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On-line bin packing with two item sizes
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Abstract
We study the on-line bin packing problem (BPP). In BPP, wegiven a sequenc® of itemsasi,az,...,a, and a
sequence of their siz€s,, so, . .., s,) (each sizes; € (0, 1]) and are required to pack the items into a minimum number

of unit-capacity bins. LeR{;, 5, be the minimal asymptotic competitive ratio of an on-lingagithm in the case when
all items are only of two different sizesand S3. We prove thamax{R{;, 5, : @, € (0, 1]} = 4/3. We also obtain
an exact formula fOIR{a 5} whenmax{a B} > . This result extends the result of Faigle, Kern and TurarB@2hat
R s = for B=z—canda = 2 + € for any fixed nonnegatlve< =
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1. Introduction Ullman [11] was the first to investigate the on-line
bin packing problem. He proved that therRBT FIT al-

In this paper we study the classical on-line bin pack- gorithm has asymptotic competitive ratio 1.7. This re-
ing problem (BPP), which is one of the oldest and sult was then published in [7]. Yao [12] showed that
most well-studied problems in optimization. In BPP, REVISED FIRST FIT has asymptotic competitive ra-
we are given a sequenégof itemsas, as, ..., a, and tio % and proved that every on-line BPP algorithm has
a sequence of their sizesq, s2,...,s,) (each size asymptotic competitive ratio at least 1.5. Yao's upper

€ (0,1]) and are required to pack the items into a bound was improved by Seiden [9] to 1.58889, which
minimum number of unit-capacity bins. In other words, is currently the best result. Brown [1] and Liang [8] in-

we need to partitiorB into a minimum numbern of dependently improved Yao's lower bound to 1.53635.

subsets3y, By, ..., B, sothaty ep; SiS 1 for each This was further improved by van Vliet [10] to 1.54014.

i=12,...,m. For surveys of BPP, see [3-5]. Chandra [2] showed that the preceding lower bounds
For anyS C (0,1], we letB(S) denote the set of all @S0 apply to randomized algorithms. So, currently no

sequence® with all item sizess; € S,i =1,2,...,n. optimal on-line BPP algorithm is known.

For a given sequenck and an on-line algorithra, let In many applications of BPP, there is only a small

A(L) be the number of bins required férby algorithm number of item sizes and, thus, it makes sense to study
A; let OPT(L) be the minimum number of bins needed on-line algorithms specialized to pack inputs from
to pack the items of off-line, that is, when they are  B(S), whereS is a small set of item sizes.

all available at once. Thasymptotic competitive ratio In this paper, we study%jL?O X wherea, 3 € (0,1]
L Oé,ﬁ ) b b) .

Rg(4) of Aon B(S) Our main result is thamax{Rf, 5, : «, B € (0,1]}
limsup y — o max{ 5pry OPT L) o L e B(9), = 4/3 (see Theorem 9). The easy lower bound
OPT(L) = N}. max{R7, 5 : o, f € (0,1]} > 4/3 was shown in
with S = (0,1] we note thatRF (A) = R>(A) is [8,12] (see also Lemma 1 in this paper) and we prove
the usual asymptotic competitive ratio of an on-line bin the matching upper bound is a series of lemmas.
packing algorithmA. Let R be the minimum possible We also studyR{ 6} in more detail for the case

asymptotic competitive ratio of an algorithm for the bin .1 31 > L. In Theorem 3, we obtairk?, B} for
packing problem o#8(.S). An on-line algorithmA with

R(A) = R is called anoptimal algorithm. all values of« andﬁ providedmax{«, 5} > 5. Our

result extends the result of Faigle Kern and Turan [6]
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It seems much harder to obtain an exact formula for

R{ 8 for all values ofa and 3. Also, fort > 3 and
BPP onB(S) with | S| < t, it seems much more difficult

Letr, = R, 5 + <o and observe that, tends
to R<{>° 5 whenk goes to infinity, ag* andzo do not

depend ork. Furthermore, sincé < xoByuu + 21 Ba

to design optimal on-line algorithms. We believe that andz, > z; we conclude that the following must hold.

these problems are worth studying from both theoretical

and practical points of view.

In what follows, leta and 3 denote the two item
sizes, wherd) < § < « < 1. For simplicity we will
denote items of size by a-items, and items of sizg

by s-items. We assume that all bins have capacity 1.

Let z; denote the largest integer such thgf +ia < 1
(i.e. at mostz; items of sizes will fit in a bin together
with ¢ items of sizen). We say thatlmost allbins of

a setS satisfy a certain property if all or all except one
bin in S satisfy this property.

2. When o > 3

We start by proving a lower bound f(ﬁ:?;ﬁ}.

Lemmal If « > 1/2, then

R ., >
Bt = 92 — 2y (x0 — 1)

PROOF. If 1 = O then the lemma clearly holds as
in this casem— =1, so we may assume that

T1(To—T1
x> 0. Clearly V\Ee alsé haveg > ;.

Let A be an optimal algorithm for the givem and
8, and assume that the input starts of withg-items.
Let By, be the number of bins produced By which
do not have space for an additioraitem, and letBy,
be the number of bins where anitem would still fit.
Since A has asymptotic competitive ratiB{° the
following holds, for some constant, not éependmg
onk. .

By +Ba — " < Rf375}x—0
Furthermore if anoth(-:}‘“—1 a-items arrive after thé (-
items, then the following must also hold.

k
B + ——c" < R{O‘7B}x
1

Observe that the above two inequalities are equivalent

to the following:

Bfuzl+Ba *Io
B » *
o +1<R{aa}+cljl

B B
- full T Doy <l
2oBfun + 21 Ba
Bun

r— 1<
ToBfuu + x1Bo §

LetB = Bf;jl andlety = *. The above inequalities
can be rewritten as foIIows

f(B) <, wheref(t) = Eii
g(B) <71, whereg(t) = tlt,y +1

Since~ is a constant an@ < v < 1, observe that
f(t) is a decreasing function ang(t) is an increas-
ing function. Thus, iff(tg) = g(to), then f(ty) <

max{f(B),g(B)} < ry.
This implies the following:
/ -y, 1= (A—9)/v+1
B 1 B 1
Cl-y(l-y) -2

o a:g —x1(xg — 1)

As mentioned earlier;, tends toR;, ﬁ} whenk goes
i
= 12711(10 z1)"

to infinity, which implies thatR{ 52

x2 4
z1(zo—21) = 3'

By (7o — 211)? > 0, we have——
0

Lemma 2 provides the matching upper bound for
Rogﬁ}, and its proof consists in exhibiting an algo-
rithm for this problem and a suitable upper bound
for its asymptotic performance ratio. The difficulty to
overcome when packing items of sizas> 1/2 and
3 < 1/2 on-line is to keep a proper balance between
the numbers of those bins which become packed full
solely with s-items, and those bins which are packed
so as to have enough room left for artem in addi-
tion to any g-items. Accumulating too many bins of
the former type during the packing procedure will be
harmful if subsequent input items turn out to be all
a-items, each of which will need to be put in an addi-
tional bin, thus leaving the solution far from optimal.
Whereas a surplus of bins of the latter type leaves the
solution suboptimal in the event that no new input items
arrive. Thus throughout execution of the algorithm de-
scribed in the following proof, the primary objective is



74

to distribute the arrivings-items so as to keep close to
a certain ratio)) between the two types of bins at all
times, whereQ depends on the sizes and 5. With
this in mind, the algorithm is fairly straightforward.

12

mofml(mg z1) "’

Corollary 2 If oo > 1/2, thenR{;, 5, <

PROOF. If z; = 0 then it is not difficult to obtain
R‘Eg gy = = 1, so assume that; > 0. Clearly we also
have:zzo > x1

Let@Q = e,
algorithm.

Our algorithm will maintain four sets of bingy, A1,
By and B;. They will have the following properties.

Ay consists of bins with @w-items and at least B-
item

A consists of bins with r-item and at least B-
item

By consists of bins with Gv-items and at most;
B-items

B consists of bins with hv-item and 05-items

, and consider the following on-line

The bins in4, are committed to being filled entirely
with g-items. All others-items that arrive will be dis-
tributed in bins fromA; and By, where they, respec-
tively, either join an already packeditem, or wait for

an a-item to arrive and be packed into the same bin.

The bins inB; are used only in case of a momentary

surplus ofa-items.

Letag, a1, by andb; denote the number of bins i,
Ay, By and By, respectively. The algorithm proceeds
by the following guidelines:

e If the next item is amx-item, andb, > 0, then add
the item to a bin inBy, and move the resulting bin
from By to A;. If by = 0 then put thex-item in a
new bin, and add it td3;.

o If the next item is as-item, then apply one of the
following rules, listed in order of priority:

- If a bin in A; does not contairx; g-items, then

add theg-item to this bin.

- If a bin in Ay does not contaixy G-items, then

add thes-item to this bin.

- If a bin in By does not contairr; g-items, then

add theg-item to this bin.

- If by > 0, then add thes-item to a bin inBy, and

move the bin toA;.

- Otherwise add thg-item to a new bin. Ibe’L“1 <

Q then add the new bin t&,, and f”(ﬂ““1 >Q
then add the new bin td,.
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Observe thatyy = by = a1 = 0 if and only if the
input does not havg-items, in which case the algorithm
produces the optimal solution. Thus, in the rest of the
proof, we may assume that at least ghitem is present
in the input, samax{ag, by, a1} > 0.

During the entire execution of the algorithm, the fol-
lowing properties hold.

(a): Almost all bins inA4, containz, S-items.

(b): Almost all bins inA; and By containz; G-items.

(©): bg = 0 or by = 0. This is clearly true in the be-
ginning of the algorithm and one can see from the
algorithm description thab; becomes positive only
if bi_; = Ofori:O,l.

(d): bte > @ (for ap = 0, &F% — oo since
max{ag,bp,a1} > 0, SO we may assume that
ap > 0). Indeed, the operations of the algorithm,
except the very last one, do not decrease the value
of b":—o‘“ The last operation only decreases the

value ofb‘):—o‘l1 by increasing the value afy by 1

if bf—‘“ > Q. So even after decreasing the value of
o+1

the fractionbﬂj—o‘“, it remains at leasf). Moreover,

just afteraq turns from zero to onel,’“a*—o“1 > Q by
the corresponding condition of the last operation of
the algorithm.

(e): bo;}‘ﬁil L < Q. This is the case as the fraction

bo;‘ﬁl L equals—1 in the beginning of the algorithm
and can only increase if @item arrives and one of
the last two rules is applied. However, by (c), since
the most recent increase af (using the last rule),
the second last operation is no longer used. Notice
that at the time whemn, was last increased we had

botay
it < Q.

Letr = —

x —ml(mo x1) "

(f): If by > 0, thenay (r — 1) + ao (=12 —
This holds by the following:

2
To

1) > 0.

ap(r—1)+ ao(% -1)
= ao(r — D[2 +(2 - L]
an T T —
> ap(r—1)
zo(zo — 1) 23 — x1(x0 — 71)
[Q+x1(xo—x1) x1(ro — 71) ]
x? -2

— ag(r — 1)
=0

z1(zo— 1)  zi(zo — 1)



Gregory Gutin, Tommy Jensen and Anders Yeo — Algorithmicrafiens Research Vol.1 (2006) 72—7875

In the above argument, we use the inequality<
a1 /ag, which holds due to (c) and (d).

Since we are only considering asymptotic ratios, we

may by (a) and (b) assume that all binsi#y and 4
containz, (G-items, and all bins indy containzg (-
items. By (d) and (e)b”“1 L < Q < Wtau pefine

ay =ay —e, ao—ao—i—e andf( ) = (bo—i-al)/ao
fore € [0, 1].
We have
f(1) = Bt < fe) < Bt = f(0).

Since f(e) is a continuous function, for some value of
e €[0,1), b“;r,al = Q. Let us fix these values af, and
0

/
al.

Letopt denote the size of the optimal solution. We are
now ready to prove that-opt — (ag+a1 +bo+b1) > 0,
which would complete the proof. Before considering the
following four cases, let us estimate the valueopf.
Since eachu-item requires a separate bin, the optimum
equalsa; + b1 plus v, the minimum number of bins
required to accommodate tf¥eitems not fitting into the
bins from A; and B;. Taking into consideration that
a1 + by bins with a-items in them may accommodate
up to(ay + b))z, S-items,

v < max{0, (a1x1 + apzo + box1 — (a1 + b1)x1)/x0 }

Thus,

opt > a1 + by + max{0, (agzo + box1

—bix1)/xo}. (1)

Case 1. by > 0: By (c), we observe that; = 0 and,
by (1) andag + a1 = af, + af, we get the following:

r-opt — (ap + a1 + bo)
Toap + x1bg

>r(ar +
Z

)—ag—ar —bo

= (r = )a} + (r% — )b + (r — 1)d}

0
€1 bo —l—a'l
R
1 X1 1
= 1—Z= Lz
agr| - + (Io r) Q]
171(170 501)
=agr[l —(1- )
Lo
T1 171(170 —501) Z1
(= (1 )
To Ty To — X1
= [T~ )
Lo
. (170 - $1)2 x
z3 To — T1
_ aar[l'l(,f(); ,Tl) _ 1‘1(,@02— ,Tl)]
Lo Lo
=0

This completes the proof of Case 1.

Case 2. by > 0 and agxo > byz1: Observe that by (c)
bo = Oand by (Lopt > by +ay 4 2rteere—(bitan
Note thatr — 1 — ray/2p < 0, asl — 1/r =
x1 (o — 1) /23 < x1/70. This implies the following
(by (f) andagzo > b1z1):

r-opt — (ap + a1 + by)

x1b
>r(b1+a1+a0—%)—ao—a1—b1
0

:(r—l)(ao—l—m)—i—bl(r—?"%—l)

> (r — 1)(ag + a1) + aij’o | —ri—;—l)
= al(r - 1) + ao(i(r _xll)xo - 1)

>0

Case 3. b; > 0and apxy < bixy: By (1), by + a1 =
opt, which implies the following (by (f) andzq <
blfL‘l):

r-opt — (ao + a1 + by)
:(r—l)al—i-(r—l)bl—ao
>(r—1Da+ (r—1)a 0——a0
Ty
— Dz
—ay(r— 1)+ ap(T 1T )
T
>0

Case 4. by = 0 and b; = 0: Observe that our solution
ag + a1 is optimal in this case, so we are done.



76

This completes the proof.

The above two lemmas immediately imply the fol-
lowing:

2

Theorem 3 If a > 1/2, thenR7;, 5, = 20

mgfml(mgfml) :

CoroIIary4 [6] We haveR{ 8 = for 8 =z—
anda = 5 + ¢ for any fixed nonnegative< %

PROOF. Observe thaty =
the formula in Theorem 3.

2 andz; = 1, and apply

3. When a <

1

2

Lemma5 If 1/3 < o < 1/2andzy + g > 21, then
J;2

R{aﬁ} S 13—12(20—12)'

PROOF. Whenzs + zo > 227 there exists an optimal
solution with the following properties. Almost all bins
contain either tway-items or noa-items, as if two bins
contain onex-item each, then they can be rearranged so
that one bin contains twe-items and the other contains
no a-item.

We now use the algorithm given in Lemma 2, with
item sizess and2q«, by always placing either zero or
two «a-items in a bin (except possibly one bin). By the
comment above on the optimal solution we get the de-
sired bound from Lemma 2.

Lemma6 If 1/3 < o <1/2andzs + xg < 221, then
fos) <50

PROOF. Before we describe the desired algorithm we

prove a few claims, wherke = |a/3].

Claim A. 1 :I2+/€+1 and To = I2+2k—|—1 =
21‘1 — X2 — 1.

Notethatl —a—(k+1)3 < 1-2a < 1—a—kS. S0
since exactly:, s-items will fit in a space of —2«, we
will be able to fit at least, + k 8-items inl — «, but not
more thanes+k+1 (-items. Therefore, = zo+k+iq,
wherei; € {0,1}. Analogouslyzy = z1 + k + io,
whereiy € {0,1}. Howeverzs + 29 < 2x; implies
thatzo + (z1 + &k + ig) <z1+ (T2 +k+ i1), which in
turn implies thatis < i;. Thereforei; = 1 andis = 0,
which proves the claim.

ClamB. 1 < 3and £ < 1.

As o > 3, we observe that > 1. Furthermore
k > x4, since otherwisé —2a, > Bxs > B(k+1) > a,

Gregory Gutin, Tommy Jensen and Anders Yeo— On-line bin ipgokith two item sizes

a contradiction against > 1/3. Sincexy + 1 + (4k +
3x9+3) < k+k+(4k+3x2+3), we get the following:

4$1 :4(k+$2+1) < 3(2/€+$2+1) =3$0
This proves the first part of the claim. The second part

follows from the fact tha3zy < 2k+x5 = 29—1 < xp.
This completes the proof of claim B.

Now consider the algorithm that greedily places all
items in bins, without ever putting an-item and a
B-item in the same bin. All bins, except at most two,
will either containzy S-items or twoa-items. Assume
that our algorithm produces bins containing twon-
items and bins containinge, S-items. Note that there
exists an optimal solution where either there is no bin
containing twoa-items or no bin containing zera-
items, as a bin with twax-items and a bin with zero
a-items can be rearranged so that we get two bins each
with onea-item andzs + o < 271. We aim to show
(a + b)/opt < 4/3. The following three cases exhaust
all possibilities.

Case 1. bxg > 2z1a: The optimal solution in this
case must contai2u bins each with one-item (andz;
(-items) and a furthef%%} bins containing no
a-items. As we are considering the optimal asymptotic
performance ratio, we may assume that the optimal so-
lution uses exactlypt = 2a+ 222=24%1 pins, By Claim
B andb > 2z1a/xy, this implies the following:

0pt=2a+b—2ai—;—b/5+b/5
> §b+2 ~ 2 i—;+2£0a
4 8
- grealz-5)
> §b+a<2—§%3> = %b—i—%a
The above impliega + b)/opt < 3 < %, which com-

pletes the proof of Case 1.

Case 2. bxg < 2x1a and bxg > xqa: The optimal
solution in this case must contain either one or two
items in each bin. Assume thatbins contain exactly
two a-items in an optimal solution. Note thz¢+ (opt—
¢) = 2a andzac + z1(opt — ¢) = bxy. By inserting
¢ = 2a — opt (from the first equation) into the second
equation, we gets(2a — opt) + x1 (20pt — 2a) = by,
and henceopt(2z1 — x2) = bxg + 2ax1 — 2axs. It
follows, usingb > a2, zo+1 = 2z; —z2 and 32 < 3
(by Claim B) that
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b 2 —
opt = 2o + 2a(x1 — 22)

2171 — T2

2171—2562 i) 3
b b - =
ta $0+1 * ($0+1 4)

3
4
3ppgfozetl w2 @ 3
4 ZC()—FI Zo I0+1 4
3
4

>

To— T2+ 1+ @2 32
b _
+a ] a
3

1 3
>_ — _ = —
_4b+a a4 4(b+a)

4o

This completes the proof of Case 2.

Case 3. bxgy < x2a: In this case the optimal solution

isopt =a > 2a+5- %2 > 3(a+b), which completes
the proof.

Lemma7 If « <1/3,thenR®

(ot S 4/3.

PROOF. We simply fill every bin greedily, without
placing items of sizes and 3 in the same bin. Note
that almost all bins containing-items (3-items) do not
fit an additional item of sizex (5).

Now consider a bin containing only-items, which
does not fit an additional item of size Let = denote the
space leftin the bin, and note thak «andz < 1—3a.
Thus,z < 1 —3a < 1 — 3z. This impliesz < 1/4.
Analogously for every bin that contains onBritems
and does not fit an additional item of sige the space
left in the bin is at most /4. As all bins except possibly

two are at least 75% full, we get the desired asymptotic

performance ratio.

Lemma8 If 0 < 8 < o < 1, thenR{;, 5,

<4/3.
PROOF. If a > 1/2, then by Lemma 2 andh (zo —
x1) < (%)? (this follows from (zg — 2z1)? > 0) we
have

(E2 .%'2
R* < 0 < 0
Lol = g — i (wo — 1) ~ 2 — (5)?
1 4
= - ==
1-173
If 1/3 < o < 1/2 andzy + 29 > 2124, then by

Lemma 5 we have

5

— ZCQ(ZCO — IQ) '

Riam < 2

Similarly to the previous argument, we can now prove
that R, 5, < 5.

If 1/3 < a<1/2andzs + z¢ < 221, then Lemma

6 implies the desired result. We are now done by
Lemma 7.

Lemmas 1 and 8 imply immediately the following:

Theorem 9 We havemax{R, 5, : o, 8 € (0,1]} =

4/3.
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