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Abstract

We consider on-line network synthesis problems.Net {1,--- ,n} be a set ofn sites. Traffic flow requirements
between pairs of sites are revealed one by one. Whenever aeugestr;; = r;; (i < j) between sites and j is
revealed, an on-line algorithm must install the additiomedcessary capacity without decreasing the existing nétwor
capacity such that all the traffic requirements are met. Thidive is to minimize the total capacity installed by the
algorithm. The performance of an on-line algorithm is meeaduby the competitive ratio, defined to be the worst-case
ratio between the total capacity by the on-line algorithnd &he total optimal (off-line) capacity assuming we havepri
information on all the requirements initially. We distingi between two on-line versions of the problem depending on
whether the entire set of sites is known a prior or not. For fingt version where the entire set of site is unknown, we
present a best possible algorithm along with a matching folaind. For the second version where the entire set of
sites is known a priori, we present a best possible algoritbrm < 6.
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1. Introduction

In the traditional NNTWORK SYNTHESIS PROBLEM
(NSP), one is given an x n, symmetric, non-negative
matrix R (with r;; = 0Vi =1,2,...,n), of minimum
flow requirements between all pairs of distinct sites in
the setV = {1,2,...,n}. The goal is to construct an
undirected networky = [N, E, c] on site setN, with
edge settl and non-negative, real-valued edge capaci-
ties{c(e) : e € E}, such that (i) all the minimum flow

presented in [9] and [20]. The algorithm in [9] is a mod-
ification of the Gomory-Hu algorithm [10]. It has a time
complexityO(n?) and produces a network with at most
2n edges.

Very often, in practical network designing, the source
and destination and the flow requirements only become
known and/or are updated one by one in sequence and
after all the previous requirements in the sequence have
been served by installing necessary capacity. Any in-
stalled capacity cannot be decreased, but can only be

requirements are met one at a time, (that is, for any increased in future.

i,j € N, i # j, the maximum flow value id between
iandj is at leastr;;), and (i) >, 5 c(e) is minimum.

In this paper, we consider two on-line versions of the
network synthesis problem. The quality of an on-line al-

Without loss of generality, we assume the constructed gorithm will be measured by itsompetitive ratipwhich

network is simple, i.e., no loops and parallel edges. Oth-

is defined to be the worst-case ratio between the total

erwise we can delete any loop and merge any parallel capacity of the on-line algorithm and the corresponding

edges without affecting the results in this paper.

Gomory and Hu [10] and Mayeda [13] present ef-
ficient combinatorial algorithms for the problem NSP.
Gomory-Hu algorithm is strongly polynomial and pro-
duces an optimal network with () edges. Also, when
all the elements of the matrik are integers, the edge
capacities in the final network are multiples of half. Al-
ternate, combinatorial algorithms for the problem are
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optimal (off-line) total capacity over all instances.

Network optimization problems, such as matching,
assignment and transportation problems[12,11,15,17,18]
facility location [14], network design [2], Steiner tree
[3,7], set cover [1], traveling salesman [4-6], etc., in
an on-line setting have been actively investigated in
the literature. The reader is referred to the survey pa-
per by Kalyanasundaram and Pruhs [16] for further
information and references up to 1996.

After defining the problems formally in Section 2., we
present the main results and analysis for both versions
of the on-line network synthesis problem in Sections 3.

(© 2007 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All righreserved.
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and 4., respectively.

2. Problem Description and Preliminaries

In this section, we formally define our problems. For
any positive integen, let N = {1,2,...,n}. Given an

n X n symmetric, non-negative matrik (with r; ; = 0

for all i € N), let us define the@otentialof sitei to be

m; = max;en 745, for all i € N. It is easy to see that

the largest two potentials must be equal. For any non-

emptyX C N,andanynon-empty C X andB C X,

we call the cut(X, X) an A-B cut. In particular for

anyi € X andj € X, we call (X, X) ani-j cut. We
denote by (X) = Z(i,j)e(xX) ¢;; capacity of the cut

(X, X).

We will need the following important existing results
for the (off-line) NSP.

Proposition 1 [10,13]: The optimal objective function

value of the NSP, with x n symmetric, non-negative

matrix R as input, is1 >,y ;.

Proposition 2 Suppose the potentiats= (71, 7o, . ..,

m,) are sorted such that; = m > -+ > m,. [fwe can

sendr, units of flow from sitd to sitew in G for any

u € N —{1,n}, then we can senthin{7;, 7, } units of

flow from site; to sitej in G for anyi,j € N, i # j.

Proof. This follows from the well-knowtriple inequal-

ity [8,10]: For anyi, j, k € N, the minimum capacity of

i-k-cut > min{minimum capacity of-j cut, minimum

capacity ofj-k cut}. m

Proposition 3 Let G [N,E,c] be an edge-

capacitated undirected network atd) = {i1,--- ,ip}

be a subset ofV — {1}. For each? € {1,--- ,p}, let

F(i¢) be the units of flow from sitg to site 1. Then

we can simultaneously serfd(i;) units of flow from

siteiy to site 1 for all¢ € {1,--- ,p} if and only if

(i) for any 14, cut, the cut capacity is at leadt(i,)
foranyf e {1,---,p};and

(i) for any 1N, cut, the cut capacity is at least
Y=y F(i0)-

Proof. This follows from the well-known max-flow

min-cut Theorem [8].m
We consider two on-line versions of the network syn-

thesis problem.

Version 1: In this version, at any point in time, a cer-
tain set{r;; : (i,7) € S} of requirements between
some setS of pairs of sites, and through it the set
N = {i: (i,j) € S for somej} of sites are known
to us. The on-line algorithm is required to have de-
signed a networlG' on site setV that meets the re-

Network Synthesis

vealed set of requirements one at a time. The next

piece of information revealed is some requirement

rzy, Where if some requirement between siteand

y was revealed before then the new value is greater

than the previous and replaces the previous; else,

is a new revealed requirement and in that case, the

new revealed set of sites = N U{z,y}. The on-

line algorithm is required to updatg to a network

G on site setV (that includes at least two more sites)

such that none of the previous edges capacitiés in

are decreased and the new requiremeptis also
satisfied.

Version 2: In this version, the entire séf of potential
sites is known a priori, but the requirements between
pairs of sites are revealed or updated one-by-one in a
sequence. At any point in time, the network designed
by the on-line algorithm contains the entire site set
N and satisfies the revealed set of requirements one
at a time. Upon revelation of a new requirement or
update of a previous revealed requirement, the on-
line algorithm must update the current network by
increasing some of the edge capacities so that the
new requirement is also satisfied.

The difference between these two versions is that
in Version 1, we can only use the currently revealed
set of sites to satisfy the requirements; in Version 2,
however, we can benefit by taking advantage of all the
sites which are given in the first place. Obviously at
each state there is more information available in Version
2 than in Version 1, and hence the competitive ratio for
Version 2 cannot exceed that for Version 1. We actually
show in this paper that the competitive ratio for \Version
2 is strictly smaller than that for Version 1.

Define two parameters

2
ap=2— —;
n
2k*+1
=2 — ———————.
A n + k*2k*

In the above:* = |log, n]. It is easy to shows,, <
a,, for any fixedn.
Some values of the,, and3,, are shown below.

ni|345 6 - 00
4 3 8 5
n|3 5 = 3 2
3,0 41510 5

n|l5 3 13 7

The main result of this paper is summarized in the fol-
lowing, which follows from Lemmas 5, 6, 7, and 9.
Theorem 4 For any number of sites,
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(1) the best possible competitive ratiods for Ver- Let G = []V,E,E] be the network designed by our

sion 1; on-line algorithm that meets the currently revealed
(2) the best possible competitive ratigdsfor Version requirements.
2 whenn < 6. Supposer,, is the next revealed/updated require-

An obvious open question therefore is to solve Ver- ment. ThenNV = N U {xz,y} is the updated set of re-
sion 2 forn > 6. (Our algorithm for Version 2 (Algo-  yealed sites. LetG = [N, E, c] be obtained fron

rithm POTENTlAdL) car} actually ge shown trc: produce  py adding isolated site§z,y} — N to it. For each
an upper bound off, for anyn < 11. But the argu- (2.4} — N, setm; — 0.

ments are more complex and we omit the details here.Algorithm TRIANGULAR: SortthesefN —{l,--- n}

Version 2 is thus open fos > 11.) of revealed sites in a non-increasing potential order,
ie., m > --- > m,. Without loss of generality, let
3. A Best Possible Algorithm for Version 1 z > y. Let n}, = max{mg,ry,} = 7 + J,; and

m, = max{m,, 7.y} = m, + J,. If y =1 then in-

In this section, we establish the lower and upper crease the edge capacity; by 4., else letA,,,

bounds for Version 1, respectively. denote the set of three edgesy),(z,1) and(y, 1).
For any(i, j) € Agy1, increase the edge capacity
3.1. Lower Bound by 6;; in the following way:

o If 777’! < 7 =m, then
Lemma5 No on-line algorithm for Version 1 of the ‘

network synthesis problem can have a competitive ratio _1o
. 917} - 67}7 (2)
less than,, for any number of revealed sites T2
Proof. Suppose we have an on-line algorithm which 0, =0, — 15 ) 3)
has a competitive ratio less thar, for some value of 2
n. Consider a problem instanc_e where — 1_) ri;'S 0,1 = 157!_ 4)
each of value 1 are revealed in the following order: 2
712,723, ,Tn—1,n. L€t C;; (1 <@ < j < n) be the e Othewise, ifr, > 7} = m, then
capacity assigned on each edgej) by this algorithm ) ‘
aftern — 1 steps. Then Oy =00 — 5 (m —my); (5)
k-1 1
N e 2ok =1k =2, ,n. 1) Ou1 =5 (M1 —my) ;5 (6)
j=1 1
.. . Oy1 =5 (m —my). (7)
Note that the total sum of capacities assigned by 2
this algorithm ile§i<j<n ¢ij- S0, by (1), we have Lemma6 LetG’ = [N’, E’, ¢/] be the current network,
Zl<i<j<n ci =0, Z?;ll ¢ik > n — 1. The opti- andm; = mp > --- > m,_1 > ™, be the current poten-

mal value is2/2 by Lemma 1. By comparing these two tials. AlgorithmTRIANGULAR maintains the following
conditions at any state for an appropriate ordering of

Cij

we get="==i=r— > 2—721 = an, a contradiction.m sites in non-increasing values of potentials.
(1) Forany: € N — {1}, at leastr; units of flow can
3.2. Upper Bound be sent from to 1 in G.

(2) Yoepcle) <oy mi- Hence,
We shall now present an algorithm that achieves the €r eN—{1}

lower bound claimed above, and hence it is a best pos- Sepcle)
sible one for Version 1. B lZT = Q-

We introduce some notations first. LeV = 2 =l
{1,---,n — 1} be the currently revealed site set proof. The result is obviously correct when there are
with requirement matrixkR € R(f’l)x(”*l), where only two sites revealed. Suppose the result is currently
ri; = 0 foranyi € N, andr;; = 0 forall 4,5 € N correct. Thus we hqye a network = [N, E,¢] on
such that the requirement betweemnd j is not re- currently revealed séY of sites that for some site order

vealed. Letr; = max for each sitei € N. such thatr;y =m > --- > & (where ther’s are the

jen i
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current site potentials) satisfies conditions 1-2 above.

We want to show it is still true after the processing of
the next requirement.

Let G' be obtained by adding tG isolated sites in
{z,y}—N. Foreach sité € {x,y}— N, setr; = 0 and

Kabadi/Du— On-line Network Synthesis

Case3 y > 1 and w; > w1 = m; obtain a new site
ordering with non-decreasing values of potentials such
thaty now occupies the first position.

To prove that Condition 1 is satisfied, consider any
i € N —{y} and any cutS, S) in G’ with i € S and

arrange such sites last in the ordering. For convenience,y € S.

let us assume that with this site ordering,, is the
next requirement revealed/updated with> y. Denote
N = NU{z,y}.

Then, the new potentials! = m, Vi € N —
{z,y}; 7, = max{my;,ryy} = 7 + 0y and
m, = max{my,,rey} = 7, + J,. Evidently ;, =
max{my, 1y} < max{m,, 7y} = m, and i, =
max{0,ryy — 7} > max{0,ry, — m} = J, since
Ty < Ty,

Obviously there is nothing to prove & = 0 (and
therefored,, = 0 also), since the network satisfies all
the requirements. So we assume> 0 in the rest of
the proof.

We consider two cases.

Casel y = 1; then the only site inV — {1} with
changed potential is site with 7}, = 7, + ..

By inductive hypothesis, we can seng units of flow
from 2 to 1 in G and using the additional capacity, we
can send an additiona), units of flow. Thus condition
1 is satisfied. AlsQ) . c'(€) = D . cpcle) + 0z <

D ieN—{1} Ti T 0z = X ;e n_q1) ™ Thus condition 2
is also satisfied.

Case 2 w; < 7} = m; sort the sites in non-decreasing
order of new potentials and keeping site 1 as the first
site.

To prove Condition 1 of the theorem, we only need to
considetr andy since no other potentials have changed.

Forz, at leastr, units of flow can be sent fromto 1
alongG by induction hypothesis. Using the additional
capacities assigned to edges in the Agf;, an extra
0, units of flow can be sent fromto 1. Thus a total of
at leastr,, + ¢, = ., units of flow is guaranteed from
ztolin G’

Similarly, a total of at leastr, + ¢, = , units of
flow is guaranteed fromp to 1 in G’.

Also,

ZeGE/ c(e) = ZeGE c(e) + Ozy + 0z1 + 0,1
< Yien—qy i + 0z + 30y
< Dien—{13 i + 0z + Gy
ieN—{1} i,

Where the first inequality follows from the inductive

First suppose the previously ordered site 1 isSin
Then from the max-flow min-cut Theorem [8] and the
inductive hypothesis, the cut capacity (8, S) is at
leastn;. If i # x, then the capacity of the cut i¥’ is
at leastr; = .. If, otherwise,i = z, then the sum of
additional capacities, assigned to the edges of the set
Ay that are in cut(S, S) is 6,; the total capacity of
cut (S, S) is therefore at least, + d,, = .

Next suppose the previously ordered site 1 isSin
Similarly the capacity of cutsS, S) is at leastr,. If
1 # x, then the sum of additional capacities assigned to
the edges of the set,,; that are in the cut is at least
(m1 — m,); the total capacity of cutS, S) is therefore
at leastr; > m; = .. If, otherwisej = x then the sum
of additional capacities assigned to the edges of the set
Az in the cut isd,; the total capacity of cuts, S)is
therefore at least, + ¢, > 7.

Using the max-flow min-cut theorem [8], it now fol-
lows that for anyi € N — {y} we can send; units of
flow fromi toy in G'.

Also,

Decr C(e) =3 ) + boy + 6‘11 + 01
ZZGN {1y T T 0z + 3 (771 —my)
2

>

ieN-{1} ™ + 0. + (7T1 —my)

A IA ||

Where the first inequality follows from the inductive
hypothesis and (5)-(7). Hence Condition 2 of the lemma
follows. This proves the lemman

4. A Best Possible Algorithm for Version 2 when
n<6

In this section, we consider Version 2 of the problem
wheren is known a priori. We first establish a lower
bound for anyn. Then we present an algorithm which
matches this lower bound for < 6.

4.1. Lower Bound

Lemma 7 No on-line algorithm for Version 2 of the

hypothesis and (2)-(4). Hence Condition 2 of the lemma network synthesis problem can have a competitive ratio

follows.

less thang,,, for any number of sites.



Kabadi/Du— Algorithmic Operations Research Vol.2 (2005} B4

Proof. For anyn, suppose, on the contrary, there ex-
ists an on-line algorithnal with a competitive ratio less
thang,, . Consider the following sequence/dgf+ 1 unit
requirements revealed one by one. Initially, at stage 1,
algorithm A receives the first unit requirement, = 1

and processes it by installing necessary edge capac-

ities to meet this requirement; ldt — n be the ca-
pacity installed on edgél, 2). Consider stagé — 1

(2 < k < k*+41) whenk — 1 unit requirements are re-
vealed and processed by algorithin Let ¢*~! be the
installed edge capacity vector up to stage- 1. For
any two disjoint site subset¥ andY of N, denote
CHU(X,Y) =Y icx ey ¢ - By relabeling the sites

if necessary, without loss of generality, we assume that
site k + 1 satisfies

Ok_l({k + 1}? {17 e 7k}) =
_min CL({k 0 (L R, (8)

Then let the next incoming requirement bgyy; =
1. Note that C*~1({k + 1},{1,---,k}) < 1;
for else, ;i< cii' > n/2, which implies
(Cr<icjenchi D/ (k/2) > n/k > B,, a contradic-
tion.

We show the following fact, which implies the desired
result.

E+1 — 2k
%5n>k+" S fork =1, K+ 1. (9)

Indeed, if (9) were correct, consider the two inequal-
ities corresponding té = k* andk* + 1:

E*+1 — ok
A R N (10)
2 n—2
k* 42 — 2k +1
R RS DI Cl A (11)
2 n—2

Note that the coefficient af in (10) is non-negative,
and that in (11) is negative. If the coefficient gfin
(10) is zero, them = 2*" and 3, = (2lnn)/(1 +
Inn). But inequality (10) reduces t8, > (2k*)/(k* +
1) = (2Inn)/(1 + lnn) = B,, a contradiction. If the
coefficient ofy in (10) is positive, then multiplying (10)
and (11) by appropriate positive numbers and adding
the two inequalities, we get

2k*+1

n > 2 — ———
B > n + k*2k*

= 571’

an obvious contradiction, and therefore the lemma is
proved.

ap > ay;
afzal+17 [:1, 7k_1

We are left only to prove (9). Consider stageDe-
note

k+1
a0 = =
n—k—2t47¢
=/+1- — = - ok k—/
ay + 77+n_k+£_1c ({a )
k—/¢
1 k=042, nb) + >R,
j=2

{j+1hfort=1,--- k-1

We prove inductively that algorithml satisfies the
following conditions (12)-(13)

Conditions (12)-(13) imply (9) by noting that

ag=(k+1)6n/2;

n—2k1_1
a1 =k —n+— C'({1,2},{3,--- ,n})
_ok—1 _
S S At D
n—2
n — 2k
=k+— 51
Basis Step: For ¢ = 0,
kE+1
= Tﬂn > Z ci—“j
1<i<j<n
n—1
>t + Y O ) + (-
j=2
CFYN —{k+1},{k+1})
k—1
=@+ )+ Y L)
j=2
n—1
j=k
—CF YN —{k+1},{k+1}))
k—1
Z2_77+ch_l({17"' 7]}7{]+1})
j=2

+C* {1, kN k42, ,n))

(12)
(13)
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k-1 2t — 1 .y
k J1:2 {k_€+277n})7
nZRZ 2okt - e
T (Lo kb k41 om)) where the first inequality follows fror@*—¢({k — ¢ +
=ay, 1}, N —{k—(¢+1}) > 1; the second inequality follows
where the first inequality follows from the assumption oM C*~“({1, -+ .k = £}, {k = £+1,--- ;n}) > 1.
of algorithm A being less thar,,-competitive; the sec- So

i ity i k—1(n _
ond inequality is true because at least C*~"(N n—k—9l 4y

{k+ 1}, {k + 1} new capacity is needed to satisfy the a,>¢+1—1n+ TO’“‘g({l, ek — 1Y,
requirementr, +1 = 1; the third inequality follows n— Rt k_él )
from &' > 1 — n; the fourth inequality follows from ket .
assumption (8). (k=42 ,n})+ z_; C ({1, it
Inductive Step: Assuming (13) were true fof — 1, 2‘7’
we want to prove it is still true fof. G+1D)+1— (n_2k;;_1)ckl({1,...7
ag="0+1- +7”_k_2€” =L, k—0},{k—042,--,n})
L — n n_k_i_[_l ’ 9 ) ’ )
k—¢
k=41 {k—0+2,-- n})+ ) CFI({L, B n—k—-24t404+1 .,
= ={+2—-n+ e R ch R,
n—k—2+¢_,, k—t—1
—€+1—77+7n_k+€_10 {1,---, 4 Z Ck_g({l,---,j},{j—f—l})
k—0—1 J=2
k=0 {k—C+2,- n})+ > CH{,
j=2 k—0—1
1 {.+1})+n—k—2é+€ >0+2-n+ » C*'({1 5 {i+1})
I3 n—k+0-1 7=2
_ L. _ 9t+1
C*t({k—t+1},{k—(+2,--- ,n}) n—k ;+€+41+1C;@_e_1({1,m7,{_&
+CF L, k= {k— 0+ 1 n- -
d bk =4 1)) Gt
Note that b1
n—k—-24¢ ,_, >04+2-n+ Yy C"'({1ih{i+ 1))
7n—k+€—1c {k—04+1}{k—0+2, =
o))+ CF L, k= 0 k= L+ 1)) N n—k—2"14+ 041\ (n—k+{-1
n—k—92t4y¢ n—k+/4-1 n—k+4¢

(C**({k—0+1},N —

T on—k+4+0-1
n—k—20474
{k—C+1}))+ (1—m>
CHr{1,- - k=0, {k—t+1))
>n—k—2£+€ ( 2t 1 )
“n—k+{(-1 n—k+4¢-1
C*({1,--- k=03, {k—L+1})

ot 0
2n k 2+€+< 28 -1 )(1_

n—k+/¢-1 n—k+/¢-1
C*t({1,-- k=0, {k—L+2,---,n}))

M ({1 k= {k = 041, )
n—k—2414/70+1

k—0—1
>l0+2—-n+ P C ({1,
k=0 k=41, n))
k—0—1
+ Z Ck_g_l({lv"' 7]}7{]+1})
j=2
= ag+1,

where the thrid inequality follows from assumption (8)
and the last inequality is true because no capacity ever
decreasesm
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4.2. Upper Bound

Throughout this section, we assume< 6. We in-

troduce some notations and explain the main idea of

the algorithm first. Consider any state with a network
G = [N, E, ¢] with site setN = {1,--- ,n}, and edge
capacities{c;; : (i,j) € E}. Letw = (m,--- ,m,) be
the site potential vector. Without loss of generality, let

the sites be sorted in nondecreasing potential order, i.e.,

7T1:7T22"'Z7Tn.Let

n—2 (k*+1 n—2
x_ v 4 —n_k* - °
TS ( 3 ) n+ k2~

Letryy (x,y € N andz < y) be the next requirement

that is revealed/updated and ready for processing. EitherCase 3. If y € {k* +2,--

Ty > Ty > Ty, iN Which case only the site potential
my INCreases tor, = ryy = Ty, + 0y, OF Ty > Ty, iN
which caser, andr, both increase ta, = 7, = ru,.
All other sites potentials remain unchanged.

The processing of this new requirement is described

in the algorithm ®TENTIAL below. The algorithm at

every stage maintains a netwagksuch that maximum

flow value between every pair of sitéandj in N is at
leastmin{m;, 7;} > r;;. Thus, it does not explicitly use
72y @S input, butinstead use$ andr, . In the following
any notation just introduced with a prime attached will
denote the corresponding meaning after requirement
is revealed/updated and processed; for example-

(ry,---,m) denotes the new potential vector.

Algorithm POTENTIAL:

Input: A site setN = {1,2,---,n}; a networkG =
[N, E, | after the processing of some requirements.
The sites are sorted such that = o > --- >
™, Wherer is the vector of current site potentials.
Either, for somey € N, 7, is increased to some
w; = my + 0, < m or, for some{z,y} C N,z <y,

7 andm, are both increased to, = w; = u. For
every other sité € N, n; = ;.
Output: An updated networks = [N, E’, ¢] that sat-

isfies the flow requirementin{x,, =
ery pair of sitesi, j € N.

Case 1. If y = 2 (and hencer = 1, therefore bothr;
andm, increase by the same amoupyj, then update

L} between ev-

the capacities as follows:
C/12 =c12 + (1 — *)57!; (14)
cM—cM—i— 5y, k=1,2,0=3,---,n. (15)

Case2. Ify e {3, .-+, k*+1} and onlyr, is increased
to 7, = m, +J, = u, then update the capacities as
follows:

71
21 If 6y < my_1 —my
2y72(n_y+1) *
Chp = Cy1 + (1 e dy; (16)
y72,'7*
c;gzcyﬁ—n_2 Sy, L=y+1,---,n. (17)

2.2. If 6y > my_1 — my, then Ietgy = Ty_1 — Ty.
Update the edge capacities as in Case 2.1 above
usingé, instead ofé,. Setx], = r, ;. Renumber
sitey asy — 1 andy — 1 asy. Setr = the updated
vector of site potentialsy, u as the only
increased site potential and repeat the algorithm.

,n} andm, is the only site

potential increased to, = m, + 4, = u, then update

the capacities as follows:

3.1 If §y < w1 — my, then

277*) dy.

3.2. If §, > mp=41 — 7y, then IetSy = e 1 — Ty.
Update the edge capacities as in Case 3.1 above
usmg5 instead ob,,. Setw = 7+ +1. REnumber
sitey ask* + 1 andé as€+ 1for ¢ = k* +
1,---,y — 1. Setm = the updated vector of site
potentials,r;.., = u as the only increased site
potential and repeat the algorithm.

Case 4. If, forsomez,y € N,z < y, then bothr, and

my are increased to some common valtighen break

down this increment into the following sequence of

increments: (i) increase only, to min{w,m}; (i)

increase onlyr, to min{w, 7 }; (iii) if u > 7, then

bothr, andr, increase ta:. For (i), perform Case 2

or 3 of the algorithm; for (ii), perform Case 2 or 3 of

the algorithm using: instead ofy; for (iii), perform

Case 1 of the algorithm.

The following is easy to verify:

Proposition 8 For n < 6, the updated edge capacities
by the algorithm satisfy;; > c;;, for all (4,5) € E".

For anyj € {3,--- ,n} and sorted potential vector
m = (m, - ,7), Wherem = mg > -+ > 7, We
define

E*

(18)

cdi=c1+(1-
yl yl n—

min{j—1,k*+1} 2@_277*

n—2

(e — 75);
(=3
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(7Té+1 —7T£+2)-

Lemma 9 Supposer < 6. LetG = [N, E, ¢] be the
network produced by algorithfROTENTIAL after pro-
cessing some requirements. lgt= o > -+ > 7,
be the current potentials. Ther satisfies the following
conditions.
(1) We can send- units of flow from site to sitel.
(2) Foranyj € {3,--- ,n}, we can send simultane-
ouslyw; + f;(m) units of flow from sitg to site
1, and f; () units of flow from site to site1, for
everype {j+1,--- ,n}.
(3) The total capacity at the current st} ;; c. <
g(m). Hence,

ZeGE Ce
% E?:l e

< Bn.

Proof. We show inductively that Conditions 1, 2 and 3
are satisfied. Initially, when there is no requirement re-
vealed, all the site potentials are zero and these condi-
tions are obviously satisfied. Suppose they are satisfied
currently at an arbitrary stage by the current network
G = [N, E, c]. We show that they are still true after the

processing of the next requirement, (z < y).
Suppose the potentials beforg, is revealed are
sorted in a non-increasing order, that g, = m >
-2 .

Cases 1, 2.1, and 3.1.
Case 1. Case 1 of algorithnPOTENTIAL occurs, and
hencer =1, y = 2.
First, for Condition 1, consider any cyf, S) with
1 € S and2 € S. By the max-flow min-cut Theorem

Note that each of the Cases 2.2, 3.2 and 4
reduces to a sequence of Cases 1, 2.1 and 3.1. Hence,
it suffices to show that the lemma is true for each o

andj € S. Suppose among the sit¢g + 1,--- ,n},
m(€ [0,n — j]) of them belong tcS. By (14)-(15), the
total extra capacity added to edges of this cut is either

*

(1 —7")d2 + (n — 2)n’7_

262262, if 2e 5.

or

2n* . —
(m—i—l)n_z&g, if2¢5.

It is easy to verify, by the definition af*, that, for
any0<m<n—j

*

2n
1
(m + )n_

< .
252 <0

Therefore the total extra capacity added to edges of this
cut is at least

(m+ 1)n2i 262, foranym € {0,---,n —j}. (19)
(i) Choosingm = 0in (19) implies that the minimum

cut capacity among all-j cuts is at least

2n*
n—

502 = m; + fi(7') = 7; = f(m)-
where the equality follows from;, = =, for all £ €
{3, ,n}, andn) = 73 + 0.

(i) Because of the symmetry gf and any sitep €
{j+1,---,n}, analogously, the minimum cut capacity
among alll—p cuts is also at least

U 252, foranype {j+1,---,n}.
n—

(iif) choosingm = n — j in (19) implies that the

f minimum cut capacity among all cuts that separate 1

from all sites in{j + 1,--- ,n}, is at least

*

2n
0.
22

(n—j+1)

Now Condition 2 follows from the inductive hypoth-

[8] and the inductive hypothesis, the capacity of the cut €sis and (i), (i) and (iii), based on Proposition 3.

(S,5) in G is at leastry (= 7). By (14)-(15), the total
extra capacity added to edges of this cut is

*

(1 —7*)d + (n— z)n”_

Therefore at leasts + d; = 7 units of flow can now
be sent from site 2 to site 1.

Second, for Condition 2, consider any €
{3,---,n}. Let (S,S) be a 15 cut, that is,1 € S

For Condition 3, by (14)-(15), the total capacity in-
creases by

S d-Ye=0

ecE’ eclk

*

-2

2n

52+(n—2) 52

On the other hang increases by the same amount

g(ﬂ—/) _g(ﬂ—) = ﬁn62 - (571 -1 _77*)62 = (1 +77*)§2-
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Case 2. Case 2.1 of algorithn?OTENTIAL occurs, and
hencey € {3,--- ,k* + 1}, andd, < my_1 — .

First, Condition 1 is implied directly by the inductive
hypothesis becausg, = .

Second, for Condition 2, it is easy to see that this
condition follows immediately whepe {3, -- ,y—1}
because neither; nor f;(m) changes. So we focus on
VAS {ya"'vn}'

If j =y, thenm, = 7, + 0, and f,(7") = f,(7) —
175, using>Y_5 2072 = 2472 — 2. In G, we can
S|multaneously send + fy(m) units of flow fromy
to 1 andf,(m) units of flow from¢ to 1, for all ¢ > y.
Thus, inG, after sendingr, + f,(7’) units of flow
from y to 1 andf,(n’) units of flow from¢ to 1, for

all ¢ > y, we have additional residual flow 6&—2"5,
that can be sent from eache {y,--- ,n} to 1. Using
extra capacny of2 ” 0, added to each of the edge
{(y, 0) : L € {y+ 1 : n}} thls can be converted to
an addmonal(n —y+ 1) 5 units of flow from
y to 1. Also, using extra capacny to ed@k y) we can

y

send(l - M:L%g“)") d, units of flow fromy to 1.
Ifj > y, thenn’ = m; and f;(7') = f;(m) +
2v 2y

— 6 So we need to simultaneously send extra flow
of 271"

d, units along each of the sites {, -

n}

73

Case 3. Case 3.1 of algorithn?OTENTIAL occurs, and
hencey € {k* +2,--- ,n} andd, < mp-41 — my.

First, Conditions 1 is implied directly by the inductive
hypothesis.

Second, for Condition 2, it is easy to see that this
condition follows immediately when # y because
neitherr; nor f;(m) changes. So we focus gh=
Let (S,5) be a 1y cut, that is, withl € S andy € S.
Suppose among the sitég+1,--- ,n}, m € [0,n—y]
of them belongst®. By the max-flow min-cut Theorem
[8] and the inductive hypothesis, the cut capacity of
(S,S) currently is at least

Ty + (m + 1) fy () (20)

By (18), the algorithm increases capacities on edges

of cut (S, S) by

2k* . 2n* k*+1 2@—2n*
(_11—277 >5y_5y+<_n—2_§ n—2 %
:5y+(fy(77/)_fy(77))a

where the second equality follows froEk tlot-2 —
2F" — 2. Adding this to (20) implies that cut capacity
of (9, 5) at the next stage is at least

o site 1. we can send the flow along the set of paths 7, +mfy () + f,(7') > m, + (m +1) f,(7'), (21)

{p—y—1):pe{j,---,n}} using the extra capaci-
ties added to the edgéép,y) : p € {1,4,--- ,n}}. By
direct verification, this is feasible for < 6 since to-
tal extra flow on edgél, y) does not exceed the extra
capacity added to the edgg, v):

U )5y.

2y72n*
0y < (11—
n—2 y_(

Finally, for Condition 3, by (16)-(17), the total ca-
pacity increases by

(i-

2y—2n* 2y—2

= T, =(1-——y)s,
Y ( n—Qn)y

On the other hang increases by the same amount

o) = g(m) = 55, ~ (G =14 2
77*) dy.

:(1_

292 (n —y+1)

(n—j+1) —

29 2n—y+1) ,
—( )77)57;
n—2

y—2

)

22

n—2

where the inequality follows fronf, (=) > f,(7’).

(i) Choosingm = 0in (21) implies that the minimum
cut capacity among all-y cuts is at leastr; + f,(7').

(i) Choosingm = n — y in (21) |mpI|es that the
minimum cut capacity among all cuts that separate 1
from all sites in{y +1,--- ,n}, is at leastr} + (n —
y+ 1) f;(n").

(iii) Note that f, (") < f,(m). Therefore by the in-
ductive hypotheses, we can send at lgfgét’) units of
flow frompto 1, foranyp € {y +1,--- ,n}.

Now Condition 2 forj = y follows from (i), (ii) and
(iii), based on Proposition 3.

Finally, for Condition 3, by (18), the total capacity
increases by

*

2" B
ZC —Zce— (1——277 )5y—75y,
ecE’ ecE
which is the same amount increasedgy
B
9(') - g(m) = -4,
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