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Abstract

In all-optical networks, several communications can be transmitted through the same fiber link provided that they use
different wavelengths. The MINIMUM ALL-OPTICAL ROUTING problem (given a list of pairs of nodes standing for as
many point to point communication requests, assign to each request a route along with a wavelength so as to minimize
the overall number of assigned wavelengths) has been paid a lot of attention and is known to beNP–hard. Rings, trees
and meshes have thus been investigated as specific networks,but leading to just as manyNP–hard problems.

This paper investigates 1-turn routings in meshes (paths are allowed one turn only). We first show the MINIMUM
LOAD 1-TURN ROUTING problem to beNP–hard but 2-APX (more generally, the MINIMUM LOADk-CHOICES
ROUTING problem isNP–hard butk-APX), then that the MINIMUM 1-TURN PATHS COLOURING problemis 4-APX
(more generally, anyd-segmentable routing of loadL in a hypermesh of dimensiond can be coloured with2d(L−1)+1
colours at most). >From there, we prove the MINIMUM ALL-OPTICAL 1-TURN ROUTING problem to be APX.

Key words: minimum load routing, minimum path colouring, all-opticalnetworks, mesh, 1-turn routing, approximation
algorithms.

1. Introduction

In optical networks, links are optical fibers. Wave-
length Division Multiplexing (WDM) is a technique
(see for instance [1]) that proposes to take advantage of
the huge optical fiber bandwidth by allocating a unique
frequency to each communication. Several communi-
cations can simultaneously use the same fiber as long
as their wavelengths are different, while no expensive
wavelength conversion is needed when traversing nodes.

In this context, networks are calledall-optical net-
works. They can be viewed as graphs andcommunica-
tion requests as pairs of nodes. We callcommunica-
tion instance any graph together with a family of com-
munication requests (a pair of nodes may appear more
than once in the family). Given some communication
instance, theall-optical routing problem is then formu-
lated as: to each communication request assign some
path connecting its two nodes, that is find arouting for
this instance, and to each of these paths, assign some
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colour in such a way that no two paths using a common
edge bear the same colour, thas is turn the routing into
anall-opticall routing.

Given a communication instance, two natural op-
timization problems arise: find an all-optical routing
which minimizes the overall number of colours assigned
to paths, namely theminimum all-optical routing prob-
lem, and find an all-optical routing which minimizes
the number of paths having to traverse a common edge,
namely theminimum load routing problem 2 . See fig-
ure 1 for an example. The minimum number of dis-
tinct colours is clearly an upper bound to the minimum
achievable load but the difference cannot be bounded by
a constant in general [3,4]. Note that if network nodes
are converters, that is if any path can change its colour
at any node, the minimum all-optical routing problem
reduces to the minimum load routing problem.

It is known that there is no(loglogM)1−ǫ approxi-
mation for the unirected congestion minimization prob-
lem unlessNP ⊂ ZPTIME(npolylogn), whereM is
the size of the graph andǫ is any positive constant [5]
(while, in the directed case, there is noc log(log(n))-
approximation algorithm for this problem unless

2 This problem is can be formulated as an integer multicom-
modity flow problem (see for instance [2]).
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Fig. 1. Figure (a) shows a communication instanceI . Figure
(b) and (c) show all-optical routingRb andRc resp. which
are solutions toI . Rc is a minimum all-optical routing for
I , but Rb is not (Rb, resp.Rc, makes use of 6 colours, resp.
5). On the other hand,Rb is a minimum load routing forI
while Rc is not (Rb makes every link support 4 colours,Rc

makes linkzy support 5 colours).

Fig. 2. A mesh with 6 rows and 7 columns. Every path but
one is a 1-turn path (i.e. granted one change of direction at
most).

NP ⊆ D− TIME(nO(log(log(log(n))))) [6]). The
minimum all-optical routing problem isNP–hard in
general, whether graphs are directed [7] or not [8,9,7].
Moreover, restricted to directed graphs, the problem is
known to beNo-APX [10, corollary 3.1.5] (for more
about approximation theory see [11]). Focussing on
specific network topologies, namely when networks
are linear, rings, stars, spiders and trees of rings, makes
these problems range from polynomial toNP–hard,
whetherAPXor not, these results sometimes depending
heavily on whether the graph is directed or not [12–17].
A more detailed summary can be found in [18].

Meshesare networks with a grid pattern (nodes are
organized in rows and columns). A mesh with 6 rows
and 7 columns is shown in figure 2. Indeed, when
all-optical networks are concerned, meshes have been
considered as real competitive solutions among cur-
rent metropolitan topologies [10,19,20]. Restricted to
meshes, the minimum all-optical routing problem is
still NP–hard [8]. To our knowledge, it is not known
whether it isAPX(at least, if it isd–APX, then one must
haved ≥ 2 [8]), and the best result is apoly(ln lnN)
approximation algorithm on meshes ofN×N nodes [9].

This paper is devoted to theall-optical 1-turn rout-
ing problem, the restriction of the all-optical routing
problem in non directed meshes where routings are to
be made of paths which are allowed one change of di-
rection at most. These paths, which we call1-turn paths
(see figure 2), are commonly used in meshes, see for
example [21,22].

It turns out that even so restricted, the minimum
all-optical 1-turn routing problem isNP–hard. Actu-
ally, this result must have been known (for instance a
proof can be derived from [23] where communication
instances on rings are mapped on meshes), though it
seems not to have been published as such. None the
less, we provide a genuine proof and then prove the
minimum all-optical 1-turn routing problem to beAPX
by providing an 8-APXalgorithm (the best performance
guarantee with a constant ratio known to us up till now)
which follows straightforwardly from combiningAPX
results for each of the two following steps, whereI is
some communication instance:
• step 1: compute some 1-turn routingR for I
• step 2: assign colours to the paths ofR to make it an

all-optical routing
Connecting these two steps, routing loads play a cen-

tral role. First, given some positive integerk, when each
request of a communication instance to the all-optical
problem is givenk paths from which its connecting path
must be chosen, the minimum load routing problem
becomes theminimum load k-choices routing prob-
lem. We show this problem to beNP–hardbutk-APX,
from which follows that the minimum load 1-turn rout-
ing problem is 2-APX. Then, we show that given the
paths of a routing of loadL, one can colour these paths
into an all-optical routing using no more than4L − 3
colours (actually, this stems from a more general result
dealing with so-called direction segmentable routings
in meshes of dimensiond introduced in the appropriate
section), which leads to the 8-approximation algorithm
mentioned above.

The sequel is organized as follows.
• Section 2 is devoted to load routing problems, where

the minimum load 1-turn routing problem is proved
to be 2-APX.

• Section 3 is devoted to the minimum path colouring
problem ind-dimensional meshes when restricted to
some special paths, yielding the minimum 1-turn path
colouring problem to be 4-APX.

• Section 4 is devoted to the all-optical 1-turn routing
problem, where the minimum all-optical 1-turn rout-
ing problem is then proved to be 8-APX.
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We conclude in section 5.

2. Load 1-turn routing problems

Given two positive integersL andk, the L-load k-
choices routing problem is the decision problem de-
fined as follows:
instance: a communication instanceI and to each re-

questr = {a, b} in I, the assignment of at mostk
paths joininga andb in theI network

question: is there a routing of loadL for I such that
each requestr from I is satisfied by a path assigned
to r ?
and we call accordingly the derived minimization

problem theminimum load k-choices routing problem.

2.1. The L-load 1-turn routing problem NP-
completeness

It turns out that theL-load 1-turn routing problem is
in P when L = 1 and otherwiseNP–complete. Our
proofs refer to the celebrated SATISFIABILITY prob-
lem whose restriction as 3–SAT is NP–complete(for
instance, see [24, p. 39, p. 48]) while its 2–SATrestric-
tion is in P (for instance, see [25, p. 185]).

2.1.1. L = 1
A straightforward reduction of the 1-load 2-choices

routing problem to 2–SATyields the following:
Proposition 1 The 1-load 2-choices routing problem is
in P .

Proof: We reduce the 1-load 2-choices routing problem
to 2–SAT.

AssumeR = {ri|1 ≤ i ≤ n} is the set of requests of
some instanceI of a 1-load 2-choices routing problem
such thatP i

0 andP i
1 are the two paths assigned to the

requestri for 1 ≤ i ≤ n. UsingR as a set of boolean
variables, we defineC as the set of 2-clauses which, in
turn, are defined for each pair{i, j} with 1 ≤ i, j ≤ n,
according to three possible events:
• {¬ri,¬rj} whenP i

1 andP j
1 share a common edge

• {ri, rj} whenP i
0 andP j

0 share a common edge
• {¬ri, rj} whenP i

1 andP j
0 share a common edge

One can check that there is a solution to the 1-load
2-choices routing problem instance if and only if there
is a solution to the 2–SATproblem instance associated
with C (for instance, one can associate assigning the
value true tori with choosing pathP i

1). We conclude

(a) (b)
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Fig. 3. LetC = {C1, C2, C3, C4} with C1 = {x1, x2,¬x3},
C2 = {x1, x3,¬x4}, C3 = {x2,¬x3,¬x4} and
C4 = {¬x1,¬x2, x4}. Figure (a) shows the communication
instanceI associated withC and figure (b) shows a 2–load
1-turn routing solution toI . In figure (a) each “horizontal”
(resp. “vertical”) rectangle bears the two possible 1-turnpaths
satisfying the communication request associated with one of
the variablesx1, x2, x3 and x4 (resp. to one of the literals
of clausesC1, C2, C3 andC4, with vertical rectangles being
grouped according to the clause to which the literal they stand
for belongs). “Blocking requests” are depicted with dotted
lines.

from the fact that the set of clausesC can be computed
in polynomial time.

Noticing that there are at most two possible 1-turn
paths joining any two vertices in a mesh, the following
straightforwardly stems from proposition 1:
Corollary 2 The 1-load 1-turn routing problem is inP .

2.1.2. L ≥ 2

Theorem 3 TheL-load 1-turn routing problem isNP–
complete forL ≥ 2.

Proof: We reduce 3–SATto theL-load 1-turn routing
problem. We assumeL = 2 (the proof is easily extended
for L > 2 by solely adding a convenient number of so-
called "blocking requests" as defined below).

Clearly the problem is inNP . Using a reduction
of 3–SAT, we prove it to beNP–complete. Let C be
some instance of 3–SATwith C = {c1, c2, ...cm}, a
set of 3-clauses over the set of boolean variablesX =
{x1, x2, ...xn}. Let M[(2n)×(2m+1)] be the mesh whose
rows are numbered from 0 to2n and whose columns
are numbered from 0 to2m + 1. Finally, let I be the
instance of the 2-load 1-turn routing problem defined
as follows:
• to each variablexi, we assign the requestri = {(2i−

1, 0), (2i, 2m + 1)}
• to each positive literall ∈ cj , with l = xi, we assign

the requestri,j = {(0, 2j−1), (2i, 2j)} together with
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a so-called "blocking request"blki,j = {(2i, 2j −
1), (2i, 2j)}

• to each negative literall ∈ cj , with l = ¬xi, we
assign the requestr′i,j = {(0, 2j − 1), (2i − 1, 2j)}
together with a so-called "blocking request"blk′

i,j =
{(2i − 1, 2j − 1), (2i − 1, 2j)}
Then one can check that there is some truth assign-

ment satisfyingC if and only if there is a 2-load 1-turn
routing solution toI. We conclude by considering that
the instanceI of L-load 1-turn routing problem associ-
ated withC can be computed in polynomial time.

2.2. The minimum load 1-turn routing problem ap-
proximation

Clearly, theorem 3 yields the following:
Corollary 4 The minimum load 1-turn routing problem
is NP–hard.

also, since restricting paths in a mesh to be 1-turn
paths turns routing problems into 2-choices routing
problems:
Corollary 5 The minimum loadk-choices routing
problem isNP–hard.

We now show this problem to be APX.
Theorem 6 The minimum loadk-choices routing prob-
lem isk-APX.

Proof: The scheme of the proof is: define the problem
as an integer linear programming problem, relax the
integer constraint, then round straightforwardly a real
optimal solution. Details are as follows.

Let I be some instance of the minimum loadk-
choices routing problem. LetR = {ri}1≤i≤n be the set
of requests fromI. To each requestri is associated a set
Pi = {pi

1, p
i
2, ..., p

i
ki
} of ki feasible paths in the network

G, with ki ≤ k. Selecting pathpi
j to join end-nodes

of requestri if and only if xi
j = 1 yields a one-to-one

mapping between routing solutions toI and solutions
to the integer linear programming instance defined as:

xi
j ∈ {0, 1} for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ ki

ki
∑

j=1

xi
j = 1 for all i, 1 ≤ i ≤ n

z ≥
∑

e∈E(pi
j
)

xi
j for every edgee of the networkG

objective: minimizez

For every edgee of the networkG, let π(e) =
∑

e∈E(pi
j
) xi

j , let π∗

IN denote the optimal value ofπ,

and letπ∗

IR be the optimal value ofπ when relaxing,
for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ ki, integer condition
xi

j ∈ {0, 1} to real conditionxi
j ∈ [0, 1]. Obviously

π∗

IR ≤ π∗

IN.
For all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ ki, assumeai

j to
be the value ofxi

j in an optimal solution to the relaxed
linear programming problem and define :

bi
j =

{

1 if ai
j = max1≤h≤ki

ai
h

0 otherwise

(for a giveni, 1 ≤ i ≤ n, if more than onebi
j is equal

to 1, set all of them but one at 0).
Now, asmax1≤j≤ki

ai
j ≥ 1

k
, letting πalgorithm

IN de-

note the load associated with the(bi
j)1≤i≤n,1≤j≤ki

so-
lution yields the following :

πalgorithm

IN
π∗

IN
≤

kπ∗

IR
π∗

IN
≤

kπ∗

IR
π∗

IR
= k

We conclude by noting that the size of the linear pro-
gramming instance is polynomially related to the size
of the minimum loadk–choices routing instance.

Remark 7 One can show that the approximation anal-
ysis in the theorem above is tight [18].

Restricting againk–choices routings to 1-turn rout-
ings in meshes, theorem 6 yields the following.
Corollary 8 The minimum load 1-turn routing problem
is 2–APX.

The 2 approximation factor expressed in corollary 8
might be improved upon, but, applying the gap tech-
nique (see [26] for instance) to theorem 3 withL = 2
yields:
Corollary 9 If the minimum load 1-turn routing prob-
lem isd–APX for some constantd, thend ≥ 3/2.

3. The 1-turn paths colouring problem

Given some routingR solution to a given communi-
cation instanceI, the conflict graph induced byR is
the graphG whose nodes are the paths ofR, with two
paths being adjacent inG when they have at least one
edge in common.

Let d be an integer such thatd ≥ 2 and letn1, n2,
... nd be non-negative integers. LetM[n1×n2×...×nd]

denote the hypermesh where, with0 ≤ ik, jk ≤ nk for
all k ∈ [1, d], nodesx = (i1, ...id) andy = (j1, ...jd)
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are adjacent iffik = jk for all k ∈ [1, d] but one, say
k∗, for which |ik∗ − jk∗ | = 1, the edgexy being called
an edge of directionk∗. A mesh of dimensiond is a
graphM isomorphic to such aM[n1×n2×...×nd], and,
for k ∈ [1, d], Ek(M) denotes the set of edges ofM
which are of directionk.

Let P be a path in some hypermeshM of dimension
d. If for all i ∈ [1, d] the setEi(G) ∩ E(P ) induces a
path inM , thenP is said to be adirection-segmentable
path. A routing in a hypermesh whose every path
is direction-segmentable is adirection-segmentable
routing .
Lemma 10 If G is the conflict graph of some direction-
segmentable routingR on a hypermesh of dimensiond,
thenE(G) ≤ d(L − 1)(n − L

2 ) wheren is the number
of vertices ofG andL is the load ofR.

Proof: For everyi ∈ [1, d], letGi be the subgraph ofG
induced by conflicts which occur along directioni only,
and letLi be the maximum load on edges ofEi(G).
ThenGi is an interval graph therefore a chordal graph
and therefore has a perfect elimination ordering[27,
pages 6 and 50]. It follows from there that the number
of edges ofGi is less or equal tofn(k) = (k−1)(n− k

2 )
wheren is the number of vertices ofGi andk is the
maximum size of a clique. On the other hand,Gi be-
ing an interval graph, any clique of maximum size in
Gi is of sizeLi. Thus |E(Gi)| ≤ (Li − 1)(n − Li

2 ).
As fn(k) is a non-decreasing function whenk ≤ n and
asLi ≤ L for all i ∈ [1, d], it follows that |E(Gi)| ≤
(L − 1)(n − L

2 ). One concludes the proof considering

that |E(G)| =
∑d

1 |Ei(G)|.

Lemma 11 If G is the conflict graph of a direction-
segmentable routingR on a hypermesh of dimensiond,
one of the nodes ofG is of degree at most2d(L − 1),
whereL is the load ofR.

Proof: The average node degree inG is 2×E(G)
n

, where
n is the number of vertices ofG. One can conclude
from lemma 10.

Theorem 12 Any direction-segmentable routing in a
hypermesh of dimensiond can be coloured in polyno-
mial time using at most2d(L − 1) + 1 colours, where
L is the routing load.

Proof: By induction on the numbern of paths in the
routing R. The result is straightforward ifn = 1. As
colouring the routing is equivalent to colouring the

nodes of its conflict graph, letn > 1 and letG be the
conflict graph induced byR. From lemma 11, some
nodep in G is of degree2d(L − 1) at most. LetR′ be
the routing obtained fromR by suppressing the path
p, G′ be the conflict graph induced byR′, andL′ be
the load ofR′. By the induction hypothesis,G′ can be
coloured using2d(L′ − 1) + 1 colours at most, thus
2d(L− 1) + 1 colours at most. Considering the degree
of p yields the result.

As an interesting special case, theorem 12 yields:
Corollary 13 Any 1-turn routing in a mesh can be
coloured in polynomial time using at most4L − 3
colours, whereL is the routing load.

4. The all-optical 1-turn routing problem

Given some positive integerk, let thek-all-optical
1-turn routing problem be the decision problem de-
fined as follows: given some communication instance
in a mesh, is there an all-optical 1-turn routing for this
instance which usesk colours at most?
Theorem 14 For any k ≥ 2, the k-all-optical 1-turn
routing problem isNP–complete.

Proof: We take advantage of the proof of theorem 3
and we assumek = 2 (as for theorem 3, the proof is
easily extended tok ≥ 2). LetC be some instance of 3–
SATand letI be the communication instance associated
with C in the proof of theorem 3. One can check that
I can be satisfied using 2 colours if and only if there is
a 2-load 1-turn routing which satisfiesI, that is, as in
the proof of theorem 3, if and only ifC is satisfiable.
Which leads to the conclusion.

Given a communication instanceI and a 1-turn rout-
ing S for this instance, letπ(S), resp.ω(S), denote
the load, resp. the number of colours, used byS. Simi-
larly, letπ(I), resp.ω(I), denote the load of a minimum
load 1-turn routing forI, resp. the number of colours
used by a minimum all-optical 1-turn routing forI. As
mentioned before, one hasπ(S) ≤ ω(S), and therefore
π(I) ≤ w(I) as well.
Theorem 15 The minimum all-optical 1-turn routing
problem is 8–APX.

Proof: Let I be some communication instance whose
network is a mesh, letS be a routing forI computed by
a 2-approximation minimum load 1-turn routing algo-
rithm whose existence is asserted by theorem 8, and let
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c(S) be the number of colours used by a path colour-
ing algorithm using at most4 × π(S) colours, whose
existence is asserted by theorem 13.

We then havec(S) ≤ 4× π(S) ≤ 4× 2× π(I), and
we conclude with the general inequalityπ(I) ≤ ω(I).

5. Conclusion

In general, the minimum all-optical routing problem
and the minimum load routing problem are bothNP–
hard, and it is not known whether they areAPX or
not, while the minimum path colouring problem is both
NP–hard and no-APX. Restricting these problems to
meshes does not change their complexity status. In this
paper, we restricted these three problems to 1-turn rout-
ings in meshes.

Regarding load routing problems, we proved theL-
load 1-turn routing problem to be inP when L = 1
and otherwiseNP–complete, and we provided a 2-APX
algorithm to solve the associated minimizing problem.

Regarding the minimum 1-turn path colouring prob-
lem, we proved it to be4-approximable, whereL is
the load of the path family, which is an improvement
over several previous results known to us (namely,
8-approximation algorithms [28,22,29,21]). This re-
sult stems from a result expressed fordimension-
segmentable pathsin meshes of dimension d.

Regarding the minimum all-optical 1-turn routing
problem, and due to the indirect proof of the result, we
think the constant asserted in the 8-APX result (see the-
orem 15) can be improved upon.

Last, it is worth noting that, not surprisingly, some
results can be extended from meshes to tori.
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