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Abstract

We consider the problem of packing rectangles with profits into a bounded square region so as to maximize their
total profit. More specifically, given a set R of n rectangles with positive profits, it is required to pack a subset of them
into a unit size square frame[0,1]× [0,1] so that the total profit of the rectangles packed is maximized. For any given
positive accuracyε > 0, we present an algorithm that outputs a packing of a subset ofR in the augmented square region
[1+ε]× [1+ε] with profit value at least(1−ε)OPT, whereOPT is the maximum profit that can be achieved by packing
a subset of R in a unit square frame. The running time of the algorithm is polynomial in n for fixedε.
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1. Introduction

There has recently been an increasing interest in solv-
ing a variety of 2-dimensional packing problems such as
strip packing [18,28,32], 2-dimensional bin packing [4–
6,29], and rectangle packing [1,2,16]. These problems
play an important role in a variety of applications in
Computer Science and Operations Research, e.g. cut-
ting stock, VLSI design, image processing, and multi-
processor scheduling, just to name a few.

In this paper we address the problem of packing rect-
angles with profits into a unit size square region so as
to maximize the total profit of the packed rectangles.
More precisely, we are given a setR of n rectangles,Ri

(i = 1, . . . ,n) with widthsai ∈ (0,1], heightsbi ∈ (0,1],
and profitspi ≥ 0. For a given subsetR′ ⊆ R, apacking
of R′ into a unit size square frame[0,1]× [0,1] is a posi-
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tioning of the rectangles ofR′ within the frame such that
they have disjoint interiors. The goal is to find a subset
R′ ⊆R, and a packing ofR′ within [0,1]× [0,1] of max-
imum profit,∑Ri∈R′ pi . We only consider the version of
the problem when rotations of the rectangles are not al-
lowed. Therefore, by scaling the sizes of the rectangles,
it is easy to show that the above problem is equivalent
to the problem of packing a setR of rectangles into a
rectangular frame of widtha > 0 and heightb > 0.

This problem is known to be strongly NP-hard even
for the restricted case of packing squares with identical
profits [21]. Hence, it is very unlikely that any poly-
nomial time algorithm for the problem exists, and so,
we look for efficient heuristics with good performance
guarantees. A polynomial time algorithmA is said to be
a ρ-approximation algorithmfor a maximization prob-
lem Π if on every instanceI of Π algorithmA outputs
a feasible solution with valueA(I)≥ 1

ρ ·OPT(I), where
OPT(I) is the optimum. The value ofρ ≥ 1 is called the
approximation ratioor performance guarantee. A poly-
nomial time approximation scheme(PTAS) for a maxi-
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mization problemΠ is a family of approximation algo-
rithms{Aε}ε>0 such thatAε is a(1− ε)-approximation
algorithm forΠ and its running time is polynomial in
n for any fixed valueε > 0. If the running time of each
Aε is polynomial in the size of the instance and in 1/ε,
then{Aε}ε>0 is called afully polynomial time approxi-
mation scheme(FPTAS).

Related results. The 1-dimensional version of the
rectangle packing problem is equivalent to the knap-
sack problem: given a knapsack of capacityB and a
set of items with profits and sizes, pack a subset of
items of total size at mostB into the knapsack so that
the total profit of the packed items is maximized. It is
well-known that the knapsack problem is weakly NP-
hard [11], and it admits a FPTAS [17,20]. In contrast,
our problem is strongly NP-hard, and, hence, it admits
no FPTAS unless P= NP.

For the 2-dimensional version of the problem, one can
see a relationship to the problem of packing squares into
a rectangle of minimum area [24,25]: Find the minimum
value x such that any set of squares of total area 1
can be packed into a rectangle of areax. Regarding
lower bounds for this latter problem, there is just one
non-trivial result known [26]: The value ofx is at least
2+

√
3

3 > 1.244. On the other hand, there are a number
of quite complicated algorithms yielding several upper
bounds for this problem. As it was shown in [23], any
set L of squares with side lengths at mostsmax can
be packed into a square of sizea = smax+

√
1−smax.

Later in [22], this result was extended by showing that
any setL of squares of total areaV can be packed into
a rectangle of sizea1 × a2, provided thata1 > smax,
a2 > smax ands2

max+(a1−smax)(a2−smax)≥V. Hence,
the value ofx is upper bounded by 2. Further results
in this direction were obtained in [19], where it was
proven that any setL of squares of total areaV can be
packed into a rectangle of size

√
2V×2

√
V/

√
3. Thus,

substitutingV = 1, the value ofx is upper bounded by
√

8
3

.
= 1.633. Finally, the result presented in [27] shows

that any setL of squares of total area 1 can be packed
into a rectangle whose area is less than 1.53.

Our problem is also related to the 2-dimensional bin
packing problem: Given a setL of rectangles of specified
size (width and height), pack them into the minimum
number of unit size square bins. The problem is strongly
NP-hard [21] and no approximation algorithm for it has
approximation ratio smaller than 2, unless P= NP [10].
A long history of approximation results exists for this

problem and its variants [4–6,29]. Very recently a num-
ber of asymptotic results have been obtained for it (i.e.
for the case when the optimum uses a large number of
bins). In [4] it was proven that the general version of
the problem does not admit an asymptotic PTAS, un-
less P= NP. However, there is an asymptotic PTAS if
all rectangles are actually squares [4,8]. Also, in [8] a
polynomial algorithm was presented which packs any
setL of rectangles into at mostNopt(L) augmented bins
of size(1+ε) for anyε > 0, whereNopt(L) denotes the
minimum number of unit size bins required to pack the
rectangles inL.

A related problem is the two-dimensional knapsack
problem [9] in which a set of rectangular pieces needs
to be cut off a rectangular plate of widtha and heightb.
Each rectangular pieceRi has widthai, heightbi , and
profit pi , and an arbitrary number of pieces of typeRi

can be cut from the plate. The goal is to cut the plate so
as to maximize the total profit of the pieces produced.

Finally, one can also see a relationship to strip pack-
ing [12]: Given a setL of rectangles, it is required
to pack them into a vertical strip[0,1]× [0,+∞) so
that the height of the packing is minimized. The strip
packing problem is strongly NP-hard since it includes
the classical bin packing problem as a special case.
Many strip packing ideas come from bin packing. The
“Bottom-Left” heuristic has asymptotic performance
ratio 2 when the rectangles are sorted by decreas-
ing widths [3]. In [7] several simple algorithms were
studied that place the rectangles on “shelves” using
one-dimensional bin-packing heuristics. It was shown
that the First-Fit shelf algorithm has asymptotic per-
formance ratio 1.7 when the rectangles are sorted by
decreasing height. The asymptotic performance ratio
was further reduced to 3/2 [31], then to 4/3 [13], and
to 5/4 [1]. Finally, in [18] it was shown that there ex-
ists an asymptotic FPTAS for the case when the sides
of all rectangles in the set are at most 1. For the case
of absolute performance ratio, the two currently best
algorithms have performance ratio 2 [28,32].

In contrast to all above mentioned problems, there
are very few results known for packing rectangles
into a rectangular region so as to maximize their total
profit. For a long time the only known result was an
asymptotic(4/3)-approximation algorithm for packing
squares with unit profits into a rectangle [2]. Only very
recently this algorithm for packing unit profit squares
was improved to a PTAS [15]. For packing rectangles
with profits, several approximation algorithms were pre-
sented in [16]. The best one is a(1

2 − ε)-approximation
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algorithm, for any fixedε > 0.

Our results. Here we consider the so-called resource
augmentation version of the rectangle packing problem,
that is, we allow the length of the unit square region
where the rectangles are to be packed to be increased
by some small value. Our main result is this:
Theorem 1. For any set R of n rectangles and any
accuracyε > 0, there is an algorithm Wε which finds a
subset of R and its packing within an augmented unit
square frame,[0,1+3ε]× [0,1+3ε], with profit

Wε(R) ≥ (1− ε)OPT,

whereOPT is the maximum profit that can be obtained
by packing any subset of R into a unit size square frame
[0,1]× [0,1]. The running time of Wε is polynomial in
n for fixedε.

We note that the algorithm of Correa and Kenyon [8]
for packing a set of rectangles into the minimum number
of square bins of size 1+ ε can not be directly used
to prove Theorem 1 because(i) the algorithm in [8]
does not consider rectangles with profits, and(ii) in the
rectangle packing problem not all rectangles need to
be packed. If we can find a set of rectangles of nearly
maximum profit and which can be packed into a unit
square frame, then we could use the algorithm in [8] to
find such a packing. The problem of finding this set of
rectangles is not a simple one, though. We show how
to find in polynomial time a set of rectangles of nearly
optimum profit that can be packed into a square frame
of size 1+ ε. This is enough to prove the theorem.

We first address the special case of the problem when
all rectangles to be packed are squares. Presenting the
algorithm for this simpler problem will help to under-
stand the solution for the more complex problem of
packing rectangles. Specifically, we present an algo-
rithm Aε which given a set of squaresL finds a sub-
set ofL and its packing into the augmented unit square
[0,1+ ε]× [0,1+ ε] with profit

Aε(L) ≥ (1− ε)OPT,

where OPT is the maximum profit that can be achieved
by packing any subset ofL in the original unit square re-
gion [0,1]× [0,1]. The running time ofAε is polynomial
in n for fixed ε. This result can be extended to the case
of packingd-dimensional cubes into ad-dimensional
cube of size 1+ ε, for d ≥ 2.

Our algorithms combine several known approxi-
mation techniques used for knapsack problems, strip

packing, and scheduling problems. Our algorithm for
packing squares is based on a few simple ideas and,
contrasting to recent algorithms for packing prob-
lems [4,8,16,18], it does not use linear programming.
Since the problem for packing squares is a special case
of that of packing rectangles, our algorithm is simpler
and more efficient that the algorithm in [8]. The algo-
rithm deals separately with squares of different sizes.
This idea has been used before to solve other problems
[14,30]. We partition the squares into two sets formed
by large and small squares, respectively. The sets are
chosen so that onlyO(1) large squares can be packed
in the unit square frame. We augment the size of the
frame to 1+ ε, and discretize the set of possible posi-
tions for the large squares in a packing. This allows us
to enumerate all possible packings of the large squares.
For each one of these packing we try to fill with small
squares the empty spaces left by the large squares.
To do this we solve a knapsack problem to select the
small squares to be packed, and use a variation of the
Next-Fit-Decreasing-Height heuristic to place them
(see Section 2.1.). Among all packings found we select
one with the maximum profit, which must be at least
(1− ε)OPT.

For the problem of packing rectangles we need to
make a more complex partition, separating the rectan-
gles into four groups:L,H,V, andS. SetsL andS con-
tain rectangles with, respectively, large and small widths
and heights. These are treated in a similar way as above.
The other two sets,H andV, contain wide and short
(i.e. horizontal), and narrow and tall (i.e. vertical) rect-
angles, respectively. To pack these rectangles we first
round their sizes and group them, so they form larger
rectangles. These grouped rectangles are then packed
by solving a fractional strip packing problem.

Even though the running times of both algorithms
Aε and Wε are polynomial inn for fixed ε, they are
exponential in 1/ε. Therefore, our results are primarily
of theoretical importance.

In Section 2. we describe our algorithm for pack-
ing squares. In Section 3. we describe an algorithm for
packing a set of rectangles into an augmented square
frame and we give a proof for Theorem 1. Finally, in
the last section we give some concluding remarks.

2. Algorithm for Packing Squares

In this section we present an algorithm for packing
squares into a unit size square frame so as to maximize
the total profit of the packed squares. More precisely,
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we are given a setQ of n squaresSi (i = 1, . . . ,n) with
side lengthssi ∈ (0,1] and positive profitspi ∈ Z+. For
a subsetQ′ ⊆ Q, apackingof Q′ into the unit square is
a positioning of the squaresQ′ within the frame[0,1]×
[0,1] such that they have disjoint interiors. The goal is
to find a subsetQ′ ⊆ Q and its packing into the unit
square, of maximum profit,∑Si∈Q′ pi .

For a subset of squaresQ′ ⊆ Q, we usepro f it(Q′)
and area(Q′) to denote the profit,∑Si∈Q′ pi , and area,
∑Si∈Q′ si · si , of Q′. In addition, we useQopt to denote
an optimal subset ofQ that can be packed in the unit
square[0,1]× [0,1]. So,

pro f it(Qopt) = OPT andarea(Qopt) ≤ 1.

Throughout the paper we also assume thatε ∈ (0,1/4)
and the value of 1/ε is integral.

2.1. The NFDH Heuristic

We consider first the following special case of the
square packing problem: given a subsetQ′ ⊆ Q of
squares with side lengths at mostε2, and a rectangle
[0,a]× [0,b] (a,b ∈ [0,1]) such thatarea(Q′) ≤ ab,
pack the squares ofQ′ into the augmented rectangle
[0,a+ ε2]× [0,b+ ε2].

To solve this problem, we sort the squares ofQ′ non-
increasingly by side lengths. Then, we put the squares
into the rectangle[0,a]× [0,b] by using the Next-Fit-
Decreasing-Height (NFDH) heuristic; this packs the
squares into a sequence of sublevels. The first sublevel
is the bottom of the rectangle. Each subsequent sublevel
is defined by a horizontal line drawn at the top of the
largest square placed on the previous sublevel. In each
sublevel, squares are packed in a left-justified manner
until their total width is at leasta. At that moment, the
current sublevel is closed, a new sublevel is started and
the packing proceeds as above. For an illustration see
Fig. 1.

We will use the following simple result, which can
be directly derived from results in [7,22], but for com-
pleteness we include a proof.
Lemma 2. Let Q′ ⊆ Q be any subset of squares with
side lengths at mostε2, ordered non-increasingly by side
lengths, and let[0,a]× [0,b] (a,b∈ [0,1]) be a rectan-
gle such that area(Q′) ≤ ab. Then, the NFDH heuris-
tic outputs a packing of Q′ in the augmented rectangle
[0,a+ ε2)× [0,b+ ε2].

Proof. Let q be the number of sublevels. Lethi be
the height of the first square on theith sublevel. Since

NFDH(L′)

h1

h2

h3

h4

h5

a ε2

b

ε2

Fig. 1. NFDH for small squares.

NFDH packs the squares ofQ′ on sublevels in order of
non-increasing side lengths, the height of the packing is

H =
q

∑
i=1

hi .

Since the side of any square is at mostε2, thenε2 ≥
h1 ≥ h2 ≥ . . . ≥ hq > 0. Furthermore, the total width of
the squares on each sublevel (except, maybe, the last) is
at leasta and at mosta+ ε2. Then, the total area of the
squares on theith sublevel (i = 1, . . . ,q−1) is at least
hi+1 ·a. Assume that the value ofH is larger thanb+ε2.
Then, the area covered by squares would be at least

q−1

∑
i=1

hi+1 ·a = a ·
q

∑
i=2

hi

= a[H −h1] > a[(b+ ε2)−h1] byassumptionH >b+ε2

= a[b+(ε2−h1)] ≥ ab= area(Q′) since h1 ≤ ε2,

which gives a contradiction.

Collorary 3. If all squares in Q have side length at most
ε2, then there is an algorithm which finds a subset of
Q and its packing in the augmented square[0,1+ε2]×
[0,1+ ε2] with profit at least(1− ε)OPT. The running
time of the algorithm is polynomial in n and1/ε.

Proof. By solving a knapsack problem we can find a
subset ofQ, whose total area is at most 1 and whose
profit is at least(1− ε)OPT. By using NFDH we can
pack these squares into the augmented frame[0,1+
ε2]× [0,1+ ε2].

2.2. Partitioning the Squares

Now we consider the case of squares with arbitrary
sizes. We define the groupL(0) of squares with side
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lengths in(ε4,1], and for j ∈ Z+ we define the group
L( j) of squares with side lengths in(ε4 j+1

,ε4 j
]. Then,

∪∞
j=0L( j) = Q and L(ℓ)∩L( j) = /0, for ℓ 6= j.

We will use the following simple observation, which
also has been made by other researchers in different
contexts [4,8,14,30].
Lemma 4. There is a group L(k) with 0≤ k≤ 1/ε2−1
such that its contribution to the optimum is

pro f it(Qopt∩L(k)) ≤ ε2OPT,

where Qopt is an optimal subset of squares.

Proof. SinceL(ℓ)∩L( j) = /0 for all ℓ 6= j, then

OPT= pro f it(Qopt) ≥
1/ε2−1

∑
j=0

pro f it(Qopt∩L( j)).

There must exist at least one groupL(k) with 0≤ k ≤
1/ε2−1 whose contribution to the profit of the optimal
solution is at most the average contribution of the 1/ε2

groups:

pro f it(L(k) ∩Qopt) ≤
[∑1/ε2−1

j=0 pro f it(Qopt∩L( j))]

(1/ε2)

≤ ε2OPT.

We drop the squares in this groupL(k) of low profit
from consideration. Then, an optimal packing forQ\
L(k) has profit at least(1−ε2)OPT, i.e. this makes a loss
of at most a factor ofε2 in the optimum. We partition
the squares inQ\L(k) into two groups:L =∪ j≤k−1L( j)

andS = ∪ j≥k+1L( j). The squares inL andS are called
large and small, respectively.
Collorary 5. Let ∆ = ε4k

, where k is as defined above.
The side length of any large square is larger than∆
and the side length of any small square is at mostε4∆.
Moreover,

pro f it(Qopt∩ [L∪S]) ≥ (1− ε2)OPT.

2.3. Large Squares

We say that a subset of large squares isfeasibleif it
can be packed into the unit square frame. The area of any
large square is at least∆2, hence, there are at most 1/∆2

large rectangles in any feasible set. LetFEASIBLEbe

the set consisting of all subsets of at most 1/∆2 large
squares fromL. Since there are at mostn squares in
L, there is only a polynomial number,O(n1/∆2

), of
sets inFEASIBLE. Note thatL∩Qopt must belong to
FEASIBLE.

Packing large squares. Even if we could find the
optimal set of large squares, we would still need to
determine how to pack them in the square frame. We
enlarge the size of the unit square so that there is a
packing for the large squares such that the positions of
their lower left corners belong to a finite set of discrete
points.

Consider a packing of a subset of large squares in the
frame[0,1]× [0,1]. In this packing, increase the size of
each large square by a factor 1+ ε2. This increases the
size of the enclosing frame by the same factor. Then,
without reducing the size of the frame, reduce the size
of every large square back to its original value. See
Fig. 2 for an illustration of this process.

The side length of any large square is at least∆. So,
for each large square we now have an “induced space”
where we can move the square up to a distanceε2∆
vertically or horizontally, without increasing the area of
the packing. Sinceε2∆ > ε3∆, we can move all large
squares such that each one of them has its lower left
corner in the following set

CORNER={(x,y)|x = ℓ · (ε3∆),y = p · (ε3∆) and

ℓ, p = 1,2, . . . ,
1+ ε2−∆

ε3∆
}.

By discretizing the positions of the large squares we
reduce to a constant the number of different packings
for the large squares in a feasible set.

2.4. Small Squares

Let L′ ⊆ L be any feasible set of large squares. The
complementof L

′, denotedCOM(L′), is the set of small
squares which is selected by a FPTAS [17] for the
knapsack problem with accuracyε2, knapsack capac-
ity 1−area(L′), and set of itemsS; each itemSi ∈ S

has size(si)
2 and profitpi . We can prove the following

simple result.
Lemma 6. For the optimal set Qopt∩L of large squares,
its complement COM(Qopt∩L) has total area at most

1−area(Lopt∩L)
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A B

induced space

1+ ε2

1

Fig. 2. Increasing and decreasing the sizes of the large squares.

and profit at least

(1− ε2)pro f it(Qopt∩S).

Proof. The area ofQopt is at most 1, hence,Qopt∩ S

is a feasible solution for the instance of the knapsack
problem with knapsack capacity 1−area(Qopt∩L) and
set of itemsS. So, the optimum profit of this instance is
at leastpro f it(Qopt∩S) and the FPTAS finds a solution
of profit at least(1− ε2)pro f it(Qopt∩S).

Placing small squares: The modified NFDH. As-
sume that we have a packing of some feasible setL′ ⊆L

of large squares in the augmented frame[0,1+ ε2]×
[0,1+ε2]. By solving a knapsack problem, we can find
its complementCOM(L′). Our next task is to place
the small squares fromCOM(L′) in the slightly larger
frame[0,1+ ε]× [0,1+ ε].

small

induced space

large
large

Fig. 3. Packing the small squares.

We pack the small squares in the empty space left
by the large squares using the modified NFDH heuristic

from [7]: Pack the squares on sublevels, creating sub-
levels in a bottom up manner and filling each one of
them from left to right. On each sublevel, if the next
small square overlaps with a large square, we place it
immediately after the right boundary of the large square.
For an illustration see Fig. 3. We cannot pack small
squares within the space occupied by the large squares,
but we can pack them inside the “induced space” around
the large squares. We can prove the following result.
Lemma 7. For any feasible setL′ ⊆L of large squares
packed in the augmented frame[0,1+ ε2]× [0,1+ ε2],
the modified NFDH heuristic outputs a packing ofL′

and the small squares from its complement COM(L′)
in the augmented frame[0,1+ ε]× [0,1+ ε].

Proof. Since we use the modified NFDH heuristic, in
each sublevel at most one small square can cross the
right border of the square[0,1+ ε2]× [0,1+ ε2]. Any
small square has side at mostε4∆ < ε2, hence, the total
width of the packing is at most(1+ ε2)+ ε2 < 1+ ε,
for ε < 1/4.

Now we show that the height of the packing cannot
be larger than 1+ ε. We follow the ideas of Lemma 2.
Let H be the height of the packing. Lethi (i = 1, . . . ,q)
be the height of the first square on theith sublevel. We
assume thatH is larger than 1+ ε and derive a con-
tradiction. Consider one large square of side lengthsi

and all sublevelsℓ that intersect it. The maximum dis-
tance from the large square’s boundary to the closest
small square on a sublevelℓ cannot be larger thanε4∆
(otherwise, a small square could be added on that sub-
level). Hence, the maximum area not covered by small
squares around, and including this large square, is at
most(si +2ε4∆)2.

Summing, over all large squares, we get that the area



Fishkin et al. – Algorithmic Operations Research Vol.3 (2008) 1–12 7

not covered by small squares is at most

∑
si∈L′

(si +2ε4∆)2.

Notice that our packing for small squares goes fur-
ther than point 1+ ε2 in width, andH = ∑q

i=1hi. Then,
as in Lemma 2, the area covered by the squares from
COM(L′) is

AREA≥
q−1

∑
i=1

hi+1 · (1+ ε2)− ∑
si∈L′

(si +2ε4∆)2

= (H −h1) · (1+ ε2)− ∑
si∈L′

(si +2ε4∆)2

> (1+ ε2)2− ∑
si∈L′

(s2
i +4siε4∆ +(2ε4∆)2)

sinceH > 1+ ε andh1 < ε4

≥ [1− ∑
si∈L′

s2
i ]+2ε2[1−2ε2∆ ∑

si∈L′
si ]

+ ε4[1−4∆2ε4|L′|]. (1)

Sincesi ≥ ∆ andε < 1/4, then

1−2ε2∆ ∑
si∈L′

si > 1− ∑
si∈L′

s2
i ≥ 0.

From |L′| ≤ 1/∆2 we also get

1−4∆2ε4|L′| ≥ 1−4ε4 ≥ 0.

Combining the above inequalities, we get

AREA> 1− ∑
si∈L′

s2
i = area(COM(L′)).

This gives a contradiction. Hence, the value ofH is at
most 1+ ε.

2.5. The Algorithm

ALGORITHM Aε:
Input: A set of squaresQ, accuracyε > 0.
Output: A packing of a subset ofQ in [0,1+ε]× [0,1+
ε].
(1) For eachk ∈ {0,1. . . ,1/ε2}, form the groupL(k)

as described above.
(a) Let∆ := ε4k

.
(b) SplitQ\L(k) intoL andS, the sets of large and

small squares with side lengths larger than∆
and at mostε4∆, respectively.

(c) Compute the setFEASIBLE containing all
subsets ofL with at most 1/∆2 large squares.

(d) For every setL′ ∈ FEASIBLEfind its com-
plementS′ := COM(L′) by solving a knap-
sack problem. For each packing ofL′ in the
augmented square[0,1+ε2]× [0,1+ε2] such
that every large square inL′ has its lower left
corner in a point ofCORNER:

• Use the modified NFDH to pack the
small squaresS′ in the augmented unit
square[0,1+ ε]× [0,1+ ε].

(2) Among all packings produced, select one with the
largest profit, and output it.

Theorem 8. For any set Q of n squares and any fixed
value ε > 0, there exists an algorithm Aε which finds
a subset of Q and its packing into the augmented unit
square[0,1+ ε]× [0,1+ ε] with profit

Aε(Q) ≥ (1− ε)OPT,

whereOPT is the maximum profit that can be achieved
by packing any subset of Q in the original unit square
region [0,1]× [0,1]. The running time of Aε is

O

(

n2

ε3

( n
ε8∆2

)1/∆2)

,

where∆ = ε41/ε2

.

Proof. By Lemma 7 algorithmAε produces a packing
in the augmented square[0,1+ε]× [0,1+ε]. Hence, we
only need to compute the profit of the packing chosen in
Step 2. The optimal set of large squaresQopt∩L belongs
toFEASIBLE, and hence, there exists a packing of these
squares in the augmented square[0,1+ ε2]× [0,1+ ε2]
such that each large square has its lower left corner in
a point ofCORNER.

Since algorithmAε checks all possible packings, it
will find one for Qopt∩L. Next, Aε finds the comple-
mentCOM(Qopt∩L) and packs it using the modified
NFDH. The profit of the packing output by the algo-
rithm is

Aε(Q) ≥ pro f it(Qopt∩L)+ pro f it(COM(Qopt∩L))

≥ pro f it(Qopt∩L)+ (1− ε2)pro f it(Qopt∩S)

(by Lemma 6)

≥ (1− ε2)pro f it(Qopt∩ [L∪S])

≥ (1− ε2)[(1− ε2)pro f it(Qopt)]

(from Corollary 5)

≥ (1− ε)OPT.
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We know that any set of large squares from
FEASIBLE consists of at most(1/∆2) squares.
Hence, FEASIBLE can be computed inO(n1/∆2

)
time, and we need to do this 1/ε2 times (once for
each value ofk, see Step 1 of the algorithm). Since
|CORNER| = (1+ε2−∆

ε3∆ )2 ≤ 1
ε8∆2 , the algorithm com-

putes at most
(

1
ε8∆2

)1/∆2

packings of large squares in

the augmented square[0,1+ ε2]× [0,1+ ε2]. The run-
ning time of the basic-FPTAS in [17] for the knapsack
problem isO(n2 ·1/ε) (the different versions of FPTAS
can be found in [17]). The modified NFDH algorithm
runs inO(nlogn) time. Combining all together, we get
that the running time of the algorithm is

O

(

(n1/∆2
)

ε2 ·
(

1
ε8∆2

)1/∆2
[

(n2 ·1/ε))+ (nlogn)
]

)

.

Simplifying, we find that the running time of the overall
algorithm is bounded by

O

(

n2

ε3

( n
ε8∆2

)1/∆2)

,

where∆ = ε41/ε2

.

2.6. Packing d-Dimensional Cubes

Our algorithm can be easily extended to the prob-
lem of packingd-dimensional cubes into a unitd-
dimensional cubic frame so as to maximize the total
profit of the cubes packed. As in the 2-dimensional
case, we partition the set of cubes into two setsL and
S containing large and small cubes, respectively. Since
only a constant number of large cubes can be packed
into the frame, we can enumerate all feasible subsets
of L that can be packed in the augmented cubic frame
of size 1+ ε2 in polynomial time. We can prove the
following generalization of Lemma 2 (see also [8]).
Lemma 9. Let Q′ ⊆ Q be any subset of d-dimensional
cubes with side lengths at mostε2, ordered by non-
increasing side lengths, and let[0,a1]× [0,a2]× ·· · ×
[0,ad] (ai ∈ [0,1]) be a parallelepiped, such that
area(Q′) ≤ a1 × a2 . . . × ad. Then, the generaliza-
tion of the NFDH heuristic to d dimensions outputs
a packing of Q′ in the augmented parallelepiped
[0,a1 + ε2]× [0,a2+ ε2]×·· ·× [0,ad + ε2].

This lemma shows that the generalization of NFDH
to d dimensions can be used to pack the small cubes in
the empty spaces left by a packing of the large cubes

into the augmented cubic frame. Then, we can prove
that the generalization of the modified NFDH heuristic
to d dimensions outputs a packing ofL′ and the small
cubes from its complementCOM(L′) in the augmented
cubic frame of size 1+ ε. Among all packings found
we select one with the maximum profit, which must be
at least(1− ε)OPT.

3. Algorithm for Packing Rectangles

Let R be a set ofn rectangles,Ri (i = 1, . . . ,n) with
widthsai ∈ (0,1], heightsbi ∈ (0,1], and profitspi ≥ 0.
The goal is to find a subsetR′ ⊆ R, and a packing of
R′ within the frame[0,1]× [0,1] of maximum profit,
∑Ri∈R′ pi .

We partition the rectanglesR into four sets:L,H,V,
and S. The rectangles inL have large widths and
heights, so onlyO(1) of them can be packed in the
unit square frame. The rectangles inH (V) have large
width (height). We round the sizes of these rectangles
in order to reduce the number of distinct widths and
heights. Then, we use enumeration and a fractional
strip-packing algorithm to select the best subsets of
H and V to include in our solution. The rectangles
in S have very small width and height, so as soon as
we have selected near-optimal subsets of rectangles
from L∪H∪V we add rectangles fromS to the set
of rectangles to be packed in a greedy way. Once we
have selected the set of rectangles to be packed into the
frame, we use a slight modification of the algorithm of
Correa and Kenyon [8] to pack them.

For a subset of rectanglesR′ ⊆ R, we usepro f it(R′)
to denote its profit,∑Ri∈R′ pi , and area(R′) to denote
its area,∑Ri∈R′ aibi . In addition, we useRopt to denote
an optimal subset ofR that can be packed into the unit
square frame[0,1]× [0,1]. So,

pro f it(Ropt) = OPT andarea(Ropt) ≤ 1.

3.1. Partitioning the Rectangles

We slightly modify the definition of the groupsL( j)

given above to account for the fact that now the width
and height of a rectangle might be different. We define
the groupL(0) of rectanglesRi ∈ R with widths ai ∈
(ε4,1] and/or heightsbi ∈ (ε4,1]. For j ∈ Z+ we define
the groupL( j) of rectanglesRi with either widthsai ∈
(ε4 j+1

,ε4 j
] or heightsbi ∈ (ε4 j+1

,ε4 j
]. One can see that

each rectangle belongs to at most 2 groups.
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Lemma 10. There is a group L(k) with 0≤ k≤ 2/ε2−1
such that

pro f it(L(k) ∩Ropt) ≤ ε2 ·OPT,

where Ropt is the subset of rectangles selected by an
optimum solution.

Proof. The proof is very similar to the proof of
Lemma 4

We again drop the rectangles in groupL(k), as de-
scribed in Lemma 10, from consideration. Then, an op-
timal packing forRopt \ L(k) must have profit at least
(1−ε2)OPT. However, now we partition the rectangles
of R into four groups according to their side lengths, as
follows. Let ∆ = ε4k

.

L = {Ri | ai > ∆ andbi > ∆}
S = {Ri | ai ≤ ε4∆ andbi ≤ ε4∆}

H = {Ri | ai > ∆ andbi ≤ ε4∆}
V = {Ri | ai ≤ ε4∆ andbi > ∆}

Lemma 11. For 0 < ε < 1/2 the subset Ropt \L(k) of
rectangles can be packed within the frame[0,1+ ε]×
[0,1+ ε] in such a way that
• each rectangle Ri ∈ H∪L is positioned so that its

lower left corner is at an x-coordinate that is a mul-
tiple of ε2∆,

• each rectangle Ri ∈ V∪L is positioned so that its
lower left corner is at a y-coordinate that is a multiple
of ε2∆,

Furthermore, any width ai > ∆ or height bi > ∆ can
be rounded up to the nearest multiple ofε2∆ without
affecting the feasibility of the packing, i.e. (i) for each
Ri ∈L, both, ai and bi can be rounded up, (ii) for each
Ri ∈H, only ai can be rounded, and (iii) for each Ri ∈V,
only bi can be rounded.

Proof. Increase the size of every rectangle inL∪H∪V

by a factor 1+ ε. These enlarged rectangles can be
packed in a frame of size 1+ ε. Now shrink the rectan-
gles back to their original sizes to create the “induced
spaces” as before. Shift each rectangle inside its in-
duced space so that it is positioned as indicated in the
lemma. Note that each rectangle needs to be shifted ver-
tically and/or horizontally at most a distanceε2∆. Fi-
nally, round each side length larger than∆ to the nearest
multiple of ε2∆. Since each rectangle can be shifted in-
side its induced space vertically or horizontally by a dis-
tanceε∆, and since 2ε2∆ < ε∆ for all 0 < ε < 1/2, then
the enlarged rectangles fit in a frame of size 1+ ε.

Selecting the large rectangles. As before, we say that
a subset of large rectangles is feasible if they can be
packed in the unit frame. We define the setFEASIBLE
consisting of all subsets of at most 1/∆2 large rectan-
gles. Observe that the optimal set of large rectanglesL∩
Ropt ∈ FEASIBLE. As we showed aboveFEASIBLE
can be computed inO(n1/∆2

) time.

Selecting the horizontal rectangles. Recall that for
each rectangleRi ∈H, its width,ai ∈ (∆,1] was rounded
up to a multiple ofε2∆. Hence, there are at mostα =
1/(ε2∆) distinct widths, ¯a1, ā2, . . . , āα, in H. We use
H(āq) to denote the subset ofH consisting of all rect-
angles with width ¯aq. Let H′ ⊆ H. We define thepro-
file of H′ as anα-tuple (h′1,h

′
2, . . . ,h

′
α) such that each

entryh′q ∈ (0,1] (q = 1, . . . ,α) is the total height of the
rectangles inH′∩H(āq).

Consider the profile(h∗1,h
∗
2, . . . ,h

∗
α) of H∩Ropt. Note

that if each valueh∗i is rounded up to the nearest multiple
of ε/α, this might increase the height of the frame where
the rectangles are packed by at mostα(ε/α) = ε. The
advantage of doing this, is that the number of possible
values for each entry of the profile ofH∩Ropt is only
constant, i.e.α/ε, and, the total number of profiles is
also constant,αα/ε.

By trying all possible profiles with entries that are
multiples ofε/α we ensure to find one that is identical
to the rounded profile forH∩Ropt. However, the profile
itself does not yield the set of rectangles inH∩Ropt.
Fortunately, we do not need to find this set, since (from
the algorithms in [8] it can be shown that) any setH′′

of rectangles with the same rounded profile asH∩Ropt

can be packed along withL∩Ropt in a frame of height
1+ ε by solving a fractional strip-packing problem:
• Assume that we know an optimal set of large rect-

anglesL∩Ropt and a packing for it as described in
Lemma 11. This assumption can be made since the
setFEASIBLEhas polynomial size and for each set
in FEASIBLE there is a constant number of possi-
ble packings with the structure defined in Lemma 11.
Thus, we can try all packing for all sets inFEASIBLE
in polynomial time, and one of them has to be iden-
tical to the packing ofL∩Ropt. Assume also that we
know the profile(h∗1,h

∗
2, . . . ,h

∗
α) of H∩Ropt.

• For this packing ofL∩Ropt trace a grid of sizeε/α
over the entire square frame. Each square of this grid
not occupied by a large rectangle is labelled either
“h” or “sv”. Squares labelled “h” will be used to pack
rectangles fromH and squares labelled “sv” will be
used to pack rectangles fromV∪S. Try all labellings
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for the grid’s squares (there is only a constant num-
ber of them); one of them must be identical to the
labelling induced by an optimum packing forRopt.

• Group horizontally-adjacent grid squares labelled “h”
into strips.

• The fractional strip packing problem is to fractionally
pack rectangles of width ¯ai and total heighth∗i , 1≤ i ≤
α, into these strips. In this fractional packing problem
a rectangle can only be split into rectangles of smaller
height and the same width as the original rectangle.

Let H′′ be the set of rectangles (fractionally) packed as
described above. To convert this fractional packing into
an integer one, the height of the strips might need to be
slightly increased. The total increase in the height of the
packing is at most(α/ε)ε4∆ = ε. (For a more detailed
explanation, the reader is referred to [8].)

Thus, we just need to find a set of rectangles fromH

with nearly-maximum profit and with the same rounded
profile asH∩Ropt. We say that a subsetH′ ⊆ H is
feasibleif
• each entryh′q ∈ (0,1] (q = 1, . . . ,α) in the profile of

H′ is a multiple ofε/α, and
• each subsetH′ ∩H(āq) (q = 1, . . . ,α) is a (1− ε)-

approximate solution of an instance of the knapsack
problem whereh′q is the knapsack’s capacity and each
rectangleRi ∈ H(āq) is an item of sizebi and profit
pi .

Lemma 12. In O(n2 · 1/ε) time we can find the set
FEASIBLEH consisting of all feasible subsets ofH.

Proof. There areO(1) possible profiles. For each entry
in a profile, in order to find a(1− ε)-solution for the
corresponding knapsack problem, we can use the FP-
TAS of [17] with O(n2 ·1/ε) running time.

Selecting the vertical rectangles. We use similar
ideas as above to defineprofiles and to find the set
FEASIBLEV consisting of allfeasiblesubsets ofV.
Note that a setV′′ ⊆ V of rectangles with the same
rounded profile asV∩Ropt can be packed, along with
L∩Ropt and a setH′′ ⊆ H as described above, in a
square frame of size 1+ ε. To see this, consider a grid
as described above and mark in this grid the squares
occupied by rectangles fromV∩Ropt in an optimum
solution. The rectangles inV′′ can be placed in these
marked grid squares by solving a fractional strip pack-
ing problem as described above. This time the width of
the frame needs to be increased to 1+ ε.

Selecting the small rectangles. Assume that
we are given feasible subsetsL′ ∈ FEASIBLE,

H′ ∈ FEASIBLEH, V′ ∈ FEASIBLEV such that
area(L′∪H′∪V′) ≤ (1+2ε)2 ( Recall that the round-
ing involved in packing the rectangles inH∪ V in-
creases the size of the frame of Lemma 11 to 1+2ε). A
subsetS′ ⊆ S is feasible for the selectionL′,H′, V′, if S′

is a(1−ε)-approximate solution for the instance of the
knapsack problem where(1+2ε)2−area(L′∪H′∪V′)
is the knapsack’s capacity, and each rectangleRi ∈ S is
an item of sizeaibi and profitpi .
Proposition 13. Given setsL′ ⊆ FEASIBLE,H′ ⊆
FEASIBLEH, andV′ ⊆ FIASIBLEV, a feasible subset
S
′ of S can be found in O(n2 ·1/ε) time.

3.2. The Algorithm

Algorithm Wε:
INPUT: A set of rectanglesR, accuracyε > 0.
OUTPUT: A packing of a subset ofRwithin [0,1+3ε]×
[0,1+3ε].
(1) For each k ∈ {0,1. . . ,2/ε2−1} form the group

L(k) of rectanglesRi ∈ R as described above and
perform Steps 2 and 3.

(2) Let α = 1/(ε3∆).
(a) PartitionR\ L(k) into setsL,S,H, andV as

described above.
(b) Round the sizes of the rectanglesL∪H∪V

as indicated in Lemma 11.
(c) Compute the setFEASIBLE containing all

subsets ofL with at most 1/∆2 rectangles.
(d) Compute the setFEASIBLEH contain-

ing all feasible subsets ofH with profiles
(h1,h2, . . . ,hα) where each entryhq ≤ 1
(q = 1, . . . ,α) is a multiple ofε/α.

(e) Compute the setFEASIBLEV contain-
ing all feasible subsets ofV with profiles
(v1,v2, . . . ,vα) where each entryvq ≤ 1
(q = 1, . . . ,α) is a multiple ofε/α.

(3) For each setL′ ∈ FEASIBLE, H′ ∈ FEASIBLEH,
andV′ ∈ FEASIBLEV do:
(a) Try all possible packings forL′ in the frame

[0,1+ε]× [0,1+ε], positioning the rectangles
as indicated in Lemma 11.

(b) For each packing ofL′ in the frame of size
1+2ε, split the empty space with a grid of size
ε/α. Try all possible labellings for the grid’s
squares in which a square is labelled eitherℓH

of ℓV. For each labelling, try to pack the rect-
angles fromH′ into the grid squares labelled
ℓH, and try to packV′ into the squares la-
belledℓV by solving a fractional strip-packing
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problem as described above.
(c) If there is a packing forL′ ∪H′ ∪V′ in the

frame of size 1+2ε, find a subsetS′ ⊆ S which
is feasiblefor L

′,H′ andV
′.

(d) Increase the size of the frame to[1+ 3ε]×
[1+3ε] and use the NFDH algorithm to pack
the rectanglesS′ within the empty gaps left
by L′∪H′∪V′.

(4) Among all packings computed in Step 3, output
one having maximum profit.

3.3. Proof of Theorem 1

Lemma 14. There exists a selection of feasi-
ble subsets L′ ∈ FEASIBLE,H′ ∈ FEASIBLEH,
V′ ∈ FEASIBLEV, andS′ ⊆ S, such that
• pro f it(L′ ∪H

′∪V
′∪S

′) ≥ (1− ε)OPT,
• algorithm Wε outputs a packing ofL′ ∪H′ ∪ V′ ∪

S′ within the augmented square frame[0,1+ 3ε]×
[0,1+3ε].

Proof. ChooseL′ = L∩Ropt. Let H′ ⊆ H andV′ ⊆ V

be sets with the same rounded profiles asH ∩ Ropt

andV∩Ropt and profits at least(1− ε)profit(H∩Ropt)
and (1− ε)profit(V∩Ropt) respectively. LetS′ ⊆ S be
a (1− ε)-approximate solution of the knapsack prob-
lem with knapsack capacity(1+2ε)2−area(L′∪H′∪
V
′) and itemsRi ∈ S of size aibi and profit pi . Note

that profit(S′) ≥ (1− ε)profit(S∩Ropt) and, therefore,
profit(L′∪H′∪V′∪S′) ≥ (1− ε)profit(Ropt).

Since Ropt can be packed into a unit size square
frame and the setsL′,H′, andV′ are rounded-up sets
with profits at least the profits ofRopt ∩L, Ropt ∩H,
and Ropt ∩V, then, by Lemma 11 and the discussion
in Section 3.1. about the selection ofFEASIBLEH and
FEASIBLEV, they can be packed into a square frame
of size [0,1+2ε]× [0,1+2ε]. The small rectangles in
S′ have total area(1+ 2ε)2− area(L′ ∪H′ ∪V′) and,
thus, the NFDH algorithm can pack them in the empty
gaps left by the other rectangles if we increase the size
of the frame to[0,1+ 3ε]× [0,1+ 3ε]. This follows
from a straightforward extension of Lemma 2 to rect-
angles.

AlgorithmWε considers all valuesk∈{0,1. . . ,2/ε2−
1}. For at least one of these values it must find a group
L(k) such that

pro f it(Ropt \L(k)) ≥ (1− ε2)OPT.

For this group, the rest of the rectanglesR\L(k) is par-
titioned into setsL,S,H, andV.

By Lemma 14 there exist a selection of feasi-
ble subsets L′ ∈ FEASIBLE,H′ ∈ FEASIBLEH,
V′ ∈ FEASIBLEV, andS′ ⊆ S, such that

pro f it(L′∪H
′∪V

′∪S
′) ≥ (1− ε)OPT,

and such that algorithmWε outputs a packing ofL′ ∪
H′ ∪V′ ∪S′ within an augmented square frame[0,1+
3ε]× [0,1+3ε]. Since algorithmWε tries all feasible sets
in FEASIBLE, FEASIBLEH, andFEASIBLEV, and all
packings for them,Wε must find the required solution.

All feasible subsetsFEASIBLE, FEASIBLEH and
FEASIBLEV, can be found inO(n2 · 1/ε) time. Step
3(b) of algorithmWε can be performed by using the
algorithm for strip-packing described in [8]. This algo-
rithm also runs in time polynomial inn. Furthermore,
there is only a constant number of possible packings for
any set of large rectangles fromFEASIBLE. Hence, the
overall running time of algorithmWε is polynomial in
n for fixed ε.

Conclusions

An interesting open problem is that of finding a set
R′ ⊆ R of rectangles with profit at least(1−ε)OPT and
a packing for them in the unit square region[0,1]×
[0,1] without augmentation. Natural extensions of our
algorithm (like removing one of the large rectangles
to accommodate those rectangles that in our algorithm
would overflow the boundaries of the unit square region,
thus, requiring theε extension in the size of the region)
do not work. We conjecture that this more complex
problem can be solved in polynomial time, but new
techniques seem to be needed.
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