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Abstract

We study on-line models for the set-covering problem in which items from a ground set arrive one by one and with
any such itemc, the list of names of sets that contain it in the final instanceis also presented possibly together with some
information regarding the content of such sets. A decision maker has to select which set, among the sets containingc,
has to be put in the solution in order to cover the item. Such decision has to be taken before a new item arrives and is
irrevocable. The problem consists in minimizing the numberof chosen sets. We first analyze some simple heuristics for
the model in which only names of sets are provided. Then we show non-trivial matching upper and lower bounds for the
competitive ratio in the model in which for any item that arrives the content of all sets containing it is also revealed.
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1. Introduction

Suppose the manager of a supermarket decides, from
time to time, to add new products to her catalogue. Each
new product can be supplied (at the same price) by a
list of possible suppliers and the manager has to decide
which supplier to choose without an a priori knowledge
of what other products she might wish to sell in the
future. For making her own life easier, the manager
aims at minimizing the number of suppliers. We call this
problemon-line set-covering. In more abstract terms,
items from a ground set are presented to a decision
maker, each one with a list of names of sets that contain
it in the final instance, and the decision maker has to
select one set to cover the given item, before a new
item is presented. The problem consists in minimizing
the number of chosen sets and, as it is common in on-
line algorithms, the quality of the solution is measured
in terms of competitive ratio, that is the ratio between
the number of sets chosen by the algorithm and the
minimum number of sets needed to cover all items. It
has to be noted that in this model the decision maker
does not even know the entire ground set in advance.
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A similar situation would arise if the editor-in-chief
of a new journal would like to cover new topics in
her journal and for every new topic she is presented
with a list of possible area editors that can cover such
topic (among others). In the long term she would like
to minimize the number of area editors, without a priori
knowing which other topics she might wish to cover in
the future.

In this paper we address the on-line set-covering
problem and we analyze various on-line greedy solu-
tion strategies under different models. For each strategy
we provide lower and upper bounds on the competitive
ratio that may be achieved.

2. Preliminaries and Related Work

Formally, theset-covering problemcan be defined as
follows: let C be a ground set ofn elements andS
a family of m subsets ofC such that∪S∈SS = C;
the problem consists of finding a familyS′ ⊆ S, of
minimum cardinality, such that∪S∈S′S = C.

The set-covering problem has been extensively stud-
ied over the past decades. It has been shown to be
NP-hard in Karp’s seminal paper ([5]) andO(log n)-
approximable for both weighted and unweighted cases
(see [2], for the former and [4,6,9], for the latter; see
also [7] for a comprehensive survey on the subject).
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This approximation ratio is the best achievable, unless
P = NP ([8]).

In the on-line version of the set-covering problem,
one assumes that the instance is not known in advance
but it is provided step-by-step. At each step, an item
in the ground set is revealed and, together with it, the
names of the sets that contain it in the final instance
are revealed. Upon arrival of a new itemc, an algo-
rithm (calledon-line algorithm) has to decide irrevoca-
bly which of the sets containingc are to be included in
the solution under construction, aiming at minimizing
the overall number of sets that will be present in the
final solution. The fact that the instance is not known
in advance, gives rise to various models specified by
the ways in which the final instance is revealed and/or
by the amount of auxiliary information that is provided
to the on-line algorithm at each step. The objective of
an on-line algorithm is to construct a feasible solution
whose cardinality is as close as possible to the cardinal-
ity of an optimum (off-line) solution. More precisely,
as it is customary in on-line algorithms [10], in order to
evaluate how “close” the solution obtained by the algo-
rithm is to the optimum solution, we make use of the so-
calledcompetitive ratiom(x, y)/opt(x), wherem(x, y)
is the value of the solutiony determined by the on-line
algorithm on instancex and opt(x) is the value of an
optimum off-line solution on the same instance.

In this paper we study two basic models for on-line
set-covering. Basic underlying hypothesis for both of
them is that elements of the ground set arrive one-by-one
and have to be processed immediately. This basically
means that either they will be immediately covered or
they will be left uncovered with the risk that the final
solution will be unfeasible. Here we suppose that any
newly revealed item is immediately covered at this step
unless it has been covered before. In both models, the
ground set is not known in advance.

In the first model, calledM1 in the sequel, we assume
that, together with an elementσi, only the names of
all the sets containing it in the final instance arrive. In
the second model, calledM2 in the sequel, we assume
that together with the names of the sets coveringσi also
their content is revealed.

We first address modelM1 and we provide some
simple results that show that in this model all heuristics
behave very poorly. In particular we first show that if
no information other than the names of the sets cover-
ing a newly arrived element is given, then the competi-
tive ratio of any deterministic algorithm for this model
is Ω(n). Next, we consider algorithmTAKE-ALL that

at each step includes in the solution all the sets con-
taining the element just revealed, if such element is still
uncovered. We show that this algorithm has tight com-
petitive ratiof , wheref is the maximum number of
sets inS that contain a ground element (note thatf
can even grow exponentially withn). Subsequently, we
show that, in modelM1, also randomized algorithms
behave rather poorly. The algorithm we consider, called
TAKE-AT-RANDOM, is a randomized algorithm that at
each stepi picks a set at random among the ones whose
names are revealed and includes it in the solution, if the
element revealed at stepi is still uncovered. For this al-
gorithm, we show that its expected competitive ratio is
bounded below byΩ(n1−ǫ), for everyǫ > 0.

The main results of the paper concern the study of
model M2. We show that, for this model, the com-
petitive ratio of any algorithm that, for any arriving
uncovered element, includes at least one set containing
it in the cover, is bounded below by

√

2n(k∗ − 1)/k∗,
where k∗ is the cardinality of an optimum off-line
cover. We then consider two greedy algorithms. The
first one, calledTAKE-LARGEST, at any step takes
one of the largest sets that cover the current itemσi.
We show that the competitive ratio of this algorithm
is O(n). We next consider a second algorithm, called
TAKE-LARGEST-ON-FUTURE-ITEMS, that in-
cludes in the solution a set which covers most of the
yet uncovered items and we show that such algorithm
achieves a competitive ratio of

√

2n(k∗ − 1)/k∗;
hence, it is optimum for modelM2. This al-
gorithm can be seen as the on-line counterpart
of the natural greedy (off-line) set-covering al-
gorithm1 . Hence, analysis of competitiveness of
TAKE-LARGEST-ON-FUTURE-ITEMS is interest-
ing by its own. As it will be seen later, this algorithm
is also interesting even in an off-line setting.

Other versions of the set covering problem in a dy-
namic or on-line setting have been considered in the
literature. In [1], the following on-line model has been
studied. An instance(S, C) of the set-covering problem
is supposed to be known in advance, but only a part of
it, i.e., a sub-instance(Sp, Cp) of (S, C) is gradually
revealed over time; this sub-instance is not known in
advance. A picturesque way to apprehend the model is
to think of the elements ofC as lights initially switched
off. Elements switch on (get activated) one-by-one. Any
time an elementc gets activated, the algorithm has to

1 That progressively includes in the solution one of the sets
which cover the most of the still uncovered elements ([4]).
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decide which among the sets ofS containingc has to
be included in the solution under construction (since we
assume that(S, C) is known in advance, all these sets
are also known). In other words, the algorithm has to
keep an on-line cover for the activated elements. The
algorithm proposed for this model achieves competitive
ratioO(log n log m) (even if less thann elements ofC
will be finally switched on and less thanm subsets ofS
include these elements). The on-line models addressed
in our paper differ from the one in [1] mainly by the
fact that nothing is known initially. In particular, in [1]
a critical use is made of the information about the total
numbern of items and the total numberm of sets in
the ground instance, both in the randomized and in the
deterministic algorithms.

Other related work can be found in [3] where an ap-
proach that could be considered to be at midway be-
tween on-line and reoptimization approaches is devel-
oped. In this paper, the problem to maintain an approxi-
mate set-covering while the instance undergoes limited
changes is tackled. In particular, it is shown that if so-
lution S′ has been produced by the natural greedy al-
gorithm achieving approximation ratioO(log n) ([2]),
then afterO(log n) insertions of new elements the initial
solutionS′ still guarantees the same approximation ra-
tio. In the same spirit lies also the dynamic set-covering
model addressed in [11].

The remainder of this paper is organized as follows.
Section 3. is devoted to the study of modelM1 for set-
covering, while in Section 4. we address modelM2 and
provide the main results. Finally, in Section 5., some
conclusive considerations are reported.

3. Simple Bounds for Model M1

In this section, we consider the following model.
Assume an arrival sequenceΣ = (σ1, . . . , σn) of the
elements ofC; the objective is to find, for anyi ∈
{1, . . . , n}, a familyS′

i ⊆ S such that{σ1, . . . , σi} ⊆
∪S∈S′

i
S (obviously, for alli, S′

i ⊆ S′
i+1). Once an el-

ementσi, i = 1, . . . , is revealed, only the names of
the subsets of the whole instance containingσi are re-
vealed. In what follows, letFi = {S ∈ S : σi ∈ S} and
f = maxσi∈C{|Fi|}. We have called this modelM1.

In this model we prove that any algorithm that
chooses the sets inFi to cover the newly revealed el-
ementσi in a deterministic way behaves rather badly.
Besides, we show that also algorithms that make a ran-
domized choice have a somewhat similar bad behavior.
Proposition 1 Any deterministic on-line algorithm that

only receives the names of the sets containing the ar-
riving ground elements isΩ(n)-competitive.
Proof. The adversary reveals a first uncovered element
along with the namesS1, . . . , SN of N sets covering it.
He then keeps revealing uncovered elements along with
all sets fromS1, . . . , SN not already included into the
cover, until the algorithm has included allN sets into
the cover.

Suppose w.l.o.g. thatk ground elements have been
presented to the algorithm, each one uncovered by the
time of its arrival. With the arrival of the first element,
the algorithm has includedS1, . . . , Sl1 in the cover, with
the arrival of the second it has includedSl1+1, . . . , Sl2 ,
and so on, until the arrival of thekth element (here the
algorithm has includedSlk−1+1, . . . , Slk = SN in the
cover).

The instance might have been the following:
S = {S1, . . . , SN}; C = {e1, . . . , elog N , 1, . . . , k},
i.e., there existn = log N + k ground elements
(k 6 N ); the setSN is the ground set itself; any other
set Si included at stepj in the solution is the union
of the set{1, . . . , j} with the set of the elementsep,
with p ranging over all the places where the binary
expression ofi has a 1; finally, the arrival sequence is
1, . . . , k. In such a setting, the competitive ratio of the
algorithm would beN , i.e.,Ω(n).

Figure 1 illustrates the construction just de-
scribed. First, element1 along with set names
S1, S2, S3, S4, S5, S6, S7 is presented to the algorithm,
who has includedS1, S2, S3 into the cover (Figure 1(a)).
Next, element2 along with set namesS4, S5, S6, S7

is presented and the algorithm covers it by including
S4, S5 (Figure 1(b)). Finally, element3 is presented
along with set namesS6, S7 and the algorithm has in-
cludedS6, S7 in the cover (Figure 1(c)). In this case, the
ground element set might have been{e1, e2, e3, 1, 2, 3},
the same asS7, while S1 = S001 = {e1, 1},
S2 = S010 = {e2, 1}, S3 = S011 = {e1, e2, 1},
S4 = S100 = {e3, 1, 2}, S5 = S101 = {e1, e3, 1, 2}
andS6 = S110 = {e2, e3, 1, 2, 3}.

It can be immediately seen that, under the given
model, any deterministic algorithm that includes a
specific set containing a new (uncovered) elementσi

(for example, the set ofFi that comes first in lexico-
graphic order) achieves competitive ratioO(n). Indeed,
it chooses at mostn sets for an optimum greater than,
or equal to 1.

Let us now consider the following algorithm,
TAKE-ALL, which, at any step, covers an elementσi

by the whole familyFi. We can easily show that the
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Fig. 1. An illustrative example of the proof of Proposition 1.

competitive ratio ofTAKE-ALL is bounded above
by f and that this bound is tight. Indeed, denote by
σ1, . . . , σk the critical elements ofΣ, i.e., the elements
having entailed inclusion of sets ofS in S′. Denote also
by S∗ an optimum off-line solution. Obviously, for any
of the critical elements, a distinct set is needed to cover
it, in any feasible cover forC; hence:|S∗| > k. On the
other hand, since, fori = 1, . . . , k, fi 6 f , |S′| 6 kf .
So, putting things together, a competitive ratiof is im-
mediately derived. In order to show tightness, consider
an instance with ground setC = {1, . . . , n} andS, of
size2n−1, consisting of allS ⊆ {1, . . . , n} with 1 ∈ S.
With an arrival sequence starting with1, the competi-
tive ratio ofTAKE-ALL would be2n−1 = f . Finally,
let us note that, from this discussion,TAKE-ALL gives
a much worse competitiveness thann.

In what follows, we take into consideration a ran-
domized algorithm and we show that also for such algo-
rithm the achieved competitiveness is fairly poor. Let us
consider AlgorithmTAKE-AT-RANDOM which, when
a new elementσi is revealed, choses a set inFi with
uniform probability. In the following theorem, we show
that, under modelM1 (where the whole instance is not
known in advance), the competitiveness of such algo-
rithm cannot be much better than the competitiveness
of a deterministic algorithm.

Proposition 2 For any ǫ > 0, there exists an instance
of the on-line set-covering problem withn ground

elements such that the expected competitive ratio of
TAKE-AT-RANDOM is Ω(n1−ǫ).
Proof. For anyǫ > 0, fix an integerk > 1/ǫ and letN >
2k andNk+1 < 2N−2/N . Consider the instance with
ground setC = {1, . . . , n = Nk}. Family S contains
the following three types of sets: (i) a partition of the
ground setC into classsetsS(i) = {j ∈ C : (j −
1) ÷ N = (i − 1)}, for i = 1, . . . , Nk−1 (where÷
denotes the integer division); clearly,|S(i)| = N and
there existNk−1 class sets; (ii) fori 6 Nk−1, any
non-empty proper subset ofS(i); notice that, for any
j ∈ S(i), there exist exactly2N−1−1 suchinternalsets
that elementj belongs to; (iii) the ground setC itself.

Consider the sequence such that the adversary al-
ways reveals the uncovered element of lowest index,
and compute the expected value of the cover, which
will be equal to the expected competitive ratio of
TAKE-AT-RANDOM (equality holds, since the opti-
mum for this instance isC).

We denote byE(q) the expected size of the partial
solution provided byTAKE-AT-RANDOM after q ele-
ments have been revealed. Fixm 6 Nk−1 and0 < p 6

N . Assume that, for everyq < N(m − 1) + p:

E(q) >
q

N
(1)

Let us now show that (1) remains true forj = N(m −
1) + p. When elementj = N(m − 1) + p has been
revealed,TAKE-AT-RANDOM has to choose among
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the 2N−1 + 1 sets thatj belongs to, i.e., among the
ground setC, the class setS(m) and the internal sets
associated withj. If C has been selected, the algo-
rithm stops. Else,l 6 p elements get covered, then
j′ = N(m − 1) + p − l is revealed, and so on.

Since at mostN − p elements ofS(m) have al-
ready been covered,2N−p

(

N−1
l−1

)

different sets contain
exactlyl terms corresponding to elements that have not
been revealed yet. Then:

E (N(m − 1) + p) =
1

2N−1 + 1

(

1 + 2N−p

p
∑

l=1
(

p − 1

l − 1

)

(1 + E (N(m − 1) + p − l)))

>
1

2N−1 + 1

(

1 + 2N−p

p−1
∑

l=0

(

p − 1

l

)

(

m +
p − l − 1

N

))

> m+
p

N
− 2N−p

N (2N−1 + 1)

(

p−1
∑

l=0

(

p − 1

l

)

(l + 1)

)

> m +
p

N
− p

(

2N−1
)

N (2N−1 + 1)
> m +

p

N
− 1

The recursive relation above yields then directly
E(Nk) > Nk−1, i.e.,E(n) = Ω(n1−ǫ).

We now give an example of construction of Propo-
sition 2. ConsiderN = 3 and k = 3 (these val-
ues of N and k are not conformal with their def-
inition but, in a first time, we use them for sim-
plicity). Then C = {1, 2, . . . , 27} and we have:
class sets:{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12},
{13, 14, 15}, {16, 17, 18}, {19, 20, 21}, {22, 23, 24}
and{25, 26, 27}; for any class set{a, b, c}, there exist
the internal sets:{a}, {b}, {c}, {a, b}, {a, c} and{b, c};
finally, C = {1, 2, . . . , 27} ∈ S.

Let us assume thatσ1 = 17. With it will be revealed
the following22 +1 = 5 sets:{17}, {16, 17}, {17, 18},
{16, 17, 18} and{1, 2, . . . , 27}. The average cover for
the whole instance will be of size 9, independently on
the arrival sequence.

For k = 3, N > 8. Taking N = 8, n = 512.
In this case, the class sets would be the partition of
{1, 2, . . . , 512} into 64 subsequent 8-tuples. For any
class set there would be 254 internal sets. With any ele-
ment of the arrival sequence there would arrive one class
set, plus 63 internal sets plus the set{1, 2, . . . , 512},
i.e., 83−1 + 1 = 65 sets. The average cover size would
be in this case 64.

4. Model M2

In this section, we consider an enriched model for
on-line set-covering that we call modelM2. In this
model, we assume that, together with any elementσi

in the sequence, beside the names of the sets contain-
ing σi, also the contents of such sets are provided. In
what follows, we show that, in this new model, no
on-line algorithm can achieve competitive ratio better
than

√

(k∗ − 1)2n/k∗, wherek∗ = |S∗|, the cardinal-
ity of an optimum off-line solution, even if the algo-
rithm is allowed to choose more than one set at each
step. Besides, we show that such performance can in-
deed be achieved by an algorithm which, in order to
cover a newly revealed elementσi, chooses the set inFi

covering the most of the still uncovered elements.
The basic assumption for modelM2, that is, the

knowledge of the content of the sets that cover a newly
revealed item, can be justified by revisiting the second
application in Section 1.. There, for any topic presented
on-line, the editor should prefer the area editor that cov-
ers the broadest number of other topics not presented
yet. ModelM2 well fits such a natural requirement.

4.1. Lower bound in model M2

This section is devoted to the proof of a lower bound
on the competitiveness of any algorithm in modelM2.
Central step for such a bound is the following theorem.
Theorem 1 No on-line algorithmA for M2 such that,
each time a not yet covered elementσi arrives, inserts
into the cover at least one set containingσi, can con-
struct a solution of sizek <

√

(k∗ − 1)2n (wherek∗ is
the size of an optimal off-line solution of the instance),
even if with every arriving element, the algorithm knows
the content of all sets containing it.
Proof. Consider the following set-covering instance
built, for any integersN and p, upon a ground set
C = {xij : 1 6 j 6 i 6 N} × {1, . . . , P}. Obvi-
ously, |C| = n = PN(N + 1)/2. For 1 6 p 6 P ,
|Cp| = {xij : 1 6 j 6 i 6 N} × {p} will be called
the p-th block of C. A path-set of orderi from Cp,
is defined as a set containingN − i + 1 elements
{xiji

, . . . , xNjN
} × {p}.

The set-systemS of the instance contains all possible
path-sets of each orderi, 1 6 i 6 N , from Cp, for all
p, 1 6 p 6 P . Clearly, in a blockCp there existN !/0!
path-sets of order1, N !/1! path-sets of order2, and so
on and, finally,N !/(N − 1)! path-sets of orderN , i.e.,
in total N !(1 + 1 + 1/2! + . . . + 1/(N − 1)!) ≈ eN !
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path-sets; hence, there exist aboutePN ! path-sets inS.
Finally, the set-systemS is completed with an additional
set Y containing all elements ofC but those of one
path-set of order1 from every blockCp, 1 6 p 6 P ,
that will be specified later (hence,|Y | = n − PN ).

As long as there exist uncovered elements, the adver-
sary may choose to reveal an uncovered element(xij , p)
from the block of the smallest indexp and of the low-
est possiblei arriving, which will be contained only in
all path-sets fromCp, of order less than or equal toi.
Notice that as long as algorithmA hasr < N path-sets
from Cp inserted to the cover, there will be at least an
element(x(r+1)j,p) for somej, 1 6 j 6 r + 1, not
yet covered. This means also that as long as the cover
computed byA contains less thatPN sets, there will
be at least an element (belonging to some block) still
uncovered.

Suppose that after the arrival ofσt, the sizek of the
cover computed byA gets greater than, or equal to,PN .
Clearly, 1 6 t 6 PN . At time t + 1, a new element
arrives, contained in some path-sets and inY , which
can now be specified as consisting of all elements inC
except from the elements ofp path setsS∗

1 , . . . , S∗
P of

order 1, one from each blockCp, their union contain-
ing σ1, . . . , σt. The rest of the arrival sequence is indif-
ferent.

Clearly, the optimum cover in this case would have
been path-setsS∗

1 , . . . , S∗
P together with setY , i.e.,

k∗ = P +1, while, as we have already shown,k > PN ,
with N tending to

√

2n/(k∗ − 1) asn increases, which
finally yieldsk >

√

(k∗ − 1)2n.
It is easy to see that the above construction can be

directly generalized so that the same result holds also
in the case where the on-line algorithm can insert into
the cover more than one set at a time. Really, ifσtp

=
(x11, p) then, as long as the on-line cover contain less
than N sets with elements ofCp, there exists always
someiℓ−1 6 iℓ 6 N and somejiℓ

for which (xiℓjiℓ
, p)

is still uncovered. Hence, ifσℓ is this element, then the
algorithm will have to put some sets in the cover. Finally,
the algorithm will have to put in the coverN sets for
each block, i.e.,PN sets in total, while the optimum
will always be of sizeP + 1.

In order to illustrate the construction of Theorem 1,
consider the instance of Figure 2, withN = 3 and
P = 2 (the elements ofC are depicted as circles labeled
by (i, j, k) for 1 6 j 6 i 6 3, 1 6 k 6 2).

The path-sets from blocksC1, andC2 can be thought
of as paths terminating to a sink on a connected com-
ponent of the directed graph of Figure 2(a).

The first elements of the arrival sequence are labeled
with their order of arrival: first(1, 1, 1) arrives, and
algorithmA chooses sets{(1, 1, 1), (2, 1, 1), (3, 1, 1)}
and{(1, 1, 1), (2, 2, 1), (3, 2, 1)} for covering it. Then
the uncovered element(3, 3, 1) arrives, soA has to
cover it by, say, the set{(2, 1, 1), (3, 3, 1)}. At that
moment,N = 3 sets with elements fromC1 have
been taken into the cover byA, so the adversary
reveals element(1, 1, 2) of block C2, i.e., an uncov-
ered element of the block of the lowest index and
of the lowest possiblei (Figure 2(b)). AlgorithmA
covers it by including {(1, 1, 2), (2, 2, 2), (3, 1, 2)}
in the cover. Then,(2, 1, 2) arrives andA uses sets
{(2, 1, 2), (3, 2, 2)}, and{(2, 1, 2), (3, 3, 2)} to cover it.

An optimal cover consists of sets{(1, 1, 1), (2, 2, 1),
(3, 3, 1)}, {(1, 1, 2), (2, 1, 2), (3, 1, 2)} and the big,
shadowed set consisting of the rest of the elements,
which could not have been revealed toA upon the
arrival of any of the first four elements (Figure 2(c)).

By Theorem 1, the following corollary, inducing a
lower bound on the competitiveness of any algorithm
meeting the conditions of Theorem 1 can be immedi-
ately derived.
Corollary 1 No on-line algorithmA for M2 such that,
each time a not yet covered elementσi arrives, inserts
into the cover at least one set containingσi, can achieve
competitive ratio less than

√

2n(k∗ − 1)/k∗, even if
with every arriving element, the algorithm knows the
contents of all sets containing it and chooses a set cov-
ering the most of the uncovered elements that are going
to arrive afterσi.
Since the functionf(x) = (x − 1)/x2 decreases with
x > 2, the following corollary can be also immediately
derived from Corollary 1.
Corollary 2 No algorithm meeting the conditions
of Theorem 1 can achieve competitive ratio smaller
than

√

n/2.

4.2. Algorithm TAKE-LARGEST-ON-FUTURE-ITEMS

Let us first consider the following algorithm
(TAKE-LARGEST) which, at any step, covers an el-
ementσi with a set in Fi of maximum cardinality.
Observe first that the discussion about the competitive-
ness of deterministic algorithms that include a specific
set containing a new (uncovered) element, holds also
for TAKE-LARGEST. Hence its competitive ratio is
bounded above byn.

We show that this ratio is tight up to a constant
factor. Consider the following set-covering instance:
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Fig. 2. An illustrative example of the proof of Theorem 1 withN = 3 andP = 2.
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a ground setC = {1, . . . , 2N}, a family of sets
S = {S0, . . . , SN} with Si = {i, . . . , N + i}. Assume
an arrival sequence starting withN, N + 1, . . . , 2N .
Then,TAKE-LARGEST might include into the cover
setsS1, . . . , SN , while the optimum cover would be
consisting of onlyS0, SN , thus yielding a competitive
ratio of at leastN/2.

We now assume that once an elementσi is revealed,
the contents of all sets inFi are also revealed. In what
follows, we discuss the competitive ratio achieved by al-
gorithmTAKE-LARGEST-ON-FUTURE-ITEMS that
exploits such information and whenσi is revealed in-
cludes in the solution a set̂S that covers most of the
yet uncovered items.

We show that the competitiveness of such algorithm
tightly matches the lower bound of Theorem 1 and
Corollary 1, and therefore can be considered an opti-
mum algorithm in modelM2.

As previously, we denote byk∗ the size of an op-
timum off-line solution of an instance(S, C) of mini-
mum set-covering and we set|C| = n.

We first give an easy upper bound for the competitive
ratio of TAKE-LARGEST-ON-FUTURE-ITEMS that
matches the lower bound of Corollary 2 up to a con-
stant. This is the result of Proposition 3 taking into ac-
count that one can assumek∗ > 2; otherwise (k∗ = 1),
TAKE-LARGEST-ON-FUTURE-ITEMS computes an
optimal solution. Next we refine the analysis of the algo-
rithm in order that its competitive ratio tightly matches
the bound provided in Theorem 1.
Proposition 3 AlgorithmTAKE-LARGEST-ON-FUTURE

-ITEMS achieves competitive ratio bounded above
by 2

√

n/k∗2.
Proof. Denote by S′ the solution computed by
TAKE-LARGEST-ON-FUTURE-ITEMS and consider
two kinds of sets chosen by the algorithm. The first kind
are sets that contain at least

√

n/k∗ still uncovered ele-
ments; they form subfamilyS′

1 ⊆ S′. The second kind
are the rest of the sets chosen by the algorithm (each of
them containing at most

√

n/k∗ uncovered elements);
they form subfamilyS′

2 ⊆ S′. Obviously,S′ = S′
1∪S′

2.
Observe first that the number of sets inS′

1 is at
most

√
nk∗, since each one covers at least

√

n/k∗ new
elements.

We now bound from above the number of sets inS′
2.

Since all asked elements can be covered usingk∗ sets,
then let ci be the first element that is covered by a
set inS′

2 and is covered in the optimal solution by the
setS∗

i . At the arrival ofci, all sets containing it con-
tain at most

√

n/k∗ still uncovered elements. Thus, the

number of elements that belong toS∗
i and are covered

by sets ofS′
2 is bounded by

√

n/k∗. This is true for any
1 6 i 6 k∗. Thus, the total number of such elements is
at mostk∗

√

n/k∗ =
√

nk∗ that is also an immediate
upper bound for|S′

2|.
The discussion above derives that the total num-

ber of sets chosen byTAKE-LARGEST-ON-FUTU-
RE-ITEMS is at most2

√

n/k∗. Dividing it by k∗

immediately leads to the ratio claimed.
The main result of this section is Theorem 2

improving the result of Proposition 3 and estab-
lishing an upper bound in the competitiveness of
TAKE-LARGEST-ON-FUTURE-ITEMS that tightly
matches the lower bound of Theorem 1.
Theorem 2 Algorithm TAKE-LARGEST-ON-FUTURE

-ITEMS achieves competitive ratio bounded above
by
√

2n(k∗ − 1)/k∗2.
Proof. Fix an arrival sequenceΣ = (σ1, . . . , σn), as-
sume w.l.o.g. thatΣ = (1, 2, . . . , n) and denote byC
the set of itscritical elements, i.e., the elements having
entailed introduction of a set in the on-line coverS′. In
other words, critical elements ofΣ are all elementsc
such thatc was not yet covered by the cover under con-
struction upon its arrival.

In order to make the proof’s reading easier, and
since a lot of new notations are used, the following ex-
ample is used to illustrate proof’s unraveling (see also
Figure 3). LetC = {1, . . . , 17} be the ground set and
assume that elements inC are revealed according to
this ordering. Assume also thatC = {1, . . . , 8} is the
sequence of critical elements and let the column sets
{1, 9, 10, 11}, {2, 12, 13}, {3, 14, 15}, {4, 16}, {5, 17},
{6}, {7} and {8}, be the coverS′ that Algorithm
TAKE-LARGEST-ON-FUTURE-ITEMS computes.

Fix an optimal off-line solutionS∗ = {S∗
1 , . . . , S∗

k∗}
(of cardinalityk∗). Any of the critical elementsc ∈ C
can be associated to the set of smallest index inS∗

containing it. For anyS∗
i ∈ S∗, we denote bŷS∗

i the set
of the critical elements associated withS∗

i . Obviously,
for everyi 6 k∗, the set of all thêS∗

i is a partition of
C. For convenience, we sethi = |Ŝ∗

i |.
In our example, assume thatS∗ = {{1, 2, 8, 17}, {3,

4, 7, 9, 11, 12, 13}, {5, 6, 10, 14, 15, 16}} (i.e., the
white, grey and striped entries, respectively) is the
optimal off-line solution. Then,Ŝ∗

1 = {1, 2, 8},
Ŝ∗

2 = {3, 4, 7} andŜ∗
3 = {5, 6}.

For any c ∈ C, we denote bySc the set that has
been introduced inS′ due to the arrival ofc. For any
S ⊂ C such thatc ∈ S, let δ(c, S) be the set of newly
covered elements that would have resulted ifS was
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Fig. 3. An illustrative example for the proof of Theorem 2.

included inS′ in order to coverc. In particular,δ(c, C)
is the set of all elements still uncovered whenc has been
revealed. In our example,δ(3, S3) = {3, 14, 15} while
δ(3, S∗

2) = {3, 4, 7}.
From this definition, one can get:

C =
⋃

c∈C

δ (c, Sc)

δ(c, S) = δ(c, C) ∩ S, ∀S ⊂ C (2)

δ(c, C) =
⋃

γ>c

δ (γ, Sγ) (3)

Notice that all these unions are disjoint. SinceSc has
been preferred toS∗

i by the algorithm, we have, for any
c ∈ C and anyi 6 k∗:

|δ (c, S∗
i )| 6 |δ (c, Sc)| (4)

The main point is now to find a lower bound for
|δ(c, S∗

i )|. Denoting byC̄ the setC \ C, we get:

|δ (c, S∗
i )| = |δ (c, S∗

i ) ∩ C| +
∣

∣δ (c, S∗
i ) ∩ C̄

∣

∣ (5)

sinceδ(c, S∗
i ) ⊂ S∗

i , δ(c, S∗
i ) ∩ C is a subset of̂S∗

i .
Indeed, it is the set of the elements not covered yet,
i.e., the set{γ ∈ Ŝ∗

i : γ > c}. Furthermore, we can
combine (2), (3) and (5) to get:

|δ (c, S∗
i )| >

∣

∣

∣

{

γ ∈ Ŝ∗
i : γ > c

}∣

∣

∣+
∑

γ>c

∣

∣S∗
i ∩ δ (γ, Sγ) ∩ C̄

∣

∣ (6)

We will now use the notationδ∗(c, S) = δ(c, S) ∩ C̄.
For instance, with respect to our example,δ∗(2, S∗

1) =
{17}.

For any S∗
i , let c1

i , . . . , c
hi

i be the elements of its
critical contentŜ∗

i ordered according to their position
in the arrival sequenceΣ. For instance, with respect to
our guide-example,c2

1 = 2 andc2
3 = 6.

Clearly, for allℓ 6 hi:
∣

∣

∣

{

γ ∈ Ŝ∗
i : γ > cℓ

i

}∣

∣

∣ = hi − ℓ + 1 (7)

Let us now splitC into two subsets,C− = {c ∈ C : c <
c1
k∗} and C+ = {c ∈ C : c > c1

k∗}. In our example,
C− = {1, . . . , 4} andC+ = {5, . . . , 8}.

Although it will be necessary to keep a tight inequal-
ity for the elements ofC−, combining (6) and (7), we
write roughly, for anyc ∈ C+ and for anyℓ 6 hi:

∣

∣δ
(

cℓ
i , S

∗
i

)∣

∣ > hi − ℓ + 1 (8)

Summing up inequalities, forc ∈ C, and taking into
account that the sets{δ(c, Sc)}c∈C form a partition of
C, we get:

n =
∑

i6k∗

ℓ6hi

∣

∣

∣δ
(

cℓ
i , Scℓ

i

)∣

∣

∣

=
∑

cℓ
i
∈C−

∣

∣

∣δ
(

cℓ
i , Scℓ

i

)∣

∣

∣+
∑

cℓ
i
∈C+

∣

∣

∣δ
(

cℓ
i , Scℓ

i

)∣

∣

∣

>
∑

cℓ
i
∈C−

∣

∣δ
(

cℓ
i , S

∗
i

)∣

∣+
∑

cℓ
i
∈C+

∣

∣δ
(

cℓ
i , S

∗
i

)∣

∣ (9)

expression (9) holding because of (4).

According to previous assumptions, we bound above
tightly the first term and roughly the second one, using
respectively (6) and (8):

n >
∑

cℓ
i
∈C−



hi − ℓ + 1 +
∑

γ>cℓ
i

|S∗
i ∩ δ∗ (γ, Sγ)|



+

∑

cℓ
i
∈C+

(hi − ℓ + 1)

>
∑

cℓ
i
∈C

(hi − ℓ + 1) +
∑

cℓ
i
∈C−

∑

γ>cℓ
i

|S∗
i ∩ δ∗ (γ, Sγ)|

Recall that, for anycℓ
i ∈ C−, γ ∈ C+ implies γ >

cℓ
i . This allows us to switch the indices in the double

sum. Furthermore, notice that the last term remains un-
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changed whenℓ varies. Hence:

n >
∑

cℓ
i
∈C

(hi − ℓ + 1) +
∑

cℓ
i
∈C−

∑

γ∈C+

|S∗
i ∩ δ∗ (γ, Sγ)|

>
∑

i6k∗

∑

ℓ6hi

(hi − ℓ + 1)+
∑

γ∈C+

∑

i6k∗

∑

ℓ:cℓ
i
∈C−

|S∗
i ∩ δ∗ (γ, Sγ)|

>
1
2

∑

i6k∗

hi (hi + 1)+

∑

γ∈C+

∑

i6k∗

∣

∣

∣

{

c ∈ Ŝ∗
i : c < c1

k∗

}∣

∣

∣ |S∗
i ∩ δ∗ (γ, Sγ)|

(10)
In order to feel what this step of the proof means, let
us focus on our guiding example. According to (8), we
must cover two additional elements when1 or 3 arrive,
and one additional element when2, 4 or 5 are revealed.
Furthermore, according to (10), and since17 belongs
to S∗

1 ∩ h∗(5, S5), we have to cover one element again
for each critical element inS∗

1 lower than5, i.e., for1
and2. Thus,h(1, S1) > 4, h(2, S2) > 3, h(3, S3) > 3,
h(4, S4) > 2, h(5, S5) > 2; so,n > 17.

Fix now i0 such thatǫ = mini<k∗{|{c ∈ Ŝ∗
i : c <

c1
k∗}|} is realized fori0. Notice that, by definition, no

element ofŜ∗
i belongs toC− if and only if i = k∗. In

other words,ǫ > 1. Recall also that the setsS∗
i form a

cover ofC. Thus:

2n >
∑

i6k∗

hi (hi+1) + 2
∑

γ∈C+

ǫ

∣

∣

∣

∣

∣

∣

⋃

i6k∗

(S∗
i ∩ δ∗ (γ, Sγ))

∣

∣

∣

∣

∣

∣

>
∑

i6k∗

hi (hi + 1) + 2ǫ
∑

γ∈C+

|δ∗ (γ, Sγ)|

Once again, we combine (4) and (8) to get a lower
bound, denoted byh+

i , for the quantity|δ(γ, Sγ)| =

|{c ∈ Ŝ∗
i : c > γ}|. Recall thatδ∗(γ, Sγ) = δ(γ, Sγ) ∩

C̄ = δ(γ, Sγ) \ {γ}. Then:

∑

γ∈C+

|δ∗ (γ, Sγ)|=
∑

i6k∗

∑

ℓ:cℓ
i
∈C+

∣

∣

∣S∗
i ∩ δ∗

(

cℓ
i , Scℓ

i

)∣

∣

∣(11)

>
∑

i6k∗

∑

ℓ:cℓ
i
∈C+

((

h+
i − 1

)

− ℓ + 1
)

>
1

2

∑

i6k∗

(

h+
i − 1

)

h+
i (12)

From the definition ofi0 we geth+
i0

+ ǫ = hi0 . In (12),

we will keep only the terms with indicesk∗ andi0:

2n >
∑

i6k∗

hi (hi + 1) + ǫ
∑

i6k∗

(

h+
i − 1

)

h+
i

>
∑

i6k∗

h2
i + ǫ

(

h2
k∗ + (hi0 − ǫ)

2
)

(13)

Since the setŝS∗
i form a partition ofC, we minimize

the last sum in (13) under the constraint
∑

i6k∗ hi = k.
This minimum is:

w(ǫ) =
k2(1 + ǫ) − 2ǫ2 + ǫ4

1+ǫ

(1 + ǫ) (k∗ − 2) + 2
+

ǫ3

1 + ǫ
(14)

One can see from (14) thatw increases withǫ, since
the numerator of its derivative is a polynomial whose
coefficients are all nonnegative. Thus,2n > w(1) >

k2/(k∗ − 1), that leads to competitiveness ratiok/k∗ 6
√

2n(k∗ − 1)/k∗2, as claimed.
Corollary 3 Algorithm TAKE-LARGEST-ON-FUT
URE-ITEMS achieves competitive ratio bounded abo-
ve by

√

n/2.

4.3. Some remarks about TAKE-LARGEST-ON-
FUTURE-ITEMS

From the competitive ratio in Theorem 2, taking into
account thatk∗ > n/ maxSi∈S{|Si|}, and setting, for
simplicity, ∆ = maxSi∈S{|Si|}, the following result is
immediately derived.
Corollary 4 Algorithm TAKE-LARGEST-ON-FUT
URE-ITEMS achieves competitive ratio bounded abo-
ve by

√
2∆.

Also, it can be easily seen from the proof of
Theorem 2 that it also works even if one as-
sumes that the arrival sequence does not contain
all the elements ofC but only a part of them. So,
TAKE-LARGEST-ON-FUTURE-ITEMS works also
for the on-line model in [1] with provably competitive
upper bound.
Corollary 5 The competitive ratio ofTAKE-LARGEST
-ON-FUTURE-ITEMS when assumed that only a
subset ofC will finally be revealed is bounded above
by
√

2n(k∗ − 1)/k∗2.
Let us note that a ratioO(

√

n/k∗) is also provided
in Section 5 of [1] (recall that in the model adopted
in [1] the final instance is known in advance, but it is
possible that only one part of it will be finally revealed)
but the algorithm proposed strongly exploits the a priori
knowledge of the whole instance. Besides, while the
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asymptotic bounds presented in [1] can be proved rather
easily, the tight bounds provided in our paper require
much more elaborated arguments.

We now consider the case where, whenever a yet
uncovered element arrives, the algorithm is allowed to
include in the cover a constant number of sets containing
it and such that the number of elements yet unrevealed
that belong to these sets is maximized. More precisely,
consider a modification ofTAKE-LARGEST-ON-FU-
TURE-ITEMSwhere, for a fixed numberρ, when a new
ground elementσi arrives, theρ sets inFi covering the
most of the still uncovered elements are included in the
solution. Then, the following holds.
Proposition 4 The competitive ratio of modified
TAKE-LARGEST-ON-FUTURE-ITEMS is bounded
below by

√
ρn/2.

Proof. For someρ > 1 and for some integerN , consider
the following instance:

S =
{

X, Y, Sj
i : 1 6 i 6 N, 1 6 j 6 ρ

}

C =

N
⋃

i=1

ρ
⋃

j=1

Sj
i

(

|C| = ρ
N(N − 1)

2
+ N = n

)

X = {x1, . . . , xN}
∣

∣

∣S
j
i

∣

∣

∣= N − i + 1 for i = 1, . . . , N

Sj
i

⋂

Sk
l = ∅, if i 6= l

Sj
i

⋂

Sk
i = {xi} , if j 6= k

Y = C \ X

Consider the arrival sequence wherex1, . . . , xN

are firstly revealed.TAKE-LARGEST-ON-FUTU-
RE-ITEMS might include in the cover all theSj

i ’s,
while the optimal cover is{X, Y }. In this case, the
competitive ratio isρN/2, with:

N =
ρ − 2

2ρ
+

√

(

ρ − 2

2ρ

)2

+ 2
n

ρ

i.e., the value of the ratio is asymptotically
√

ρn/2.
For example, setρ = 2 andN = 5 and consider the

instance of Figure 4. ForΣ starting withx1, x2, x3, x4,
x5, the algorithm may insert to the cover the sets de-
picted as “rows”, while the optimal cover would consist
of the “column”-set{x1, x2, x3, x4, x5} together with
the “big” set containing the rest of the elements (drawn
striped in Figure 4).

In the weighted version of set-covering, any setS
of S is assigned with a non-negative weightw(S),

and a coverS′ of the least possible total weight
W =

∑

S∈S′ w(S) has to be computed. A natural mod-
ification of TAKE-LARGEST-ON-FUTURE-ITEMS
in order to handle weighted set-covering is to put
in the cover, whenever a still uncovered element ar-
rives, a setSi containing it that minimizes the quan-
tity w(Si)/δ(Si). Unfortunately, this modification
cannot perform satisfactorily. Consider, for example,
an instance of weighted set-covering consisting of a
ground setC = {x1, . . . , xn}, and three sets,S = C
with w(S) = n, X = {x1} with w(X) = 1 and
Y = C \ {x1} with w(Y ) = 0. If x1 arrives first, the
algorithm could have chosenS to cover it, yielding a
cover for the overall instance of total weightn, while
the optimal cover would be{X, Y } of total weight 1.

As a final remark, let us point out that modelM2 and
Algorithm TAKE-LARGEST-ON-FUTURE-ITEMS
are also meaningful in the off-line setting. In such a
setting the model settled here has the following mean-
ing: an algorithm receives a permutation on the items
of the ground set and must process it so that items are
processed according to this order. If we restrict our-
selves to algorithms that make decisions based upon
the sets that cover the current item, then Algorithm
TAKE-LARGEST-ON-FUTURE-ITEMS is quite sim-
ilar, although less powerful as it has been shown, to the
greedy algorithm for set-covering and achieves a non-
trivial (and optimal as shown by Theorems 1 and 3)
approximation ratio.

5. Discussion

In this paper we have discussed various simple on-
line models for the set-covering problem. In particular
we have addressed the model in which, whenever an
element is revealed, no auxiliary information is pro-
vided concerning the sets that cover it beside their
names (modelM1) and the model in which the con-
tent of the sets associated with the revealed element
is provided (modelM2). In the first case, we show
that no deterministic algorithm can achieve a com-
petitive ratio better thanO(n) and a similar poor
behavior is achieved by a randomized algorithm. In
the second case an algorithm is shown, algorithm
TAKE-LARGEST-ON-FUTURE-ITEMS, which, in
order to cover a still uncovered element, chooses the
set which covers the most of the still unrevealed ele-
ments. Such algorithm is the natural analogue of the
greedy algorithm that is used in the off-line context and
achieves the competitive ratioO(

√

(k∗ − 1)2n/k∗)
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Fig. 4. A counter-example for the case where the algorithm isallowed to include a constant number of sets containing a recently
arrived element.

which matches the lower bound in modelM2. An
interesting aspect of the given algorithms is their low
complexity both in terms of running time and in terms
of memory requirements. The memory needed by such
algorithms is in factO(n log m) and the algorithms are
therefore interesting in the case of large instances. Note
that this is not the case for the intensive computation
implied by the model in [1].

It is important to observe that, in order to achieve
the above-mentioned competitive ratio, algorithm
TAKE-LARGEST-ON-FUTURE-ITEMS does not
need to know all sets that cover the current item exten-
sionally but it only needs to know the name of one of
the sets that cover most of the yet uncovered elements.
Although it is unnatural to consider that such informa-
tion is provided, we stress that if this happens, say by
virtue of an oracle, then our algorithm would achieve
the same competitive ratio as in Theorem 2 with low
complexity both in terms of running time and memory.

Let us note that the on-line models described in the
paper can be extended to apply to a different but re-
lated problem, the minimum dominating set. Consis-
tently with the model that we have adopted for the set-
covering problem, our model for this latter problem is
as follows. Given a graphG(V, E) with |V | = n, as-
sume that its vertices are revealed one-by-one. Any time
a vertexσi is revealed, the names of its neighbors are
announced.

Consider the following classical reduction from min-
imum dominating set to set-covering:

• S = C = V ;
• the setSi ∈ S, corresponding to the vertexvi ∈ V ,

contains elementsci1 , ci2 , . . ., of C corresponding to
the neighborsvi1 , vi2 , . . ., of vi in G.

The set-covering instance(S, C) so constructed, has
|S| = |C| = n. Furthermore, it is easy to see that any set
cover of sizek in (S, C) corresponds to a dominating
set of the same size inG and vice-versa. Remark also
that the dominating set model just assumed onG is
exactly, with respect to(S, C), the set-covering models
handled in the paper.
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