]).

min F (s, t) (20)

s.t. t− p ≤ s ≤ t (21)

s ≥ 0 (22)

t ≤ P − s (23)

Equation (21) indicates that the part ofJ scheduled on
the second machine is not greater thanp. Equation (22)
forcesJ to start after 0 while equation (23) prevents
J from starting on machine 1 before it is completed
on machine 2. The problem is then to minimize the
function ϕt : s 7→ ϕt(s) = F (s, t) on the interval
It = [max(0, t − p), min(t, P − t)]. We note that this
interval is not empty becauset ≥ max(0, t − p) and
P−t = P−2t+t ≥ P−2T+t ≥ P−2P+p

2 +t = t−p.
Disregarding constraints (21)-(23), let us consider the

partial derivative

ϕ′
t(s) =

∂F (s, t)

∂s
= f ′(s) +

w

2
(−2s + 2(P − s))

= f ′(s) + w(P − 2s) (24)

Note thatf ′(s) and thereafterϕ′
t(s) may not exist at

some points but the left and right derivatives exist. For
simplicity and as long as it is unambiguous, we only
write one derivative instead of defining both left and
right derivatives.

Clearly, for any t, the derivative is null for
s = P/2 which corresponds to a local maxi-
mum of ϕ′

t (see Figure 6). Sincef ′ is nonde-
creasing andf ′(0) ≤ −wk−1P ≤ −wP and
f ′(T) = 0 ≥ w(2T − P), there is at least one value
s ∈ [0, T] such thatf ′

−(s) ≤ w(2s − P) ≤ f ′
+(s).

Moreover, asf ′′(t) > 2w for any t ∈ [0, T], this solu-
tion is unique. Let us denote it bȳs. Clearly,s̄ does not

90 Francis Sourd – Preemptive scheduling with position costs

t− p

s̄ P/2

ts = t− p

ts = s̄

t− p s = t

T

t ≥ s̄ + p

s̄ ≤ t ≤ s̄ + p

t ≤ s̄

Fig. 7. Start times according tot whenT < P − s⋆

depend ont. In some degenerate cases, we can have
s̄ = T = P/2 but whenT < P/2, we haveϕ′(t) > 0
for all t ∈ (T, P/2), which means that̄s is the unique
global minimum ofϕ′(t) in the interval[0, P/2] (see
Figure 6).

In order to study the minimization ofϕt on It, let us
first calculate

ϕ′
t(s

⋆) = f ′(s⋆) + wP − 2ws⋆

= −wp + wP − 2ws⋆

= 2w

(

P − p

2
− s⋆

)

(25)

Let us now computeF (t) in each of the two cases
defined above (see Figure 5). Let us first consider that
T < P−s⋆. According to (25), we have thatϕ′

t(s
⋆) > 0

becauseT = s⋆ + p < P − s⋆ gives P−p
2 − s⋆ > 0.

Therefore, we havēs < s⋆ and IT ⊂ [s̄, P/2]. As
t < P − t, the intervalIt is equal to[max(0, t− p), t].
Then, as illustrated by Figure 7, the start times of J is
equal to

s =

t− p if s̄ + p ≤ t ≤ T

s̄ if s̄ ≤ t ≤ s̄ + p

t if 0 ≤ t ≤ s̄

(26)

The left column of Figure 8 illustrates how the schedul-
ing of J varies whent decreases. From the value ofs,
the cost of the schedule is immediately derived.

F (t) =

f(t− p) + wp(t− p/2) if s̄ + p ≤ t ≤ T

f(s̄) + w
2

(

t2 − s̄2 + (P + p− t)2

−(P − s̄)2
)

if s̄ ≤ t ≤ s̄ + p

f(t) + wp(P − t + p/2) if 0 ≤ t ≤ s̄
(27)

and the derivative of this cost function is

F ′(t) =

f ′(t− p) + wp if s̄ + p ≤ t ≤ T

2w
(

t− P+p
2

)

if s̄ ≤ t ≤ s̄ + p

f ′(t)− wp if 0 ≤ t ≤ s̄

(28)

Let us now consider the second caseT = P − s⋆ ≤
s⋆ +p. According to (25), we now have thatϕ′

t(s
⋆) ≤ 0

and thens⋆ ≤ s̄ andP − s̄ ≤ P − s⋆ = T .

s =

P − t if P − s̄ ≤ t ≤ T

s̄ if s̄ ≤ t ≤ P − s̄

t if 0 ≤ t ≤ s̄

(29)

The right column of Figure 8 shows the corresponding
schedules and the cost function and its derivative are
equal to

F (t) =

f(P − t) + wp(P − t + p/2)

if P − s̄ ≤ t ≤ T

f(s̄) + w
2

(

t2 − s̄2 + (P + p− t)2

−(P − s̄)2
)

if s̄ ≤ t ≤ P − s̄

f(t) + wp(P − t + p/2) if 0 ≤ t ≤ s̄
(30)

and

F ′(t) =

−f ′(P − t)− wp if P − s̄ ≤ t ≤ T

2w
(

t− P+p
2

)

if s̄ ≤ t ≤ P − s̄

f ′(t)− wp if 0 ≤ t ≤ s̄

(31)
For the functionsF built in both cases, we clearly

have
(1) the functionF is nonincreasing, convex and piece-

wise quadratic,
(2) the derivative F ′ is nondecreasing, piece-

wise linear and continuous over(0, T), and
F ′(0) ≤ −w(P + p),

(3) the second derivativeF ′′ is piecewise constant and
for any t ∈ [0, T), F ′′(t) ∈ {2w2, . . . , 2wk} and
F ′′(t) = 0 for t > T .

Therefore, we have proved by induction that the prop-
erty is true for any functionfk.

4.4. Algorithm

In order to describe the algorithm that implements the
dynamic programming scheme, the main work is to pro-
vide a data structure that encodes the functionsfk. Clas-
sically, piecewise linear functions are represented as a

Francis Sourd – Algorithmic Operations Research Vol.1 (2006) 79–93 91

t = T

t = s̄ + p t

s̄ < s < s⋆ s⋆ < s < s̄t t

s̄

s̄ tts̄

s̄

t = s̄ t = s̄

s⋆s⋆

t < s̄t < s̄

t = T

Fig. 8. Optimal scheduling ofJ when t varies

sorted list of its segments [8,17] and piecewise quadratic
functions can similarly be represented by a sorted list:
each quadratic piece of the function is encoded by a
cell of the list that contains the left and right endpoints
of the segment(l, r) and the three values(α, β, γ) such
that the function is equal tox 7→ αx2 + βx + γ on the
interval(l, r).

However, in the present algorithm, this encoding of
the function could lead to a non-polynomial algorithm.
To illustrate the point, let us use the notation of the
previous subsection and remind thats̄ ands⋆ are such
that

f ′
−(s̄) ≤ w(2s̄− P) ≤ f ′

+(s̄) and

f ′
−(s⋆) ≤ −wp ≤ f ′

+(s⋆).

Consequently, assuming we are free to choose the pro-
cessing timep and the weightw of J , we can first
select a sufficiently small value forw such thats̄ is

later than the latest breakpoint off . Then, by select-
ing p larger than−f ′

+(0)/w, we haves⋆ = 0. Since
−f ′

+(0)/w ≥ P , the processing timep is larger than
P . Therefore,F is built according to (30). As the ab-
scissas of the breakpoints off are all in the interval
[s⋆, s̄], a breakpoint off with abscissab will cause two
breakpoints with abscissab andP − b in the new func-
tions F . Accordingly, the number of breakpoints ofF
is at least twice the number of breakpoints off . By it-
erating this construction procedure, we can then build
instances in which the functionsfk have an exponential
number of quadratic pieces. To avoid the problem, we
adopt a non-explicit but more compact encoding of our
cost functions.

Each functionfk is encoded by the following values,
which can be stored in simple arrays:
• the valueTk. If Tk ≤ Pk/2, fk was build according

to equation (27) (first case). Otherwise, it was build
according to equation (30) (second case).

92 Francis Sourd – Preemptive scheduling with position costs

• an interval(lk, rk) with lk = s̄k and rk = s̄k +
pk in the first case orrk = Pk − s̄k in the second
case (̄sk corresponds tōs whenF = fk). If k = 1,
then(l, r) = (0, min(p1, p2)). Clearly,f ′

k is an affine
function with slope2w on this interval.
• the valuesfk(l), fk(r), f ′

k(l), f ′
k(r) andf ′(Tk). As

f ′ may be discontinuous atTk, the latest value cor-
respond to the derivative from the left.

With these informations forf1, . . . , fk−1, we show we
can calculatēsk andTk and evaluatefk(x) or f ′

k(x) for
anyx in O(k) time. We only illustrate how to solve the
equation

f ′
k(s) = 2wks− wkPk−1

which givess̄k. The other procedures to computeTk,
fk(x) or f ′

k(x) are indeed very similar.
For k > 1, the values̄k is computed by calling the

recursive proceduresbar(k − 1, wk, wkPk−1). Algo-
rithm 4 sbar(k, ω, π) solves the equationf ′

k(s) =
2ωs − π when f ′′(s) > 2ω. It first checks whether
the solution isTk. Otherwise, using the fact thats 7→
f ′

k(s) − 2ωs is nondecreasing, it finds whethers is in
[0, lk), [lk, rk) or [rk, Tk) and accordingly studies one
of the three cases:
• if s ∈ [rk, Tk), then according to equations (27)

and (30) we havef ′
k(s) = f ′

k−1(s) − wkpk so that
we must havef ′

k−1(s) = 2ωs− π + wkpk.
• if s ∈ [lk, rk), thenf ′

k is affine over the interval and
f ′

k(s) = f ′
k(lk)+2wk(s− lk). Sos is solution of the

linear equationf ′
k(lk) + 2wk(s− lk) = 2ωs− π.

• if s ∈ [0, lk), we must check whetherfk was built
with equation (27) or equation (30):
· if Tk < Pk/2, f ′

k(s) = f ′
k−1(s−pk)+wkpk. After

changing the variable,s is equal tot+pk wheret is
the solution off ′

k−1(t) = 2ωt+2ωpk−π−wkpk.
· otherwise,f ′

k(s) = −f ′
k−1(Pk−1 − s)−wkpk. So,

we haves = Pk−1 − t with f ′
k−1(t) = 2ωt −

wkpk + π − 2ωPk−1.
We observe that in the first and third cases, the prob-

lem is solved by recursively solving the same problem
with sizek − 1. In the second case (which is the only
possible case whenk = 1), the problem is immediately
solved and the recurrence is stopped. Therefore,s̄k is
computed inO(k) time.

The valueslk andrk are derived from̄sk. In order
to computeTk, we first compute the solutions⋆ by
calling sbar(k − 1, 0, wkpk), which takesO(k) time.
The evaluation offk(l), fk(r), f ′

k(l), f ′
k(r) andf ′(Tk)

can also be done by a similar recursive procedure in
O(k) time. As a result,fk can be derived fromfk−1 in
O(k) time and we finally have the theorem.

Algorithm 4 Algorithm sbar(k, ω, π) to computēs

if f ′
k(Tk) ≤ 2ωTk − π then

return Tk

else if f ′
k(rk) ≤ 2ωrk − π then

return sbar(k − 1, ω, π − wkpk)
else if f ′

k(lk) ≤ 2ωlk − π then

return f ′

k(lk)−2wklk+π
2(ω−wk)

else if Tk < Pk/2 then
return pk + sbar(k − 1, ω, π + (wk − 2ω)pk)

else
return Pk−1−sbar(k−1, ω, wkpk+2ωPk−1−π)

end if

Theorem 7 The two-machine problem with linear costs
can be solved inO(n2) time.

We noted in Section 4.1. that the schedule has at most
n − 2 interruptions since the first and last jobs can be
scheduled without interruption. However this result can
be improved by the following lemma, in whichSk is
the start time ofJk on the second machine andCk is
its completion time (on the first machine).
Lemma 8 In an optimal schedule, ifCk > Sk + pk

thenCk+1 = Sk+1 + pk+1.

PROOF. Let us consider an optimal schedule in which
we have bothCk > Sk +pk andCk+1 > Sk+1 +pk+1.
Let xk be the part ofJk on the second machine. We
modify the schedule such thatxk is increased byǫ and
xk+1 is decreased byǫ. As long as0 ≤ ǫ ≤ δ with
δ = min(xk+1, pk − xk, Ck − Sk − pk) > 0, the new
schedule is feasible. Moreover, sinceαk+1 < αk, its
cost is strictly decreased, which contradicts the initial
assumption that we can haveCk > Sk+pk andCk+1 >
Sk+1 + pk+1 in an optimal schedule.

Therefore, there are at most⌊(n− 1)/2⌋ jobs such that
Ck > Sk + pk. Let us consider a jobJk with Ck =
Sk +pk and lett be the time whenJk is stopped on ma-
chine 2 and starts on machine 1. From Lemma 6, a job
completes att on machine 1 and another one starts on
machine 2. Therefore, by swapping all the jobs sched-
uled aftert between machine 1 and machine 2, the in-
terruption ofJk disappears and no new preemption ap-
pears. By iterating this transformation, a schedule with
at most⌊(n− 1)/2⌋ interruptions is finally built.

5. Conclusion

In this paper, combinatorial algorithms have been
proposed to efficiently solve three preemptive schedul-

Francis Sourd – Algorithmic Operations Research Vol.1 (2006) 79–93 93

ing problems with position costs. This new criterion
is fundamentally different from classical criteria of the
scheduling theory which are based on the completion
times of the jobs. Consequently, the algorithms to solve
these problems are not immediate adaptations of ex-
isting scheduling algorithms even if they are based on
well-known Operations Research concepts (primal-dual
approach and dynamic programming). The two main
algorithms presented in this paper use some techniques
that could be re-used to solve other problems: the aux-
iliary parameterized problem to solve the one-machine
common due date problem and the compact encoding
of the cost functions in the dynamic programming al-
gorithm.

Other scheduling problems with positions costs are
still to be investigated, in particular, problems with re-
lease dates and/or deadlines. The generalization of the
algorithm presented in Section 3.2. is also interesting.
For example, the same technique could be used to solve
the problem with general due dates, however the anal-
ysis of the algorithm should be far more difficult and
the number of events may not be polynomial. The algo-
rithm could also be used to compute a lower bound for
the non-preemptivecommon due date problem using the
lower bounding scheme presented by Sourd [16] even
if the relaxed problem to solve slightly differs from the
problem studied in Section 3.2. because cost functions
are not continuous anymore.

Acknowledgment

The author would like to thank Philippe Baptiste for
early discussions about this work.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin,Network
flows: Theory, algorithms, and applications, Prentice
Hall, Upper Saddle River, NJ, 1993.

[2] R.K. Ahuja, J.B. Orlin, C. Stein, and R.E. Tarjan,
Improved algorithms for bipartite network flows, SIAM
Journal on Computation23 (1994), 906–933.

[3] N. Brahimi, S. Dauzère-Pérès, N.M. Najid, and
A. Nordli, Single item lot sizing problems, European
Journal of Operational Research168 (2006), 1–16.

Received 28 April 2005; revised 5 December 2005; ac-
cepted 22 April 2006

[4] N. Brauner, Y. Crama, A. Grigoriev, and van de
Klundert, A framework for the complexity of
high-multiplicity scheduling problems, Journal of
Combinatorial Optimization9 (2005), 313–323.

[5] P. Brucker, Scheduling algorithms, fourth edition ed.,
Springer-Verlag, Berlin, Germany, 2004.

[6] K. Bülbül, P. Kaminsky, and C. Yano,Preemption in
single machine earliness/tardiness scheduling, Working
paper, 2004.

[7] J.J. Clifford and M.E. Posner,High multiplicity in
earliness-tardiness scheduling, Operations Research48
(2000), 788–800.

[8] R. Fourer and R.E. Marsten,Solving piecewise-linear
programs: Experiments with a simplex approach, ORSA
Journal on Computing4 (1992), 16–31.

[9] L. Gelders and P. Kleindorfer,Coordinating aggregate
and detailed scheduling decisions in the one-machine job
shop. I. Theory, Operations Research22 (1974), 46–60.

[10] V. Gordon, J.M. Proth, and C. Chu,A survey of the
state-of-the-art of common due date assignment and
scheduling research, European Journal of Operational
Research139 (2002), 1–25.

[11] S. Kedad-Sidhoum, Y. Rios-Solis, and F. Sourd,Lower
bounds for the earliness-tardiness scheduling problem
on single and parallel machines, Working paper –
www.optimization-online.org, October 2004.

[12] W. Kubiak,Balancing mixed-model supply chain, Graph
Theory and Combinatorial Optimization (D. Avis,
A. Hertz, and O. Marcotte, eds.), Gerad 25th Anniversary
Series, Springer, 2005, pp. 159–190.

[13] V. Lauff and F. Werner,Scheduling with common due
date, earliness and tardiness penalties for multimachine
problems: A survey, Mathematical and Computer
Modelling 40 (2004), 637–655.

[14] J. Y-T. Leung (ed.), Handbook of scheduling:
Algorithms, models and performance analysis, Computer
and Information Science Series, Chapman & Hall / CRC,
Boca Raton, Florida, 2004.

[15] N. Rizk and A. Martel,Supply chain flow planning
methods: A review of the lot-sizing literature, Tech.
report, CENTOR Working Paper, 2001.

[16] F. Sourd, The continuous assignment problem and
its application to preemptive and non-preemptive
scheduling with irregular cost functions, INFORMS
Journal on Computing16 (2004), 198–208.

[17] , Optimal timing of a sequence of tasks
with general completion costs, European Journal of
Operational Research165 (2005), 82–96.

[18] F. Sourd and S. Kedad-Sidhoum,The one machine
problem with earliness and tardiness penalties, Journal
of Scheduling6 (2003), 533–549.

