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Abstract

We study on-line models for the set-covering problem in lvitems from a ground set arrive one by one and with
any such itenz, the list of names of sets that contain it in the final instaisca@lso presented possibly together with some
information regarding the content of such sets. A decisiakan has to select which set, among the sets contaiaing
has to be put in the solution in order to cover the item. Suatisiten has to be taken before a new item arrives and is
irrevocable. The problem consists in minimizing the numdferhosen sets. We first analyze some simple heuristics for
the model in which only names of sets are provided. Then w& sba-trivial matching upper and lower bounds for the
competitive ratio in the model in which for any item that ae$ the content of all sets containing it is also revealed.

Key words: on-line algorithm, greedy algorithm, set-covering, cotitpe ratio

1. Introduction A similar situation would arise if the editor-in-chief
of a new journal would like to cover new topics in

Suppose the manager of a supermarket decides, fromh(,er journal and fgr every new topic she is presented
time to time, to add new products to her catalogue. Each W'th a list of possible area editors that can cover S.UCh
new product can be supplied (at the same price) by atoplc_ (_an_10ng others). In the long _term she would I_|ke_
list of possible suppliers and the manager has to decide!© minimize _the number (_)f area ed_ltors, w|th0ut apriort
which supplier to choose without an a priori knowledge knowing which other topics she might wish to cover in
of what other products she might wish to sell in the the future. _ _
future. For making her own life easier, the manager " this paper we address the on-line set-covering

aims at minimizing the number of suppliers. We call this Problem and we analyze various on-line greedy solu-
problemon-line set-coveringin more abstract terms, tion strategies under different models. For each strategy

items from a ground set are presented to a decisionwe.provide lower and.upper bounds on the competitive
maker, each one with a list of names of sets that contain 'atio that may be achieved.

it in the final instance, and the decision maker has to

_selec_t one set to cover the given |t§m, _befo_re_ a NeW , b diminaries and Related Work

item is presented. The problem consists in minimizing

t_he numb.er of chosen sets and, as it IS common In ON= £4rmajly, theset-covering probleran be defined as
line algorithms, the quality of the solution is measured follows: let C' be a ground set of, elements ands

n;] terms t()31‘ co;npetmvi ratio, kt)hath|s thle ra}tlr? betv\(/jeer? a family of m subsets ofC such thatUgesS — C:
t € number obsetsfc osen dy(tj e algorit rl‘r_an tlethe problem consists of finding a family’ C S, of
minimum number of sets needed to cover all items. It .0 cardinality, such thagcs/S = C.

zas 0 bte noteg thatﬂzn th|st_ model thde d?<_:|5|00||1 maker The set-covering problem has been extensively stud-
0€s not even know In€ entire ground setin advance. ;a4 over the past decades. It has been shown to be

Email: Giorgio Ausiello [ausiello@dis.uniromadl.it], Nico- NP—har_d in Karp’s semlna_ll paper ([5]) ar(d_(log n)-

las Bourgeois [bourgeois@lamsade.dauphine.fi], Telis @pproximable for both weighted and unweighted cases

Giannakos  [giannako@lamsade.dauphine.fr], =~ Vange- (see [2], for the former and [4,6,9], for the latter; see

lis Th. Paschos [paschos@lamsade.dauphine.fr]. also [7] for a comprehensive survey on the subject).
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This approximation ratio is the best achievable, unless at each step includes in the solution all the sets con-
P = NP ([8)]). taining the element just revealed, if such element is still
In the on-line version of the set-covering problem, uncovered. We show that this algorithm has tight com-
one assumes that the instance is not known in advancepetitive ratio f, where f is the maximum number of
but it is provided step-by-step. At each step, an item sets inS that contain a ground element (note that
in the ground set is revealed and, together with it, the can even grow exponentially with). Subsequently, we
names of the sets that contain it in the final instance show that, in modeM,, also randomized algorithms
are revealed. Upon arrival of a new itemm an algo- behave rather poorly. The algorithm we consider, called
rithm (calledon-line algorithn) has to decide irrevoca-  TAKE- AT- RANDOM is a randomized algorithm that at
bly which of the sets containingare to be included in ~ each step picks a set at random among the ones whose
the solution under construction, aiming at minimizing names are revealed and includes it in the solution, if the
the overall number of sets that will be present in the elementrevealed at stéps still uncovered. For this al-
final solution. The fact that the instance is not known gorithm, we show that its expected competitive ratio is
in advance, gives rise to various models specified by bounded below by2(n'~<), for everye > 0.
the ways in which the final instance is revealed and/or  The main results of the paper concern the study of
by the amount of auxiliary information that is provided model M. We show that, for this model, the com-
to the on-line algorithm at each step. The objective of petitive ratio of any algorithm that, for any arriving
an on-line algorithm is to construct a feasible solution uncovered element, includes at least one set containing
whose cardinality is as close as possible to the cardinal-it in the cover, is bounded below by 2n(k* — 1)/k*,
ity of an optimum (off-line) solution. More precisely, where k* is the cardinality of an optimum off-line
as it is customary in on-line algorithms [10], in order to cover. We then consider two greedy algorithms. The
evaluate how “close” the solution obtained by the algo- first one, calledTAKE- LARGEST, at any step takes
rithm is to the optimum solution, we make use of the so- one of the largest sets that cover the current item
calledcompetitive ration(z, y) /opt(z), wherem(z, y) We show that the competitive ratio of this algorithm
is the value of the solution determined by the on-line  is O(n). We next consider a second algorithm, called
algorithm on instance: and opfz) is the value of an ~ TAKE- LARGEST- ON- FUTURE- | TEMS, that in-
optimum off-line solution on the same instance. cludes in the solution a set which covers most of the
In this paper we study two basic models for on-line yet uncovered items and we show that such algorithm
set-covering. Basic underlying hypothesis for both of achieves a competitive ratio of/2n(k* —1)/k*;
them is that elements of the ground set arrive one-by-onehence, it is optimum for modelM,. This al-
and have to be processed immediately. This basically gorithm can be seen as the on-line counterpart
means that either they will be immediately covered or of the natural greedy (off-line) set-covering al-
they will be left uncovered with the risk that the final gorithm!. Hence, analysis of competitiveness of
solution will be unfeasible. Here we suppose that any TAKE- LARGEST- ON- FUTURE- | TEMS is interest-
newly revealed item is immediately covered at this step ing by its own. As it will be seen later, this algorithm
unless it has been covered before. In both models, theis also interesting even in an off-line setting.
ground set is not known in advance. Other versions of the set covering problem in a dy-
Inthe first model, called1; in the sequel, we assume namic or on-line setting have been considered in the
that, together with an element, only the names of literature. In [1], the following on-line model has been
all the sets containing it in the final instance arrive. In studied. An instancgéS, C') of the set-covering problem
the second model, callet!t5 in the sequel, we assume is supposed to be known in advance, but only a part of
that together with the names of the sets covesinglso it, i.e., a sub-instancéS,, C,) of (S,C) is gradually
their content is revealed. revealed over time; this sub-instance is not known in
We first address modeM; and we provide some advance. A picturesque way to apprehend the model is
simple results that show that in this model all heuristics to think of the elements af' as lights initially switched
behave very poorly. In particular we first show that if ~off. Elements switch on (get activated) one-by-one. Any
no information other than the names of the sets cover- time an element gets activated, the algorithm has to
ing a newly arrived element is given, then the competi-
tive ratio of any deterministic algorithm for this model ! That progressively includes in the solution one of the sets
is (n). Next, we consider algorithmAKE- ALL that which cover the most of the still uncovered elements ([4]).
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decide which among the sets &fcontaininge has to

be included in the solution under construction (since we
assume thatS, C) is known in advance, all these sets
are also known). In other words, the algorithm has to
keep an on-line cover for the activated elements. The
algorithm proposed for this model achieves competitive
ratio O(log nlogm) (even if less tham elements of”

will be finally switched on and less than subsets o

On-Line Set-Covering

only receives the names of the sets containing the ar-
riving ground elements i€ (n)-competitive.

Proof. The adversary reveals a first uncovered element
along with the namesSy, ..., Sy of N sets covering it.

He then keeps revealing uncovered elements along with
all sets fromSy, ..., Sy not already included into the
cover, until the algorithm has included &\l sets into

the cover.

include these elements). The on-line models addressed Suppose w.l.0.g. that ground elements have been

in our paper differ from the one in [1] mainly by the
fact that nothing is known initially. In particular, in [1]

a critical use is made of the information about the total
numbern of items and the total number of sets in

the ground instance, both in the randomized and in the
deterministic algorithms.

Other related work can be found in [3] where an ap-
proach that could be considered to be at midway be-
tween on-line and reoptimization approaches is devel-
oped. In this paper, the problem to maintain an approxi-
mate set-covering while the instance undergoes limited
changes is tackled. In particular, it is shown that if so-
lution S’ has been produced by the natural greedy al-
gorithm achieving approximation rati©(logn) ([2]),
then afteiO(log n) insertions of new elements the initial
solutionS’ still guarantees the same approximation ra-
tio. In the same spirit lies also the dynamic set-covering
model addressed in [11].

The remainder of this paper is organized as follows.
Section 3. is devoted to the study of model, for set-
covering, while in Section 4. we address modé} and
provide the main results. Finally, in Section 5., some
conclusive considerations are reported.

3. Simple Bounds for Moddl M

In this section, we consider the following model.
Assume an arrival sequenée = (o4, ...,0,) Of the
elements ofC'; the objective is to find, for any €
{1,...,n}, afamilyS! C S such that{oy,...,0;} C
Uses; S (obviously, for alli, S; € ;. ,). Once an el-
emento;, i = 1,..., is revealed, only the names of
the subsets of the whole instance contairingre re-
vealed. In what follows, leF;, = {S € S : ; € S} and
f = max,,cc{|F;|}. We have called this model;.

In this model we prove that any algorithm that
chooses the sets if; to cover the newly revealed el-
emento; in a deterministic way behaves rather badly.
Besides, we show that also algorithms that make a ran-
domized choice have a somewhat similar bad behavior.
Proposition 1 Any deterministic on-line algorithm that

presented to the algorithm, each one uncovered by the
time of its arrival. With the arrival of the first element,
the algorithm has includes, . . . , S;, in the cover, with
the arrival of the second it has includ8g 14, ..., Si,,
and so on, until the arrival of thith element (here the
algorithm has included;, ,.1,...,5;, = Sy in the
cover).

The instance might have been the following:
S = {Sl,...,SN}; C = {61,...,€1OgN,1,...,k},
i.e., there existn log N + k ground elements
(k < N); the setSy is the ground set itself; any other
setS; included at stepy in the solution is the union
of the set{1,...,j} with the set of the elements,,
with p ranging over all the places where the binary
expression of has a 1; finally, the arrival sequence is
1,..., k. In such a setting, the competitive ratio of the
algorithm would beN, i.e.,Q(n).

Figure 1 illustrates the construction just de-
scribed. First, elementl along with set names
S1, 59,53, 584, 55, 56, 57 is presented to the algorithm,
who hasincluded, Ss, S5 into the cover (Figure 1(a)).
Next, element2 along with set name$,, S5, Sg, S7
is presented and the algorithm covers it by including
Sy, S5 (Figure 1(b)). Finally, elemens is presented
along with set nameS;, S; and the algorithm has in-
cludedSs, S7 in the cover (Figure 1(c)). In this case, the
ground element set might have bden, es, e3, 1,2, 3},
the same asS;, while S; Soo1 {e1,1},

Sy = Soio = {e2, 1}, S3 Sonr = {ei1, ez, 1},
S4 = SlOO = {63,1,2}, S5 = 8101 = {61,63,1,2}
andS6 = S110 = {62,63, 1, 2,3} ]

It can be immediately seen that, under the given
model, any deterministic algorithm that includes a
specific set containing a new (uncovered) element
(for example, the set of; that comes first in lexico-
graphic order) achieves competitive rafign ). Indeed,
it chooses at most sets for an optimum greater than,
or equal to 1.

Let us now consider the following algorithm,
TAKE- ALL, which, at any step, covers an element
by the whole familyF;. We can easily show that the
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Fig. 1. An illustrative example of the proof of Proposition 1

competitive ratio of TAKE- ALL is bounded above
by f and that this bound is tight. Indeed, denote by
o1, ...,0 the critical elements of}, i.e., the elements
having entailed inclusion of sets &fin S’. Denote also
by §* an optimum off-line solution. Obviously, for any

elements such that the expected competitive ratio of
TAKE- AT- RANDOM is ©(n!~¢).

Proof. Foranye > 0, fixanintege > 1/eandletN >

2F and N**+1 < 2N=2/N. Consider the instance with
ground selC' = {1,...,n = N*}. Family S contains

of the critical elements, a distinct set is needed to cover the following three types of sets: (i) a partition of the

it, in any feasible cover fo€'; henceS*| > k. On the
other hand, since, far=1,...,k, f; < f, |S'| < kf.
So, putting things together, a competitive rafiés im-

ground setC into classsetsS(i) = {j € C : (j —
1)+ N = (-1} fori =1,...,NF! (where+
denotes the integer division); clearlyj(i)| = N and

mediately derived. In order to show tightness, consider there existN*~! class sets; (i) fori < N*~!, any

an instance with ground sét = {1,...,n} andS, of

size2"~1, consisting of alls C {1,...,n} with1 € S.

With an arrival sequence starting with the competi-
tive ratio of TAKE- ALL would be2"~! = f. Finally,

let us note that, from this discussioPAKE- ALL gives
a much worse competitiveness than

In what follows, we take into consideration a ran-
domized algorithm and we show that also for such algo-
rithm the achieved competitiveness is fairly poor. Let us
consider AlgorithmTAKE- AT- RANDOMwhich, when
a new element; is revealed, choses a set i) with
uniform probability. In the following theorem, we show
that, under modeM (where the whole instance is not

known in advance), the competitiveness of such algo-
rithm cannot be much better than the competitiveness

of a deterministic algorithm.

Proposition 2 For anye > 0, there exists an instance
of the on-line set-covering problem with ground

non-empty proper subset ¢f(); notice that, for any
j € S(i), there exist exactlg”” —* — 1 suchinternal sets
that elemeny belongs to; (iii) the ground set itself.

Consider the sequence such that the adversary al-
ways reveals the uncovered element of lowest index,
and compute the expected value of the cover, which
will be equal to the expected competitive ratio of
TAKE- AT- RANDOM (equality holds, since the opti-
mum for this instance i§’).

We denote byE(q) the expected size of the partial
solution provided byTAKE- AT- RANDOM after ¢ ele-
ments have been revealed. kix< N*~1 and0 < p <
N. Assume that, for every < N(m — 1) + p:

q

— 1

¥ (1)
Let us now show that (1) remains true fpe= N(m —

1) + p. When elemen = N(m — 1) + p has been
revealed, TAKE- AT- RANDOM has to choose among

E(q) >
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the 2V—1 + 1 sets thatj belongs to, i.e., among the
ground setC, the class sef(m) and the internal sets
associated withj. If C' has been selected, the algo-
rithm stops. Else] < p elements get covered, then
j'=N(m—1)+p—lisrevealed, and so on.

Since at mostN — p elements ofS(m) have al-

ready been covere@¥ 7 (') different sets contain

Giorgio Ausiello et al. -

On-Line Set-Covering

4, Mode€ Mo

In this section, we consider an enriched model for
on-line set-covering that we call modéH,. In this
model, we assume that, together with any elemgnt
in the sequence, beside the names of the sets contain-
ing o;, also the contents of such sets are provided. In

exactlyl terms corresponding to elements that have not what follows, we show that, in this new model, no

been revealed yet. Then:

E(N(m—1>+p>¥<1+zwi

T 9N-1
2 +1 pt

(é’:;) (1+E(N(m—1)+p-1))

p—1

1 _ p—1
>———[142V?

(e 2=1)

—1
P oN=p % p—1
> e [+1
m+N'<N@N*+J)<g; ;U D
p _p(2V) P
smr Lo P 2y
mENTNeY i ) - "N

The recursive relation above yields then directly
E(N¥) > N+l ie ,E(n) =Q(n'"c). m

We now give an example of construction of Propo-
sition 2. ConsiderN = 3 and k = 3 (these val-
ues of N and k£ are not conformal with their def-
inition but, in a first time, we use them for sim-
plicity). Then C {1,2,...,27} and we have:
class sets{1,2,3}, {4,5,6}, {7,8,9}, {10,11,12},
{13,14,15}, {16,17,18}, {19,20,21}, {22,23,24}
and{25, 26, 27}; for any class sefa, b, ¢}, there exist
the internal sets{a}, {b}, {c}, {a,b}, {a,c} and{d, c};
finally, C = {1,2,...,27} € S.

Let us assume that; = 17. With it will be revealed
the following2® +1 = 5 sets:{17}, {16, 17}, {17, 18},
{16,17,18} and{1,2,...,27}. The average cover for
the whole instance will be of size 9, independently on
the arrival sequence.

Fork = 3, N > 8 Taking N = &8, n = 512.

In this case, the class sets would be the partition of {z;j,,..

{1,2,...,512} into 64 subsequent 8-tuples. For any

on-line algorithm can achieve competitive ratio better
than/(k* — 1)2n/k*, wherek* = |S*|, the cardinal-

ity of an optimum off-line solution, even if the algo-
rithm is allowed to choose more than one set at each
step. Besides, we show that such performance can in-
deed be achieved by an algorithm which, in order to
cover a newly revealed elementt, chooses the set if;
covering the most of the still uncovered elements.

The basic assumption for modgH,, that is, the
knowledge of the content of the sets that cover a newly
revealed item, can be justified by revisiting the second
application in Section 1.. There, for any topic presented
on-line, the editor should prefer the area editor that cov-
ers the broadest number of other topics not presented
yet. Model M well fits such a natural requirement.

4.1. Lower bound in model M,

This section is devoted to the proof of a lower bound
on the competitiveness of any algorithm in moddh.
Central step for such a bound is the following theorem.
Theorem 1 No on-line algorithmA for M, such that,
each time a not yet covered elementarrives, inserts
into the cover at least one set containiag can con-
struct a solution of sizé < /(k* — 1)2n (wherek* is
the size of an optimal off-line solution of the instance),
even if with every arriving element, the algorithm knows
the content of all sets containing it.

Proof. Consider the following set-covering instance
built, for any integersN and p, upon a ground set
C = {,Tij 11 < ] <1 < N} X {1,,P} Obvi-
ously, |C| = n = PN(N +1)/2. For1 < p < P,
|Cpl = {mij : 1 < j <i< N} x{p} wil be called
the p-th block of C. A path-set of orderi from C,,

is defined as a set containiny — i + 1 elements
g} < -

The set-systens of the instance contains all possible

class set there would be 254 internal sets. With any ele- path-sets of each orderl < ¢ < N, from C,, for all
ment of the arrival sequence there would arrive one classp, 1 < p < P. Clearly, in a blockC,, there exist\V'!/0!

set, plus 63 internal sets plus the g&t2,...,512},
i.e., 8371 +1 = 65 sets. The average cover size would
be in this case 64.

path-sets of ordet, N'!/1! path-sets of orde?, and so
on and, finally,N!/(N — 1)! path-sets of ordeN, i.e.,
intotal N!(1+1+1/2!4+...+1/(N —1)!) = eN!
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path-sets; hence, there exist abektV! path-sets irS.
Finally, the set-systeidi is completed with an additional
setY containing all elements of’ but those of one
path-set of ordet from every blockC,, 1 < p < P,
that will be specified later (hencg/| = n — PN).

As long as there exist uncovered elements, the adver-

sary may choose to reveal an uncovered elerfigntp)
from the block of the smallest indexand of the low-
est possible arriving, which will be contained only in
all path-sets fromC,, of order less than or equal to
Notice that as long as algorithfahasr < N path-sets
from C, inserted to the cover, there will be at least an
element(z (41, for somej, 1 < j < r+ 1, not

41

The first elements of the arrival sequence are labeled
with their order of arrival: first(1,1,1) arrives, and
algorithm A chooses set$(1,1,1),(2,1,1),(3,1,1)}
and{(1,1,1),(2,2,1),(3,2,1)} for covering it. Then
the uncovered elemen, 3,1) arrives, SOA has to
cover it by, say, the sef(2,1,1),(3,3,1)}. At that
moment, N 3 sets with elements fron®; have
been taken into the cover by, so the adversary
reveals elementl, 1,2) of block Cs, i.e., an uncov-
ered element of the block of the lowest index and
of the lowest possible (Figure 2(b)). AlgorithmA
covers it by including {(1,1,2),(2,2,2),(3,1,2)}
in the cover. Then(2,1,2) arrives andA uses sets

yet covered. This means also that as long as the cover{(2,1,2),(3,2,2)},and{(2,1,2), (3,3,2)} to cover it.

computed byA contains less thaPN sets, there will
be at least an element (belonging to some block) still
uncovered.

Suppose that after the arrival 6f, the sizek of the
cover computed b} gets greater than, or equal B)V.
Clearly,1 <t < PN. Attimet + 1, a new element
arrives, contained in some path-sets and’inwhich
can now be specified as consisting of all elements'in
except from the elements pfpath setsS}, . .., S5 of
order 1, one from each blodk,, their union contain-
ing oy, ...,o0.. Therest of the arrival sequence is indif-
ferent.

Clearly, the optimum cover in this case would have
been path-set$7, ..., S5 together with setY, i.e.,

k* = P+1, while, as we have already shownz PN,
with N tending to\/2n/(k* — 1) asn increases, which
finally yieldsk > /(k* — 1)2n.

It is easy to see that the above construction can be Since the functionf (z)

An optimal cover consists of sef$1,1,1),(2,2,1),
(3,3, 1)}, {(1,1,2),(2,1,2),(3,1,2)} and the big,
shadowed set consisting of the rest of the elements,
which could not have been revealed Aoupon the
arrival of any of the first four elements (Figure 2(c)).

By Theorem 1, the following corollary, inducing a
lower bound on the competitiveness of any algorithm
meeting the conditions of Theorem 1 can be immedi-
ately derived.

Corollary 1 No on-line algorithmA for M such that,
each time a not yet covered elementarrives, inserts
into the cover at least one set containing can achieve
competitive ratio less than/2n(k* — 1)/k*, even if
with every arriving element, the algorithm knows the
contents of all sets containing it and chooses a set cov-
ering the most of the uncovered elements that are going
to arrive aftero;.

(x — 1)/2% decreases with

directly generalized so that the same result holds alsoz > 2, the following corollary can be also immediately

in the case where the on-line algorithm can insert into
the cover more than one set at a time. Really;jf =
(z11,p) then, as long as the on-line cover contain less
than N sets with elements of’,, there exists always
someiy—; < iy < N and somgj;, for which (xmif,p)
is still uncovered. Hence, i, is this element, then the
algorithm will have to put some sets in the cover. Finally,
the algorithm will have to put in the coveY sets for
each block, i.e.PN sets in total, while the optimum
will always be of sizeP + 1. m

In order to illustrate the construction of Theorem 1,
consider the instance of Figure 2, witi = 3 and
P =2 (the elements of" are depicted as circles labeled
by (i,j, k) for1 < j <i<3,1<k<2).

The path-sets from blocks;, andC> can be thought
of as paths terminating to a sink on a connected com-
ponent of the directed graph of Figure 2(a).

derived from Corollary 1.
Corollary 2 No algorithm meeting the conditions
of Theorem 1 can achieve competitive ratio smaller

than /n/2.

4.2. Algorithm TAKE- LARGEST- ON- FUTURE- | TEMS

Let us first consider the following algorithm
(TAKE- LARGEST) which, at any step, covers an el-
emento; with a set in F; of maximum cardinality.
Observe first that the discussion about the competitive-
ness of deterministic algorithms that include a specific
set containing a new (uncovered) element, holds also
for TAKE- LARGEST. Hence its competitive ratio is
bounded above by.

We show that this ratio is tight up to a constant
factor. Consider the following set-covering instance:
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Fig. 2. An illustrative example of the proof of Theorem 1 with= 3 and P = 2.
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a ground setC {1,...,2N}, a family of sets
S ={S,...,Sn}with S; = {i,..., N +i}. Assume
an arrival sequence starting witN, N + 1,...,2N.
Then, TAKE- LARGEST might include into the cover
sets Sy, ..., Sy, while the optimum cover would be
consisting of onlySy, Sy, thus yielding a competitive
ratio of at leastv/2.

We now assume that once an elements revealed,
the contents of all sets iR; are also revealed. In what
follows, we discuss the competitive ratio achieved by al-
gorithm TAKE- LARGEST- ON- FUTURE- | TEMVS that
exploits such information and when is revealed in-
cludes in the solution a set that covers most of the
yet uncovered items.

We show that the competitiveness of such algorithm
tightly matches the lower bound of Theorem 1 and

Corollary 1, and therefore can be considered an opti- b

mum algorithm in modeM..

As previously, we denote bg* the size of an op-
timum off-line solution of an instancéS, C') of mini-
mum set-covering and we sgt| = n.

We first give an easy upper bound for the competitive
ratio of TAKE- LARGEST- ON- FUTURE- | TEMS that
matches the lower bound of Corollary 2 up to a con-
stant. This is the result of Proposition 3 taking into ac-
count that one can assurhé > 2; otherwise g* = 1),
TAKE- LARGEST- ON- FUTURE- | TEMS computes an
optimal solution. Next we refine the analysis of the algo-
rithm in order that its competitive ratio tightly matches
the bound provided in Theorem 1.

Proposition 3 AlgorithmTAKE- LARGEST- ON- FUTURE

- | TEMS achieves competitive ratio bounded above
by 2/n/k*2.

Proof. Denote by &’ the solution computed by
TAKE- LARGEST- ON- FUTURE- | TEMS and consider
two kinds of sets chosen by the algorithm. The first kind
are sets that contain at leagt:/k* still uncovered ele-
ments; they form subfamilg; C S’. The second kind
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number of elements that belong & and are covered
by sets ofS}, is bounded by /n/k*. Thisis true for any

1 <7 < k*. Thus, the total number of such elements is
at mostk*\/n/k* = v/nk* that is also an immediate
upper bound fotS|.

The discussion above derives that the total num-
ber of sets chosen byAKE- LARGEST- ON- FUTU-

RE- | TEMS is at most2./n/k*. Dividing it by k*
immediately leads to the ratio claimea.

The main result of this section is Theorem 2
improving the result of Proposition 3 and estab-
lishing an upper bound in the competitiveness of
TAKE- LARGEST- ON- FUTURE- | TEMS that tightly
matches the lower bound of Theorem 1.

Theorem 2 Algorithm TAKE- LARGEST- ON- FUTURE

-1 TEMS achieves competitive ratio bounded above
2n(k* —1)/k*2.

Proof. Fix an arrival sequencE = (o1, ...,0,), as-
sume w.l.o.g. thatl = (1,2,...,n) and denote by
the set of itscritical elementsi.e., the elements having
entailed introduction of a set in the on-line cow&r In
other words, critical elements A are all elements
such that was not yet covered by the cover under con-
struction upon its arrival.

In order to make the proof's reading easier, and
since a lot of new notations are used, the following ex-
ample is used to illustrate proof’s unraveling (see also
Figure 3). LetC' = {1,...,17} be the ground set and
assume that elements @@ are revealed according to
this ordering. Assume also thét= {1,...,8} is the
sequence of critical elements and let the column sets
{1,9,10,11},{2,12,13}, {3, 14,15}, {4, 16}, {5,17},
{6}, {7} and {8}, be the coverS’ that Algorithm
TAKE- LARGEST- ON- FUTURE- | TEMS computes.

Fix an optimal off-line solutiorS* = {S7,..., S}

(of cardinality £*). Any of the critical elements € C
can be associated to the set of smallest indexin
containing it. For anys; € S*, we denote b)é“;‘ the set

are the rest of the sets chosen by the algorithm (each ofof the critical elements associated witi. Obviously,

them containing at mosy/n/k* uncovered elements);
they form subfamilyS} C S’. Obviously,S’ = S]USS.

Observe first that the number of sets §j is at
mosty/nk*, since each one covers at leggh /k* new
elements.

We now bound from above the number of setsin
Since all asked elements can be covered usingets,
then letc; be the first element that is covered by a
set inS}, and is covered in the optimal solution by the
setS;. At the arrival ofc;, all sets containing it con-
tain at most/n/k* still uncovered elements. Thus, the

for everyi < k*, the set of all the§;‘ is a partition of
C. For convenience, we séf = |S|.

In our example, assume that = {{1,2,8,17}, {3,
4,7,9,11,12,13},{5,6,10,14,15,16}} (i.e., the
white, grey and striped entries, respectively) is the
optimal off-line solution. Then,S; {1,2,8},
S5 ={3,4,7} andS% = {5,6}.

For anyc € C, we denote byS. the set that has
been introduced 5’ due to the arrival of. For any
S C C such thate € S, let§(c, S) be the set of newly
covered elements that would have resultedsifvas
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Fig. 3. An illustrative example for the proof of Theorem 2.

included inS’ in order to cover. In particular,d(c, C)
is the set of all elements still uncovered whemas been
revealed. In our examplé(3,.S3) = {3,14, 15} while
6(3,5%) = {3,4,7}.

From this definition, one can get:

C=|]Jd(cS.)
ceC
§(c,S)=6(c,C)NS, VScC 2)
5(c,C)=J 6 (9 (3)

yzc
Notice that all these unions are disjoint. Singehas

been preferred t6; by the algorithm, we have, for any
c € C and anyi < k*:

10 (¢, ST <16 (¢, Se) (4)

The main point is now to find a lower bound for
|6(c, SF)|. Denoting byC the setC'\ C, we get:

8(e.85) =18 (e, 57) N €l + |5 (e.55) N C| (8)

sinced(c, Sf) C SF, 8(c,SF) N C is a subset ofS?.
Indeed, it is the set of the elements not covered yet,
i.e., the set{y € S : v > ¢}. Furthermore, we can
combine (2), (3) and (5) to get:

5(e, 50 > |[{vesrivze}
> 18N (v, 8,)nC|

y>c

_|_

(6)

We will now use the notatiod.(c, S) = d(c,S) N C.
For instance, with respect to our examplg(2, S57) =
{17}.

For any S7, let c!,...,c" be the elements of its
critical contenté‘j ordered according to their position
in the arrival sequencE. For instance, with respect to
our guide-example;? = 2 andc? = 6.

Clearly, for all¢ < h;:

{resrivzd}|=n-t+1 @

Let us now splitC into two subset~ = {ceC:c<
cp.}andCt = {c € C: ¢ > c;.}. In our example,
C-={1,...,4}andC* = {5,...,8}.

Although it will be necessary to keep a tight inequal-
ity for the elements of —, combining (6) and (7), we
write roughly, for anyc € C* and for any/ < h;:

|6 (ck,85) | =hi—t+1 (8)
Summing up inequalities, for € C, and taking into
account that the set§(c, S.)}.ec form a partition of

C, we get:

n= 3 J5 (csig)

i<k*
t<h;

3 \5(05,5;5) + 3 ]5(&,365)
cteCc— ctect
Yo la (e s+ D 16 (et sy)

e — e
c;eC cieCt

WV

(9)

expression (9) holding because of (4).

According to previous assumptions, we bound above
tightly the first term and roughly the second one, using
respectively (6) and (8):

n> Yy (hi—e+1+ 3 |S;‘r76*(7,5'v)|> +

ctec— y>ct
S (hi—t+1)
cfECJr
> (hi—l+1)+ Y D 187N (7,5,
ctec cteC— y>ct

Recall that, for any! € C—, v € C* impliesy >
ct. This allows us to switch the indices in the double
sum. Furthermore, notice that the last term remains un-
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changed whe varies. Hence: we will keep only the terms with indicels® andiy:
(D + _ +
nE X (-4 Y% ISI06.(18,) 20> ) hilbit ) +ed (- 1)k,
cfEC cfEC* ~yeCt i<k i<k
>3 Y (hi—(+1)+ >Zh§+e(h%+(hio—e)2) (13)
i<k* ¢<h; <
202 2 I8iNnd. (v, 8yl

yeCt i<k Z:cfEC*
>3 2 hi(hi+1)+

i<k*
DY

NECH i<k*

{ce S¥ic< c,lc*H |SF N ds (v, 55)]

(10)
In order to feel what this step of the proof means, let
us focus on our guiding example. According to (8), we
must cover two additional elements whewr 3 arrive,
and one additional element when4 or 5 are revealed.
Furthermore, according to (10), and since belongs
to ST N h.(5,S55), we have to cover one element again
for each critical element i%} lower than5, i.e., for1
and2. Thus,h(1,S1) > 4, h(2,52) > 3, h(3,53) > 3,
h(4, 54) > 2, h(5,S5) > 2;s0,n > 17.

Fix now i such thate = min; - {|[{c € S¥ : ¢ <
ci. }|} is realized foriy. Notice that, by definition, no
element ofS‘; belongs toC~ if and only if i = k*. In
other wordsge > 1. Recall also that the sefs® form a
cover ofC'. Thus:

20> hi(hi+1)+2> €| | (SFné.(+.5,)

i<k* ~vect |igk
> hi(hi+1)+2¢ Y 10, (,5,)]
i<k* yeCt

Once again, we combine (4) and (8) to get a lower
bound, denoted by, for the quantity|5(v, S,)| =

[{c € 87 : ¢ > 7}|. Recall thaws, (v, S,) = 8(7,S,) N

C=46(v,5)\ {7} Then:

PBRLNCENIED DY

yect i<k Z:cfECJr

> 2 > (-1 —t+1)

i<k* Z:cfECJr

1
>§Z(hi+—1)hi+

i<k*

55N 6, (cff, scf)

(11)

(12)

From the definition of we geth} + ¢ = h;,. In (12),

Since the sets; form a partition ofC, we minimize
the last sum in (13) under the constrainf .. h; = k.
This minimum is:

E2(1+¢€) — 262 + 1€+4€ €
(1+e)(k*—2)+2 1+e

3

(14)

One can see from (14) that increases withe, since
the numerator of its derivative is a polynomial whose
coefficients are all nonnegative. Thig, > w(l) >
k?/(k* — 1), that leads to competitiveness rakitk* <

v/ 2n(k* — 1)/k*2, as claimed.m

Corollary 3 Algorithm TAKE- LARGEST- ON- FUT
URE- | TEMS achieves competitive ratio bounded abo-

ve by\/n/2.

4.3. Some remarks about TAKE- LARGEST- O\
FUTURE- | TEMS

From the competitive ratio in Theorem 2, taking into
account thak* > n/maxg,cs{|S;|}, and setting, for
simplicity, A = maxg,cs{|S:|}, the following result is
immediately derived.

Corollary 4 Algorithm TAKE- LARGEST- ON- FUT

URE- | TEMS achieves competitive ratio bounded abo-

ve byv2A.

Also, it can be easily seen from the proof of

Theorem 2 that it also works even if one as-

sumes that the arrival sequence does not contain

all the elements ofC but only a part of them. So,

TAKE- LARGEST- ON- FUTURE- | TEMS works also

for the on-line model in [1] with provably competitive

upper bound.

Corollary 5 The competitive ratio ofAKE- LARGEST

- ON- FUTURE- | TEMS when assumed that only a

subset ofC' will finally be revealed is bounded above
2n(k* —1)/k*2.

Let us note that a rati®(,/n/k*) is also provided

in Section 5 of [1] (recall that in the model adopted

in [1] the final instance is known in advance, but it is

possible that only one part of it will be finally revealed)

but the algorithm proposed strongly exploits the a priori

knowledge of the whole instance. Besides, while the
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asymptotic bounds presented in [1] can be proved ratherand a coverS’ of the least possible total weight
easily, the tight bounds provided in our paper require W =} 4 s w(S) has to be computed. A natural mod-
much more elaborated arguments. ification of TAKE- LARGEST- ON- FUTURE- | TEMS
We now consider the case where, whenever a yetin order to handle weighted set-covering is to put
uncovered element arrives, the algorithm is allowed to in the cover, whenever a still uncovered element ar-
include in the cover a constant number of sets containing rives, a setS; containing it that minimizes the quan-
it and such that the number of elements yet unrevealedtity w(S;)/d(S;). Unfortunately, this modification
that belong to these sets is maximized. More precisely, cannot perform satisfactorily. Consider, for example,

consider a modification oFAKE- LARGEST- ON- FU-
TURE- | TEMSwhere, for a fixed number, when a new
ground element; arrives, thep sets inF; covering the
most of the still uncovered elements are included in the
solution. Then, the following holds.

Proposition 4 The competitive ratio of modified
TAKE- LARGEST- ON- FUTURE- | TEMS is bounded
below by,/pn/2.

Proof. For somep > 1 and for some intege¥, consider
the following instance:

3:{xxsﬁ1<¢<NJ<j

N »p
c=UJUs! <|O| :PiN(N?_ D) —|—N—n>
1=17=1
X:{.Tl,...,x]v}
S/ =N—it+1fori=1,...,N
SIO\SE=0, if i #1
SO\ SF={wi}, it j#k
Y=C\X

Consider the arrival sequence wherg,... zy
are firstly revealed. TAKE- LARGEST- ON- FUTU-
RE- | TEMS might include in the cover all the?’s,
while the optimal cover is{X,Y}. In this case, the
competitive ratio isoN /2, with:

)2

p—2
<2p
i.e., the value of the ratio is asymptoticalypn /2.

For example, set = 2 and N = 5 and consider the
instance of Figure 4. FAt starting withx1, zo, z3, 24,
x5, the algorithm may insert to the cover the sets de-
picted as “rows”, while the optimal cover would consist
of the “column™set{z1, z2, 3, 24,25} together with
the “big” set containing the rest of the elements (drawn
striped in Figure 4).m

In the weighted version of set-covering, any $et
of S is assigned with a non-negative weight.5),

+22
p

an instance of weighted set-covering consisting of a
ground setC = {z1,...,xz,}, and three sets§ = C
with w(S) n, X = {x1} with w(X) = 1 and
Y = C\ {z1} with w(Y) = 0. If z; arrives first, the
algorithm could have chose$i to cover it, yielding a
cover for the overall instance of total weight while
the optimal cover would b¢X, Y’} of total weight 1.

As a final remark, let us point out that model, and
Algorithm  TAKE- LARGEST- ON- FUTURE- | TEMS
are also meaningful in the off-line setting. In such a
setting the model settled here has the following mean-
ing: an algorithm receives a permutation on the items
of the ground set and must process it so that items are
processed according to this order. If we restrict our-
selves to algorithms that make decisions based upon
the sets that cover the current item, then Algorithm
TAKE- LARGEST- ON- FUTURE- | TEMS is quite sim-
ilar, although less powerful as it has been shown, to the
greedy algorithm for set-covering and achieves a non-
trivial (and optimal as shown by Theorems 1 and 3)
approximation ratio.

5. Discussion

In this paper we have discussed various simple on-
line models for the set-covering problem. In particular
we have addressed the model in which, whenever an
element is revealed, no auxiliary information is pro-
vided concerning the sets that cover it beside their
names (modelM,) and the model in which the con-
tent of the sets associated with the revealed element
is provided (modelMs). In the first case, we show
that no deterministic algorithm can achieve a com-
petitive ratio better tharO(n) and a similar poor
behavior is achieved by a randomized algorithm. In
the second case an algorithm is shown, algorithm
TAKE- LARGEST- ON- FUTURE- | TEMS, which, in
order to cover a still uncovered element, chooses the
set which covers the most of the still unrevealed ele-
ments. Such algorithm is the natural analogue of the
greedy algorithm that is used in the off-line context and
achieves the competitive rati®(\/(k* — 1)2n/k*)
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Fig. 4. A counter-example for the case where the algorithallésved to include a constant number of sets containing entgc
arrived element.

which matches the lower bound in modét,. An e S=C=YV,

interesting aspect of the given algorithms is their low e the setS; € S, corresponding to the vertex € V,

complexity both in terms of running time and in terms contains elemenis,, ¢;,, . . ., of C corresponding to

of memory requirements. The memory needed by such the neighbors,, vi,, ..., of v; in G.

algorithms is in facO(n log m) and the algorithms are  The set-covering instancgS, C') so constructed, has

therefore interesting in the case of large instances. Note |S| = |C| = n. Furthermore, it is easy to see that any set

that this is not the case for the intensive computation cover of sizek in (S,C) corresponds to a dominating

implied by the model in [1]. set of the same size i@ and vice-versa. Remark also
It is important to observe that, in order to achieve that the dominating set model just assumed(ons

the above-mentioned competitive ratio, algorithm exactly, with respect tgS, C), the set-covering models
TAKE- LARGEST- ON- FUTURE- | TEMS does not  handled in the paper.

need to know all sets that cover the current item exten- Acknowledgment. The very pertinent comments and

sionally but it only needs to know the name of one of gggestions of an anonymous referee are gratefully ac-
the sets that cover most of the yet uncovered eleme”ts'knowledged.
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