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Abstract

Non-negative linear programs with box-constrained uncertainties for all input data and box-constrained variables are
considered. The knowledge of upper bounds for dual variables is a useful information e.g. for presolving analysis aimed
at the determination of redundant primal variables. The upper bounds of the duals are found by solving a set of special
continuous knapsack problems, one for each row constraint.
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1. Introduction

When a linear programming (LP) problem with
non-negative coefficients has uncertain coeffi-

cients in a known range, what are the bounds where
the solution of the dual problem is located? Namely
what are the upper bounds for the dual variables that
are valid for all of the range of uncertainty in the coef-
ficients. This is a new problem which was not solved
previously, as pointed out in (Ioslovich,2001a).

LP has been a useful tool in economics, operations
research, automatic control etc. for many years. In par-
ticular LP problems with non-negative coefficients play
an important role, and e.g. the planning problem consid-
ered in the pioneering work (Kantorovich, 1939) was of
this type. Often very large scale LP problems have to be
solved. Despite extended computing capabilities there
is still a large difference between solving an LP prob-
lem of intermediate dimension and of large dimension.
Different methods for solving large-scale LP problems
are considered in e.g. Adleret al.,1991; Rogerset al.,
1991; Karmarkaret al., 1991; Gill et al., 1995; Zhang,
1996). Large LP problems almost always contain a sig-
nificant number of redundant constraints and variables.
This means that some constraints will never be vio-
lated and some variables will definitely be on either
the zero or maximal bound. Therefore it is in general
worth while to devote some effort to presolving analy-
sis and considerably reduce the size of the problem. In
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this way, sometimes originally intractable problems can
be solved. However, the main effect is that significant
computational resources may be saved.

Various presolvers are described in (Karwanet al.,
1983; Brearlyet al., 1975; Mészáros and Suhl, 2003;
Sadhana, 2002; Paulrajet al., 2006; Gould and Toint,
2004). Nowadays presolvers are an integral part of
many widely used LP-solvers, such as CPLEX, LIP-
SOL, MOSEK, and others. An interesting introduction
to presolving together with important results can be
found in (Gould and Toint, 2004). These presolvers
play a significant role in the ability of the mentioned
packages to handle very large size problems. One must
keep in mind that, when pushing the button in order to
solve a large scale LP, usually, by default, the first step
will be a presolving procedure.

It is also well known, that the input data are not exact
for most large-scale problems. This problem have been
considered in (Ben-Tal and Nemirovski, 2000) where
possible infeasibility and the robust counterpart prob-
lem were studied. The simple and rather usual situation
is that each data item is given in some range, e.g. with
a relative deviation from the given nominal value. Pre-
solving analysis of LP problems with box-constrained
uncertainty in the coefficients is treated in (Ioslovich,
1999,2001a,b; Ioslovich and Gutman, 2000), where a
set of algorithms is presented. In these algorithms all
the evaluations are robust, meaning they are valid when
the parameters of the problem (matrix and objective co-
efficients, values of bounds,etc.) are known only within
some given range. These evaluations arerobust in ac-
cordance with the definition given in (Ben-Tal and Ne-
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mirovski, 2000), p. 2, meaning that a robust methodol-
ogy makes the result immune against data perturbations.

When evaluating possibly redundant columns by
analysis of the dual problem, it is useful to know upper
bounds of the dual variables. The computation of upper
bounds is a rather complicated and previously unsolved
problem. Let us consider the LP problem in the form

ϕ= f ′x→ max

Ax≤ l, 0 ≤ x ≤ xu,

0 ≤ l, 0 ≤ A, 0 ≤ f, 0 ≤ xu

A ∈ R
m×n, l ∈ R

m, x, xu, f ∈ R
n (1)

All coefficients are assumed to be non-negative. We
shall denote the rows of matrixA asa′i and the columns
assj . The dual problem has the form

φ= l′y + x′uu→ min

f ≤A′y + u,

0≤ y, 0 ≤ u,

y ∈ R
m, u ∈ R

n. (2)

Herey is the vector of dual variables, related to the row
constraints, andu is the vector of dual variables related
to the upper bounds of the primal variables. If some of
these bounds are not known, large numbers could be
assigned instead. The presolving method in (Ioslovich
and Makarenkov, 1975), and (Ioslovich, 1999, 2001a,b)
is based on a set of tests of a single row or column. The
number of calculations in the single test for one row
constraint is of the same order as the problem to find
a median of a set ofn real numbers, (Cormenet al.,
1990), namelyO(n).

Although the non-negativity condition restricts the
use of this method, the class of corresponding LP prob-
lems is still large. Let us consider the set of LP prob-
lems in the primal form (1) and in the dual form (2)
with bounds of uncertainty for the data

0 ≤ A ≤ A ≤ A,

0 < l ≤ l ≤ l,

0 < f ≤ f ≤ f,
0 ≤ xu ≤ xu ≤ xu,

(3)

where the matrixA consists of elementsaij , and the ma-
trix A consists of elementsaij , respectively, and where
the inequalities should be interpreted component wise.
We shall denote theith row of the matrixA asa′i, and
the jth column of the same matrix assj . We shall use
notationsa′i andsj for the ith row andjth column of
the matrixA, respectively. For this set of LP problems

we have to find guaranteed evaluations that will allow
us to detect the redundant variables and row constraints,
for the given range of the input data uncertainty.

Among many examples of such LP problems we
shall describe two. The first example is described in
(Ioslovich,2001a) and it is related to optimal produc-
tion planning at a huge industrial plant. The primal
variablesxj correspond to the vector of the planned
amount of items to be produced, subject to upper limits
xuj and the ”row constraints” are related to equipment,
supplied raw materials, and personnel of different pro-
fessions. The list of equipment and production is very
huge and hence the dimensionality is very large. More-
over, the plant consists of several subdivisions, each of
them generating its own constraints. The objective is to
maximize the planned profit. The proposed presolving
method makes it possible to reduce the problem stated
in (Ioslovich, 2001a) from the size(15000×5000) to
about(100×200).

The second example is connected with the problem
of ecological monitoring and control of water quality.
From its source, the water it is pumped into intermedi-
ate storage. Pumping occurs at discrete moments from
different locations. For each moment and each location
there exists a forecast for the concentration of a set of
pollutants. The amount of water that can be pumped at
each moment from each location is limited. The amount
of each pollutant in the intermediate storage is strictly
limited. One has to maximize the total volume of water
pumped into the storage within given constraints. All
the given input information has box-constrained uncer-
tainty. The dimensionality depends on the number of
monitored pollutants, time interval, number of the lo-
cations, and can be very huge. However not all the pol-
lutants are critical at every period, therefore presolving
can significantly reduce the size of this problem.

The paper is organized as follows. Sections 2 and
3 briefly summarize the main features of the presolv-
ing method described in (Ioslovich,2001a) in relation
to redundancy of the primal variables, while Section 4
contain completely new results concerning evaluation
of the upper bounds for the dual variables in the pres-
ence of box-constrained uncertainty. Numerical exam-
ples are given in Section 5.

2. General background and a principal scheme

The aim of the presolving method (Ioslovich,2001a)
is to extract those constraints that will always be sat-
isfied because of other constraints, and those variables
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that can be set in advance to its boundary values as a re-
sult of column redundancy. The scheme of the method
is as follows:

A number of auxiliary small tests are performed, each
of them consists of a solution of an LP problem with one
row constraint and box-constrained variables, known
as theContinuous knapsack problem, (Dantzig, 1963).
These tests, numerically very cheap, make it possible
to evaluate the row constraints and to find and remove
some of the redundant ones. In the second stage, a sim-
ilar procedure is applied to the dual problem. This leads
to the reduction of the number of variables (columns).
Then the first stage is repeated, and the testing proce-
dure becomes iterative. One can also note that as a re-
sult of the current reduction, the problem is decomposed
into a set of smaller problems.

Finally any standard LP method can solve the prob-
lem without difficulty, because its size becomes accept-
able. Computer time is significantly reduced.

Let us consider the auxiliary problem with fixed co-
efficients and one linear constraint

ψ = f ′x→ max

d′x≤ b,

0 ≤ x ≤ xu,

f ≥ 0, d ≥ 0, b ≥ 0. (4)

The solution of the auxiliary problem (4), which is
called the “continuous knapsack problem” (CKP), was
described in detail in Dantzig (1963), p. 517 (see also
Appendix A). From the optimality conditions, and by
denoting the dual variable for the single row constraint
asξ, it follows that

∀(j : fj < djξ), xj = 0;

∀(j : fj > djξ), xj = xuj . (5)

Referring to Appendix A, the optimal solution will in-
clude the variablesxj1 , xj2 , . . . , xjp

, ordered by the de-
creasing sequencefj/dj , such that

p
∑

k=1

djk
xjk

= b (6)

All the variables,xjk
except the last one will be set to the

upper limitxuj . The last variablexjp
which corresponds

to fjp
/djp

, becomes the basic variable and is included
into the solution with an intermediate value,

0 ≤ xjp
≤ xujp

(7)

The valuefjp
/djp

will be equal to the dual variable,
ξ. If the basic variable is not equal to an intermediate

value (degenerate case), then it will be assumed that
the dual variableξ is equal tofjp

/djp
, wherep is the

last value of the sorted index that corresponds to the
variable included in the solution which was set to its
upper bound. Let us consider the problem of type (4)
replacing the constraintd′x ≤ b with a single constraint
of the primal problem (1), namely by the rowi. This
problem will have the following form

ϕi = f ′x→ max

a′ix≤ li

0≤ x ≤ xu. (8)

The dual variable of this problem which is calculated
similarly to ξ will be denoted asyui, and the vector of
m componentsyui asyu : yu ∈ R

m. The following
theorem was proved in (Ioslovich and Makarenkov,
1975):

Theorem 1.For the pair of problems (1) - (2) and the
set of problems (8) the following inequalities hold

yi
∗ ≤ yui, ∀(i = 1, ..., n), (9)

whereyi
∗ is i-th component of the optimal solution of

the dual problem (2).

Using the upper bounds of the dual variables in (9)
one can add box constraints to the dual problem (2). It is
however not clear how to find similar upper bounds for
all set of LP problems with box-constrained uncertainty
in the input coefficients (3). This problem will be treated
in Section 4, whereTheorem 1will be used.

The problem (8) is aggregated, meaning that all row
constraints of the problem (1) are summed with non-
negative coefficients. All the coefficients of aggregation
are zero except the coefficient for the constrainti which
is equal to1. The aggregated problem has an equal or
greater feasible set than the feasible set of the primal
problem (1). Therefore the optimal value of the objec-
tive for the aggregated problem can be used as the upper
bound for the objective of the original problem (1).

We shall assume that we have obtained the valueϕl

which is an upper bound for the objective function in
all set of problems (1)-(3) such that

f ′x ≤ ϕl (10)

The algorithm how to findϕl can be found in (Ioslovich,
2001a).
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3. Robust presolving analysis of dual LP problems

For the optimal values of the dual variables from (2)
the following inequality holds

l′y + x′uu ≤ ϕl. (11)

The inequality (11) is the corollary of the equality of
the optimal values of the criterion for the primal and
dual problems (see Duality Theorem, Dantzig, 1963).
Multiplying the inequality in (2) with the vectorxu and
summing, one obtains

y′lu + u′xu ≥ f ′xu. (12)

From (11) and (12) it follows that

y′(lu − l) ≥ f ′xu − ϕl. (13)

From (11) it also follows that

l′y ≤ ϕl (14)

Thus one has obtained two inequalities for the dual vari-
ablesy, without the dual variablesu.

For each dual problem from the set of interval in-
equalities (2), (3) the inequalities (11) and (12) have to
be satisfied. let us denote

lu = Axu

It follows, according to (3), that

l′y + x′uu≤ ϕl

y′lu + u′xu ≥ f ′xu. (15)

Summing these inequalities from (15) one obtains

y′(lu − l) ≥ f ′xu − ϕl. (16)

From the first inequality in (15) it also follows that

l′y ≤ ϕl. (17)

One can see that the inequalities (16) and (17) follow
from the inequalities (2) and (3).

Using the inequality (16), and assuming that the ro-
bust upper evaluationy is known, we can solve the
problem

η
jl

= s′jy → min

y′(lu − l)≥ f ′xu − ϕl

0≤ y ≤ y (18)

Herey is the robust evaluation of upper bounds of the
dual variables that will be found later in Section 4. Now
we obtain the following robust test

η
jl
> f j . (19)

If the inequality (19) is satisfied then the variablexj

must be set to zero for all the set of problems (1), (3),
and the columnj can be removed.
The second robust test can be obtained by solving the
problem

ηuj = s′jy → max

l′y≤ ϕl

0≤ y ≤ y. (20)

This test has the form

ηuj < f
j
. (21)

If the inequality (21) is satisfied, then the variablexj

must be set to its upper bound for all the problems in
the set (1), (3).

It means that the value ofxj must be at least as
large asxuj . It is obvious that the robust evaluations
(bounds)y make the feasible set of the corresponding
CKP smaller, and thus improve the resulting valuesη
andη which are used in the dual tests.

4. Robust evaluation of the dual variables

Let us denote asyu the vector of upper bounds foryu

for all set of dual problems (2) with coefficients from
(3). Recall that each componentyui of yu has been
found by the solution of the corresponding CKP (8) with
a single row constrainti.We have the following evident

Statement 1: For the dual variableyi of any LP prob-
lem (1) from the set (3) the following inequality is sat-
isfied

0 ≤ yi ≤ yui. (22)

Theorem 1holds for all LP problems (1) from the set
(3), and hence the sequence of inequalities holds

0 ≤ yi ≤ yui ≤ yui. (23)

Thus the problem of the evaluation of the duals is re-
duced to the problem of finding the upper bound ofyui

for the CKP with a single rowi from the set (3). Once
the vectoryu is found, the unknown upper boundy of
all duals from (1)-(3) can be set toyu.
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Now we shall show how to findyui. Let us denote

cij = f j

aij

aij

, (24)

and let the row vectorci be theith row of the matrix
C. Consider the following CKP:

cix→max

aix ≤ li,

0 ≤ x ≤ xu. (25)

Solving this problem will yield the optimal value of the
dual variable corresponding to the chosen single row
constraint. Let us denote this value asζi. The following
theorem holds:

Theorem 2:A valid choice foryui is yui = ζi, thus
the valueζi is the upper bound for a dual variableyi

of any LP from (3).

Recalling the algorithm (section2) of solving CKP,
let us re-index byk the variablesxj and their coeffi-
cients when sorted according to decreasing order of the
values

cij
aij

=
f jaij

aijaij

=
f j

aij

. (26)

Let us denote the sequence of indices{k} corresponding
to non-zero variables in a solution of (25) asK. The
values is a maximal value ofk ∈ K and it is defined
by the inequalities

k=s−1
∑

m=1

aikxuk ≤ li

k=s
∑

m=1

aikxum > li. (27)

From the CKP algorithm, see (5) and Appendix 1, and
the definition ofcij , (??), it follows that

ζi =
cis
ais

=
fsais

aisais

=
fs

ais

. (28)

The proof of theTheorem 2is given according to thead
adversumprinciple: Let us consider some LP problem
with one row constrainti and upper bounds for variables
x from the set (3) and denote it asCKPi. We recall that
the dual variable of constrainti in thisCKPi is denoted
as yui. If the row constrainti is not redundant then
clearly

∑

j aijxuj ≥ li. We assume thatyui = fp/aip,
meaning that the variablexp is the only basic variable.

Let us denote the set of indicesk of all nonzero variables
of CKPi asQ. Thus we have

fk/aik ≥ fp/aip, ∀ k ∈ Q. (29)

Suppose that in contrary toTheorem 2we have

yui > ζi. (30)

Then, the following a set of inequalities∀ (k ∈ Q)It
evidently holds

fk/aik ≥ yui > ζi =
fs

ais

. (31)

Therefore one has
Q ⊂ K, (32)

and there exists a non-empty subsetS of indicesk such
that

s ∈ S, S ∩Q = ∅, S ∪Q = K. (33)

We shall denote the optimal solution of (25) asxa and
the optimal solution ofCKPi asxb. We have

xa
k = xuk, ∀ (k ∈ K, k 6= s), xa

s ≥ xa
s > 0,

xb
k = xuk ∀ (k ∈ Q, k 6= p), xb

up ≥ xb
p > 0. (34)

According to the algorithm ofCKP , and taking into
account thatxb

k ≤ xuk ≤ xuk, and (33), it follows for
the solutions of (25) andCKPi that

li =
∑

k∈Q

aikx
b
k <

∑

k∈K

aikx
a
k = li. (35)

This is in contradiction to the constraintli ≥ li. Hence,
taking into account the Statement 1, we have

yi ≤ yui ≤ ζi, (36)

andTheorem 2is proved.

5. Numerical examples

The following LP problem of form (1) is considered
as a simple example:































f ′ = (3, 2, 1);
x′u = (1, 1, 2);

A =





1 5 20
2.5 3 1
3 1 5



 ;

l′ = (5, 6.2, 3.8).
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The solution of this LP is

x1 = 1; x2 = 0.8; x3 = 0.

One can see that the optimal solution of the dual prob-
lem is non-unique and has to satisfy the conditions

y3 = 2 − 5y1, y2 = 0, u2 = 0, u3 = 0,

14y1 = 3 + u1,

0.4≥ y1 ≥ 3/14. (37)

Thus the upper bound ofy1 is attained for the solution

y1 = 0.4, y2 = 0, y3 = 0, u1 = 2.6.

Solving the set of corresponding CKP we get the vector
of the upper bounds of the dual variables,

yu = {0.4, 0.667, 1.0}.

A box-constrained uncertainty was added in the follow-
ing way

du = 1.05; dl = 0.95; dxu = 1.025; dxl = 0.975;

A = A ∗ du;A = A ∗ dl;

f = f ∗ du; f = f ∗ dl; l = l ∗ du;

l = l ∗ dl;xu = xu ∗ dxu;xu = xu ∗ dxl.

Calculations according toTheorem 2give the vec-
tor of upper bounds of the dual variables,y =
{0.4421; 0.7368; 1.1053}. Within the box-constrained
uncertainty, two extreme cases can be examined
that give upper and lower bounds for the objec-
tive. The first is the LP{A, xu, f , l}. This
LP gives yu = {0.4421, 0.7368, 0.2211}. The
second case is the LP{A, xu, f , l}, giving
yu = {0.3619, 0.6032, 0.9048}. One can see that
in all cases the inequalityyu ≤ y holds. A table of
numerical results obtained for large-scale LP problems
(without uncertainty in coefficients) is presented in
(Ioslovich, 2001b).

Here we intend to show the results for the randomly
generated problem PRIMER2000RS (size2000×100)
which contains a special modification to ensure redun-
dancy (Ioslovich,2001b). The MATLAB code of the
problem PRIMER2000RS is presented in Appendix B.
Let k1 be the number of redundant rows,k2 the number
of variables redundantly belonging to the zero bound,
andk3 the number of variables redundantly belonging
to the upper bound. An uncertainty of2 per cent was in-
troduced to all input coefficients. Two iterations of the

Table 1

Results of numerical experiments

Run No k11 k12 k13 k21 k22 k23

1 1538 12 15 1999 50 16
2 1298 10 6 1783 22 7
3 1999 47 8 1999 57 8
4 1805 26 10 1999 54 10
5 276 0 39 688 0 40
6 1999 46 15 1999 57 15
7 366 1 10 1999 48 10
8 864 1 34 1999 45 34
9 1818 30 10 1999 54 10
10 765 4 16 1999 47 17

presolving algorithms were performed. The runs were
performed in a single call in the MATLAB environment.
In each run, MATLAB randomly generated a new LP
matrix of equal size. Values ofk1, k2, k3 after the first
iteration are denoted ask11, k12, k13, respectively, and
the corresponding values after the second iteration are
denoted ask21, k22, k23, respectively. The results of
the presolving for ten randomly generated problems are
presented in Table I. The size of the problems is signif-
icantly reduced in all cases. Table I shows how many
redundant rows and columns are determined in each it-
eration for each problem. The number of the redundant
variables on the lower bound and on the upper bound
are shown separately.

6. Conclusions

In this paper we have presented new results that im-
prove presolving tests for primal and dual large scale
LP problems. The evaluation of the dual variables of LP
problems with uncertainty in all input data is an impor-
tant element of the proposed presolving tests. An algo-
rithm for such an evaluation is presented. The toolbox
IVITEST, (Ioslovich,2001b), running under MATLAB
contains a realization of these algorithms. The toolbox
can be obtained by e-mail on request.

Appendix A

Consider the LP problem (4) noting that it has one
linear row constraint only. Introduce the auxiliary vector
Y with componentsYj = djxj . Hence the constraints
are

∑

j

Yj ≤ b,
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and
0 ≤ Yj ≤ Yuj

and the objective is

∑

j

(fj/dj)Yj → max

Now orderY by the decreasing sequencefj/dj ,
Yj1, Yj2, ..., Yjp, .... Next chosep such that

p−1
∑

k=1

Yujk < b

and
p

∑

k=1

Yujk ≥ b.

Obviously the optimal solution of (4) will be

p
∑

k=1

Yjk = b,

whereby

Yjk = Yujk , k = 1, ..., p− 1

andYjp ≤ Yujp.

Appendix B

Here is the MATLAB code of the problem
PRIMER2000RS.

globalAl Au;
Al = rand(2000, 100);
[mn] = size(Al);
s = rand(10, 1); a = 100 ∗ rand(1);
b = rand(1) ∗ 1e− 2; c = rand(1) ∗ 1e− 2;
fl = rand(100, 1); fl(1 : 40, 1) = fl(1 : 40, 1) ∗ c;
Al(:, 41 : 80) = Al(:, 41 : 80) ∗ b;
ll = ones(size(Al(:, 1))); ll(1) = ll(1)/a;
xul = ones(size(fl)); dk = 1.02;
Au = Al ∗ dk; xuu = xul ∗ dk;
lu = ll ∗ dk; fu = fl ∗ dk;
k1 = []; k2 = []; k3 = [];
for i = 1 : 2,
[k1, k2, k3, pm, flag, yu] =
ivitest5r(fl, fu, ll, lu, xul, xuu, k1, k2, k3);
la = size(k1); l1(i) = la(1); la = size(k2);
l2(i) = la(1); la = size(k3); l3(i) = la(1);

end;

The matricesl1, l2, l3 contain the values of the vari-
ablesk1, k2, k3, respectively, from the first and second
iterations.
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