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Abstract

This paper addresses the class of nonlinear mixed integer stochastic programming problems. In particular, we consider
two-stage problems with nonlinearities both in the objective function and constraints, pure integer first stage and mixed
integer second stage variables. We exploit the specific problem structure to develop a global optimization algorithm.
The basic idea is to decompose the original problem into smaller manageable optimization subproblems and coordinate
their solutions by means of a Branch and Bound approach. Preliminary computational experiments have been carried
out on a stochastic version of the Trim Loss problem.
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1. Introduction

Stochastic integer programming (SIP) represents one
of the most challenging area in the field of the modern
stochastic optimization. When nonlinearities are present
in the objective function and/or constraints we have to
deal with stochastic nonlinear integer problems. Such
class of problems provides a very powerful modeling
tool for decision making integrating the expressive
power of nonlinear integer deterministic models with
the key issue of uncertainty affecting all the real-life
applications.

The design of batch plants [1], the synthesis of pro-
cess [2], the design of distillation sequences [3], the
minimization of waste in paper cutting [4], the optimiza-
tion of core reload patterns for nuclear reactors [5], are
just few examples of decision problems involving in-
teger variables and nonlinear functions. The interested
readers are referred to [6] for a comprehensive survey
of nonlinear integer applications. It is worthwhile not-
ing that, in almost all the applications mentioned above
some of the parameters are not known in advance, mak-
ing of little value the recommendations provided by the
solution of the deterministic problems. More accurate
models should take explicitly into account uncertainty.
Here we mention two applications, the process design
under uncertainty [7], and the airline crew scheduling
problem [8], modelled by means of the stochastic pro-
gramming framework.

Although the past decade has witnessed great effort in
achieving theoretical and methodological development
of the stochastic (linear) integer problems (see [9] and
the references therein), the nonlinear integer case has
received very limited attention. This partly derives from
its challenging feature due to the combinatorial nature
and the nonlinearity inherent in the problem.

In [10] Wei and Realff have proposed two algorithms
(the optimality gap and the confidence level method)
to solve stochastic mixed-integer nonlinear convex pro-
gramming problems. Their methods are wrapped around
a traditional approach for deterministic problems, the
outer approximation method. The stochastic version of
this approach solves, at each iteration, a stochastic non-
linear subproblem with fixed integer variables to provide
an upper bound and a mixed-integer nonlinear problem
to provide a lower bound and new values for the integer
variables. A branching algorithm has been proposed by
Birge and Yen in [8]. The method was designed for a
specific application in the field of the air crew schedul-
ing. Exploiting the specific problem structure, the al-
gorithm branches simultaneously on multiple variables
without invalidating the optimality conditions. Norkin
et al. [11] developed a branch and bound algorithm that
makes use of stochastic upper and lower bounds with
almost sure convergence. An algorithm for the paramet-
ric solution of mixed integer nonlinear models arising in
the context of process synthesis problems under uncer-
tainty has been proposed in [12]. The method, based on
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the outer approximation/equality relaxation algorithm,
involves the iterative solution of nonlinear subproblems
and a parametric integer programming master problem.
Different integration schemes for the approximation of
the expectancy have been proposed in [13–16]. More
recently, an integration of the sampling based L-shaped
method with a reweighting concept has been used to
solve stochastic nonlinear problems. The central idea
is to reduce the computations at the sub-problem solu-
tion stage by using a reweighting scheme to bypass the
nonlinear model computations.

All the contributions mentioned above deal with
the case of continuous random variables. In this pa-
per we propose a method for the global optimization
of stochastic nonlinear integer problems with discrete
distributions. The basic idea underlying the approach
is to exploit the problem structure to decompose it
into smaller manageable optimization subproblems and
coordinate their solutions by means of a branch and
bound approach. The proposed method belongs to the
class of dual decomposition methods applied by Carøe
and Schultz in [18] for the case of two-stage stochastic
linear (mixed) integer problems. Our contribution gen-
eralizes the results on decomposition methods to the
stochastic nonlinear integer case and, more importantly,
introduces the incremental subgradient approach as a
key factor in assessing the efficiency of the solution of
the Lagrangian dual problems.

The remainder of the paper is organized as follows.
Section 2 introduces the two-stage stochastic nonlin-
ear (mixed) integer problem. In Section 3 the proposed
solution method is presented by devoting particular at-
tention to the solution of the Lagrangian dual problem.
Section 4 presents and discusses some preliminary com-
putational experiments carried out on a stochastic ver-
sion of the Trim Loss problem. Conclusions and further
research directions are illustrated in the last section.

2. Problem formulation

Let us consider a given probability space(Ω,ℑ, IP).
For each elementω of the sample spaceΩ, we denote
by ξ(ω) a finite dimensional random vector and byIEξ

the mathematical expectation with respect toξ. Later
on, we shall focus our attention on the following two-
stage nonlinear (mixed) integer model:

min f1(x) + IEξQ(x, ξ(ω))

g1
i (x) = 0 i = 1, . . . , m̄1

g1
i (x) ≤ 0 i = m̄1 + 1, . . . , m1 (1)

x ∈ Z
n1

+

where for a given realizationω ∈ Ω, Q(x, ξ(ω)) is the
optimal value of the second-stage (recourse) problem:

Q(x, ξ(ω)) = min f2(y(ω), ω)

h2
i (x, ω) + g2

i (x, y(ω), ω) = 0, i = 1, . . . , m̄2 (2)

h2
i (x, ω) + g2

i (x, y(ω), ω) ≤ 0, i = m̄2 + 1, . . . , m2

y ∈ R
n2−t2 × Z

t2

where all functionsf1, f2, g1, g2, h1, h2 are general
nonlinear functions andf2(·, ω), g2(·, ω), h2(·, ω) are
measurable inω for any fixed first argument. Ac-
cording to the stochastic programming nomenclature,
variablesx denote the first stage decisions which need
to be determined prior to the realization of the uncer-
tain parametersω, whereas variablesy represent the
recourse decisions that can be taken after uncertainty
is disclosed.

There is a severe shortage of nice properties such as
convexity and continuity in two-stage nonlinear integer
problems. This is mainly due to the integer restrictions.
If only the first stage variables are integer, the properties
of the recourse function are the same as in the contin-
uous case. In the continuous nonlinear case iff, h are
convex andg is affine for allξ, the problem is convex.
When integrality restrictions are present in the second
stage, even for the linear case the recourse function is
in general nonconvex. The optimization of such a com-
plex objective function poses severe difficulties.

In the following, we shall assume that the uncertain
parameterω follows a discrete distribution with finite
supportΩ = {ω1, ω2, · · · , ωS}. Each realization (sce-
nario) s = 1, . . . , S has an associated probabilityps.
We observe that discrete distributions arise frequently
in applications, either directly, or as empirical approxi-
mations of the underlying probability distribution. Fur-
thermore, as shown in [19] if the random parameters
have a continuous distribution the optimal solution of
the problem can be approximated within any given ac-
curacy by the use of discrete distributions. Under the
assumption of discrete probability space, problem (1)-
(2) can be restated as follows:

minf1(x) +
S
∑

s=1

psf
2(x, ys, ξs)

g1
i (x) = 0 i = 1, . . . , m̄1

g1
i (x) ≤ 0 i = m̄1 + 1, . . . , m1

h2
i (x, ξs) + g2

i (x, ys, ξs) = 0, i = 1, . . . ,m̄2



78 Patrizia Beraldi, et al. – Stochastic Nonlinear Mixed Integer Program

s = 1, . . . , S (3)

h2
i (x, ξs) + g2

i (x, ys, ξs) ≤ 0, i = m̄2 +1, . . . , m2

s = 1, . . . , S

x ∈ Z
n1 , ys ∈ R

n2−t2 × Z
t2 s = 1, . . . , S

Problem (3) is a large-scale structured nonlinear (mixed)
integer model with(n1 + n2 ×S) variables and(m1 +
S ×m2) nonlinear constraints. Thus, at least in princi-
ple, standard programming techniques for determinis-
tic nonlinear (mixed) integer problems implemented in
general-purpose software, could be applicable. Despite
the attractiveness of the claim, standard software does
not perform well for the case of linear functions, and,
a fortiori we expect worse performance for nonlinear
problems. In order to face this computational challenge,
the key issue is to exploit the specific problem struc-
ture to design an efficient solution method. In the next
section we present our proposal.

3. The solution approach

The proposed solution method belongs to the class of
dual decomposition methods proposed in [18] for the
case of stochastic linear integer problems. For a very
good review on decomposition methods for stochastic
programming the interested reader is referred to [20].
The basic idea is to exploit the problem structure to
decompose the original problem into smaller manage-
able optimization subproblems and coordinate their so-
lutions by means of a branch and bound scheme.

Our approach differs from earlier works based on
similar ideas. First of all it generalizes the results on
decomposition methods to the stochastic integer nonlin-
ear programs and, secondly, introduces the incremental
subgradient approach as a key factor in assessing the ef-
ficiency of the solution of the Lagrangian dual problem.

Let us consider problem (3). It is easy to recog-
nize that the model presents a block diagonal structure,
where optimization problems pertaining to separate sce-
narios are tied together by means of the global vari-
ablesx that can be viewed as complicating variables.
By applying a variable splitting scheme [21], which in-
troduces copiesx1, . . . , xS of the first-stage variablex
and adds simple linking constraints, problem (3) can be
reformulated as:

min

S
∑

s=1

ps[f
1(xs) + f2(xs, ys, ξs)] (4)

g1
i (xs) = 0, i = 1, . . . , m̄1, s = 1, . . . , S (5)

g1
i (xs) ≤ 0, i = m̄1+1, . . . , m1, s = 1, . . . , S

(6)

h2
i (xs, ξs) + g2

i (xs, ys, ξs) = 0, i = 1, . . . , m̄2

s = 1, . . . , S (7)

h2
i (xs, ξs) + g2

i (xs, ys, ξs) ≤ 0,

i = m̄2+1, . . . , m2, s = 1, . . . , S (8)

xs = xs+1 s = 1, . . . , S − 1 (9)

xs ∈ Z
n1

+ , ys ∈ R
n2−t2 × Z

t2 s = 1, . . . S

(10)

Constraints (9) are aimed at guaranteeing the nonan-
ticipativity principle, which states that the first-stage
decisions are scenario-invariant since they do not de-
pend on the scenario which will prevail in the sec-
ond stage. This constraint can also be represented as
∑S

s=1 Asxs = 0, whereAs are matrices of suitable di-
mensions. The Lagrangian relaxation with the respect
to the nonanticipativity constraints leads to the follow-
ing problem:

D(λ) = min

S
∑

s=1

ps[(f
1(xs) + f2(xs, ys, ξs)]+

S
∑

s=1

λ(Asxs) (11)

g1
i (xs) = 0, i = 1, . . . , m̄1, s = 1, . . . , S (12)

g1
i (xs) ≤ 0, i = m̄1+1, . . . , m1, s = 1, . . . , S

(13)

h2
i (xs, ξs) + g2

i (xs, ys, ξs) = 0 i = 1, . . . , m̄2,

s = 1, . . . , S (14)

h2
i (xs, ξs) + g2

i (x, ys, ξs) ≤ 0 i = m̄2+1, . . . , m2,

s = 1, . . . , S (15)

xs ∈ Z
n1

+ , ys ∈ R
n2−t2 × Z

t2 s = 1, . . . S (16)

whereλ is an appropriately dimensioned vector of
Lagrangian multipliers. The variable splitting method
was originally applied in conjunction with Lagrangian
relaxation [22] to optimization problems with ‘hard’
and ‘soft’ set of constraints and it is equivalent to what
is termed Lagrangian Decomposition in [23]. Carøe and
Schultz [18] and Hemmecke and Schultz [24] used a
similar approach to obtain bounds for two-stage linear
integer problems. We also mention Takriti and Birge
[25]. For an impression on Lagrangian approaches for
multistage stochastic integer programming develop-
ments we refer to Römisch and Schultz [26].

The main advantage of the reformulation (11)-(16)
comes from the perfect decomposability of the original
problem intoS independent subproblems:
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D(λ) =

S
∑

s=1

Ds(λ) (17)

where

Ds(λ) = min{ps[(f
1(xs) + f2(xs, ys, ξs)]+

λ(Asxs) : (xs, ys) ∈ Xs}

andXs denotes the set of constraints for scenarios. It
is well known that the Lagrangian dual

max
λ

D(λ) (18)

provides a lower bound on the optimal value of problem
(4)-(10). In addition, if for some choice ofλ the sce-
nario solutions of the Lagrangian relaxation(xs, ys) co-
incide in their first-stage components, then they are also
optimal. In order to enforce the relaxed nonanticipativ-
ity constraints, as in [18], we have used the Lagrangian
dual as bounding rule within a branch and bound pro-
cedure.
Let us denote byL the list of candidate problemsl to-
gether with an associated lower boundzLD. The outline
of the algorithm is as follows:

Step1 (Inizialization). Setz̄ = +∞ and letL contain
problem (4)-(10).

Step2 (Termination). If L=∅ then the solution(x, y) that
yieldedz̄ is optimal.

Step3 (Node Selection). Select and delete a probleml

from L, solve the corresponding Lagrangian dual
and letzLD(l) denote its corresponding optimal
value. If l is infeasible go to Step 2.

Step4 (Bounding). If zLD(l) ≥ z̄ go to Step 2. Oth-
erwise, if the scenario solutionsxs are identical,
updatez̄ and delete fromL all subproblems with
zLD(l) ≥ z̄. Go to Step 2. Else if the scenario so-
lutions differ, determine a candidate feasible first-
stage solution̄xR, updatez̄ and delete fromL all
problems withzLD(l) ≥ z̄. Go to Step 5.

Step5 (Branching). Select a componentxi of x and add
to L two new problems obtained froml by adding
the constraints̄xi ≤ ⌊x̄i⌋ and x̄i ≥ ⌊x̄i + 1⌋,
respectively. Go to Step 2.

At Step 4, the candidate for feasible first-stage solution
x can be determined by using various heuristic ideas.
A possibility is to combine the average

x̄ =

S
∑

s=1

psxs (19)

with some rounding heuristic to fulfill the integrality re-
strictions. If the original problem is feasible, since the

number of nodes generated and explored in the branch
and bound tree is finite, the algorithm terminates after
finitely many steps. The optimality of the solution fol-
lows from the validity of the lower and upper bounds
used.

3.1. The solution of the Lagrangian dual problem

The efficient solution of the Lagrangian dual prob-
lems within the branch and bound scheme represents
a critical issue because of the problem nature (nondif-
ferantiable concave) and the number of times the solu-
tion process has to be performed. To this aim we have
designed an incremental subgradient method which ex-
ploits the specific structure of our problem. The in-
cremental subgradient method was originally proposed
in [27] for minimizing a convex function expressed as
sum of a large number of component functions. Such
a method is similar to the standard subgradient method
[28]. The main difference is that the multiplier vector
update is performed after each subgradient component
computation. Thus, the multiplier vector is changed in-
crementally with intermediate adjustment of the vari-
ables after processing each component function. The
basic steps of the method are as follows. The subgradi-
ent of (11) atλ is g(λ) =

∑S

s=1 Asxs(λ), wherexs(λ)
are optimal solutions of the scenario subproblems. The
subgradient is a vector of dimensionn1(S − 1) and is
the sum ofgi(λ), wheregi(λ) is a subgradient ofDi at
λ.

Let us denote by the superscriptk the iteration
counter of the standard subgradient method. Each step
is a subgradient iteration for a single component func-
tion (single scenario in our setting), and there is one
step per component function. Thus, an iteration can be
viewed as a cycle ofS subiterations.

At a generic iterationk of the subgradient method
λk+1 = φk

S , whereφk
S is obtained after the|S| steps

φk
s = [φk

s−1 − αkgk
s(λ)], s = 1, . . . , S (20)

and

φk
0 = λk (21)

The updates described in (20) are referred to as theS

subiteration of thekth cycle. In all subiterations of a
cycle we use the same stepsizeαk. Such incremental
approach allows us to carry information from one subit-
eration to the next, thus avoiding the need to work out
the multiplier vector from scratch.

We observe that the rows of the matrixA =
[A1, A2, . . . , AS ] have only two nonzero components



80 Patrizia Beraldi, et al. – Stochastic Nonlinear Mixed Integer Program

equal to 1 and -1. Giving the particular structure of the
nonanticipativity constraints, at each subiteration of the
method sketched above, the subgradient vectorgi(λ) is
worked up by taking into account the term relative to
one scenarioAsxs(λ). For the first scenario the only
nonzero in the subgradient vector are those relative to
the firstn1 rows of the matrixA1 which has the form:























1 0 . . . 0

0
. . . . . .

...
...

...
. . .

...
0 . . . . . . 1
0 . . . . . . 0
...

...
...

...























and thus has a diagonal block of 1 and all other elements
zero. This implies that only the portion of multiplierλ

associated with the first scenario will be changed dur-
ing the first update. For the second scenario the matrix
has two diagonal blocks due to the fact that variables
associated with the second scenario are present in two
constraints of type (9).A2 has the form:











































−1 0 . . . 0

0
. . . . . . 0

...
...

. . .
...

0 . . . . . . −1
1 0 . . . 0

0
. . . . . . 0

...
...

. . .
...

0 0 . . . 1
0 0 . . . 0
...

...
...

...











































.

In this case only the components of the multiplierλ as-
sociated with the first and the second scenario will be
changed. Similar considerations can be drawn for the
remaining scenarios. For all the scenarios except that
for the first one, only two components of the multiplier
vector are updated with the rule (20) because only two
blocks have nonzero elements. Thus, once the subprob-
lem for a scenarios is solved and the multiplier vec-
tor has been updated according with (20),we keep this
value fixed for the remainingS − 1 subiteration. This
case allows us to deal with a restricted dimension of the
dual vectorλ in the subproblem, speeding the solution
process.

It can be verified that the order used for processing
the component functionsDs(λ) can significantly affect
the rate of convergence of the method. A randomized

version of the incremental subgradient method has been
proposed in [28], where the component function to be
processed is chosen randomly. In our case since each
component functionDs(λ) has an associated probabil-
ity, namely the probability of scenarios, we select the
scenario to be processed according to the probability
distribution.

Clearly, an efficient implementation of the proposed
algorithm needs to address a number of issues related to
the presence of a large number of alternative scenarios.
It is not difficult to recognize that the algorithm can po-
tentially become very intensive from the computational
point of view. Although the best approach is likely to
be problem dependent, some general recommendations
are noteworthy. Firstly, the solution to optimality of the
Lagrangian dual comes at a computational cost, so it
can result in a decrease in the number of iterations to
convergence, but in an increase in the solution time.
Instead of solving the Lagrangian dual to optimality,
it is beneficial to stop the solution process as soon as
the Lagrangian value rises above the best known upper
boundz̄. Similar ideas have been used in [29] and [30].
Secondly, by exploiting the solutions of the incremental
subgradient subproblems, an effective early branching
strategy has been designed to reduce the computational
burden at each node of the branch and bound tree. The
early branching scheme exploits the quality of the so-
lution in term of its nonanticipativity gap. We define
τ =

∑

s=1,...,S−1 |x(s+1) − x(s)| as a measure of the
nonanticipativity of the solution. To increase the impact
of variable branching on the enforcement of the nonan-
ticipativity gap, a variablêj = argmaxτj is selected
for early branching whenτĵ ≥ ε, where the accept-
able nonanticipativity degreeε is an arbitrary parameter
which depends on the problem at hand.

The efficiency of the proposed method heavily relies
on the ability to solve nonlinear (mixed) integer sub-
problems (17). We observe that these subproblems have
to be solved a number of times depending on the num-
ber of iteration step to solve (18). In order to improve
efficiency, we have implemented a warm start proce-
dure. Since subproblems generated at a given node of
the branch and bound tree differ only in a bound con-
straint from the father, dual multipliers can be passed
from the parent to the child nodes.

4. Numerical Illustration

In contrast to the linear (mixed) integer case, no test
problems to use as benchmark have been proposed for
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the nonlinear counterpart yet. Thus, in order to test the
efficiency of the proposed solution approach, we have
faced the problem of generating meaningful instances.
To this aim, we have considered a stochastic version
of a well-known deterministic problem: the Trim Loss
problem (see, for example, [31] for a general descrip-
tion of the problem). The stochastic Trim Loss problem
represents a very interesting generalization of its deter-
ministic counterpart since it explicitly incorporates un-
certainty in one of the most studied problems in the field
of the manufacturing applications. Because of its rele-
vance, many methods both exact ([32–34]) and heuris-
tic ([35,36]) have been proposed for its solution over
the last decades.

Consider the problem of cutting different products
i = 1, . . . , I from raw materials (e.g. paper rolls). Each
type of producti can be cut by means of different cutting
patternsj = 1, . . . , J , each defined by the position of
the knives. For each producti, a certain widthbi and a
demanddi are defined. The change of a cutting pattern
involves a costCj since the cutting machine has to
be stopped before repositioning the knives. In addition,
typically it is not possible to cut out an order, specified
by the demands, without throwing away some of the
raw material. Roughly speaking, the problem consists of
determining the cutting scheme which allows to satisfy
the customers demands minimizing the total cost. The
cutting pattern is defined by specifying the use of a
given pattern by means of the binary variableyj, the
number of productsi in patternj by nij and the number
of repeatsmj of a patternj .

The stochastic version of the problem has been de-
fined by explicitly incorporating into the deterministic
model the main source of uncertainty which is related
to the demands. We have assumed that the uncertain
demands are represented by discrete random variables
with a finite number of realizationsds

i each occurring
with probabilityps, s = 1, . . . , S. The two-stage struc-
ture has been suggested by the nature of the problem:
decisions concerning the existence of a pattern need to
be taken in advance in order to set the cutting knives,
whereas the number of repeats can be decided when
additional information is available. The formulation of
the two-stage Trim Loss problem is as follows:

min

S
∑

s=1

J
∑

j=1

(Cjyj + pscjmjs) (22)

(Bmax− ∆)yj ≤
I
∑

i=1

binij ≤ Bmaxyj ∀j (23)

yj ≤
I
∑

i=1

nij ≤ Nmaxyj ∀j (24)

J
∑

j=1

mjsnij ≥ ds
i ∀ i, ∀s (25)

yj ≤ mjs ≤ Myj ∀j, ∀s (26)
J
∑

j=1

mjs≥max

(⌈

∑I

i=1 ds
i

Nmax

⌉

,

⌈

∑I

i=1 ds
i bi

Bmax

⌉)

∀s

(27)

y(j+1) ≤ yj j = 1, . . . , J − 1 (28)

m(j+1)s ≤ mjs j = 1, . . . , J − 1, ∀s (29)

yj ∈ {0, 1} ∀j

mjs ∈ Z, ∀j, ∀s (30)

nij ∈ Z, ∀i, ∀j. (31)

where yj andnij are first-stage variables, whereas
mjs denote the second stage variables. In the above for-
mulation, for each cutting patternj, M represents an
upper bound on number of repeats, whereasBmax, ∆
andNmax denote the maximum width allowed and the
width tolerance for cutting patterns, and a physical re-
striction of the number of knives that can be used in
the cutting process, respectively. Constraints (23) pre-
vent the patterns to exceed the given width limits, con-
straints (24) limit the maximum number of products
that can be cut from a pattern, for each scenarios, con-
straints (25) impose the satisfaction of the customer de-
mands. Constraints (26) relate the binary variablesyj

to the cutting pattern. Constraints (27) impose a lower
bound on total number of patterns made, whereas (28)
and (29) are precedence constraints used to reduce de-
generacy. It is worth noting that the stochastic formu-
lation has been derived from the standard determinis-
tic one used in [6] and [37]. To our knowledge the
stochastic Trim Loss problem has not been previously
addressed in the literature. The bilinear constraints de-
termine the nonconvex integer nature of the problem.
Since the number variables[J + J × I + J × S] and
constraints[4×J + I ×S +3(J ×S)+S] is related to
the number of scenarios, depending onS, the problem
becomes intractable.

Our preliminary computational experiments have
been carried out on set of instances derived from the
deterministic models whose parameters are reported in
Table 1. By varying the number of scenarios, we have
defined 12 instances, whose sizes, measured in terms
of number|V | of variables and|C| of constraints are
reported in Table 2.



82 Patrizia Beraldi, et al. – Stochastic Nonlinear Mixed Integer Program

Table 1

Problem parameters
I J Cj cj Nmax Bmax M ∆ bi

TL2 2 2 1 1

10
j 5 1900 3 200 {330, 360}

TL4 4 4 1 1

10
j 5 1900 15 200 {360, 385, 415, 330}

TL5 5 5 1 1

10
j 5 2200 15 200 {330, 360, 370, 415, 435}

Table 2

Test Problems dimensions
Problem S |V | |C|

TL2 50 50 106 458(100)
TL2 100 100 206 908(200)
TL2 150 150 306 1358(300)
TL2 200 200 406 1808(400)
TL4 50 50 220 866(200)
TL4 100 100 420 1716(400)
TL4 150 150 620 2566(600)
TL4 200 200 820 3416(800)
TL5 50 50 280 1070(250)
TL5 100 100 530 2120(500)
TL5 150 150 780 3170(750)
TL5 200 250 1030 4220(1000)

Our prototypal algorithm has been implemented in
C++ and uses Lindo Api as callable library [38] to solve
the different subproblems within the branch and bound
scheme. The choice of this software has been motivated
by the consideration that it provides a provably global
optimal solution and is one of the fastest and most ro-
bust available global solvers. On the contrary, the main
disadvantage derives from the interface style which is
based on the ‘instruction list’ input format. Such a no-
tation can be very time consuming even for problems of
medium size. However, the nature of the method which
works on independent scenario subproblems facilitates
this task. Although our implementation uses Lindo Api,
any global optimization software with callable library
and standard interface can serve this purpose. We ob-
serve that the competitive advantage of the proposed
method over straightforward use of standard solvers ap-
plied to the deterministic equivalent problems derives
from the exploitation of the stochastic problem struc-
ture.

The performance of the implemented algorithm has
been evaluated by measuring the solution time (CPU
time) and the number of outer iterations (NIter). We re-
port in Figures 1-3 the CPU time in seconds for solving
TL2, TL4 and TL5, respectively, for different number
of scenarios. The analysis of results show that doubling

the number of scenarios does not produce a substantial
impact on the solution time. This behavior highlights
the benefits of the criteria implemented in our algo-
rithm. The selection of appropriate branching variables
also plays a key role in ensuring high performances of
the algorithm. In particular for the Trim Loss problem,
they variables are assigned the highest priority, them

variables come next, and then variables follow. The
number of major iterations performed by our algorithm
is reported in Figure 4.

Fig. 1. CPU time in seconds for the TL2 as function of the
number of scenarios.

Fig. 2. CPU time in seconds for the TL4 as function of the
number of scenarios.

Other experiments have been carried out to compare
our algorithm with the standard solver (see Table 3).
To this end, a time limit on the running time has been
fixed at 3600 seconds for the instances TL2 and TL4
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Table 3

General-purpose solver versus our algorithm for TL25 and TL210
Problem General-purpose Solver Decomposition algorithm

CPU time NIter CPU time NIter
TL2 5 72 138941 2 3383
TL2 10 11 11085 3 3877

Fig. 3. CPU time in seconds for the TL5 as function of the
number of scenarios.

Fig. 4. Number of major iterations

and to 5000 seconds for the instance TL5. We observe,
however, that such a comparison was not very signifi-
cant: the standard solver was not able to solve none of
the instances within the fixed limit, but the TL2 with a
very limited number of scenarios. This behavior can be
explained by observing that our method fully exploits
the structure of the considered problem.

Finally, in Figure 5 we have compared the CPU time
for the test problems TL2, TL4 and TL5 with the same
number of scenarios. To sum up, on the basis of the
numerical results we can observe that:
- For all the test problems the proposed algorithm of-

fers significant advantages over the general-purpose
solver. Thus, decomposition seems to be the best way
to tackle this kind of problem;

- Notwithstanding the problem of finding a globally

Fig. 5. CPU time in seconds as function of the

optimal solution of a nonconvex problem is a NP-
hard task and the time to find a global optimum may
increase exponentially with problem size, our algo-
rithm is very efficient in practice;

- The instance TL2 with up to 1202 variables, 3100
linear constraints, and 400 nonlinear constraints can
be solved in less than 5 minutes as shown in Figure 1;

- Increasing the number of first stage variables makes
the problem more difficult for both the general-
purpose solver and our algorithm;

- Increasing the number of patterns variables while
maintaining fixed the number of scenarios correspond
to an increase in the CPU time which is more evi-
dent for the instances TL4 and TL5. As expected, the
computing time of the algorithm increases with the
inherent difficulty of the deterministic instances;

- The algorithm is quite insensitive to the scenarios
growth although the problem dimension depends
nonlinearly on the number of scenarioS. This shows
the effectiveness of the implementation issues ad-
dressed in our prototypal algorithm.

5. Conclusion

In this paper we have proposed a solution approach
for the class of two-stage stochastic nonlinear (mixed)
integer problems. The huge size of the deterministic
equivalent formulation makes the solution process over-
whelming for general-purpose software. The proposed
approach belongs to the class of dual decomposition
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methods. In particular, the relaxation of the nonanticipa-
tivity constraints makes the original problem separable
into independent scenario subproblems. The coordina-
tion of the different scenario solutions is performed by
means of a branch and bound approach where the solu-
tion of the Lagrangian dual is used as bounding rule. The
solution of the corresponding nondifferentiable concave
subproblems is performed by an incremental subgradi-
ent method which exploits the specific problem struc-
ture. The preliminary computational results carried out
on a stochastic version of the Trim Loss problem are
very encouraging suggesting that the proposed algo-
rithm needs to be investigated further to identify ad-
ditional properties and application areas. Furthermore,
the proposed approach seems to be suitable to be imple-
mented on a parallel computational environment. Infact,
the solution of the scenario subproblems can be carried
out in parallel by partitioning the workload among the
available processors. The design of an efficient parallel
implementation represents an ongoing research activity.
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