
Algorithmic Operations Research Vol.2 (2007) 52–64

Hybrid Continuous Interacting Ant Colony aimed at enhanced global
optimization
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Abstract

Ant colony algorithms are a class of metaheuristics which are inspired from the behaviour of real ants. The original
idea consisted in simulating the stigmergic communication, therefore these algorithms are considered as a form of
adaptive memory programming. A new formalization was proposed for the design of ant colony algorithms, introducing
the biological notions of heterarchy and communication channels. We are interested in the way ant colonies handle the
information. According to these issues, a heterarchical algorithm called “Continuous Interacting Ant Colony” (CIAC)was
previously designed for the optimization of multiminima continuous functions. We propose in that paper an improvement
of CIAC, by the way of a hybridization with the local search Nelder-Mead algorithm. The new algorithm called “Hybrid
Continuous Interacting Ant Colony” (HCIAC) compares favorably with some competing algorithms on a large set of
standard test functions.
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1. Introduction

Metaheuristics are very often used for discrete prob-
lems, but there is a class of problems often met in en-
gineering, where the decision variables are continuous
and for which metaheuristics can be of a great help
(due to nonderivable function, multiple local minima,
great number of variables, nonconvexity, etc). Having
recently given rise to some new metaheuristics, the ant
colony metaphor proved to be a successful approach
to solve “difficult” optimization problems. The first al-
gorithm inspired from ant colonies (the “Ant System”
[7]), was successfully applied to various discrete op-
timization problems. So far, several attempts to adapt
the ant colonies metaheuristic to the continuous field
appeared. In addition to the usual problems related to
the adaptation to the continuous case, the ant colonies
metaheuristics pose some specific problems. Most of the
metaheuristics are inspired by the characteristics of self-
organization and external memory of the ant colonies,
leaving aside the iterative construction of the solution.
We listed four ant colonies algorithms for continuous
optimization: CACO (“Continuous Ant Colony Algo-
rithm” [1,17][11]), a hybrid algorithm not named, API
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(named from an ant species) and CIAC (“Continuous
Interacting Ant Colony”).

The first ant colony algorithm designed for the
optimization of continuous functions is the CACO
algorithm. CACO retains a particular feature of the
behaviour of the real ants: the deposit of track of
pheromone. Indeed, the colony of ants is often de-
scribed like a distributed system which is able to solve
complex problems with the use of “stigmergic” pro-
cesses, a form of indirect communication, by the means
of modifications of the environment. But the deposit
of trail is also met in some processes of “recruitment”,
defined by the biologists as a mode of communication
leading some individuals to meet in a place where a
work is needed.

Another method of optimization taking this defini-
tion as a starting point was developed in the continuous
case: the API metaheuristic, inspired by the behaviour
of recruitment of a primitive ant [12]. However, the API
algorithm uses little the memory structures which gen-
erally characterize the systems of colonies of ants [15],
namely the presence of an external memory, shared by
the agents.

A method using at the same time an approach of
colonies of ants and an evolutionary algorithm was pro-
posed by Ling et al.. [10], but few results are available

c© 2007 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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until now. The main idea of this method is to consider
the differences between two individuals on each dimen-
sion as many parts of a way where the pheromones are
deposited. The evolution of the individuals dealt with
operators of mutation and crossing-over. This method
thus tries to reproduce the mechanism of construction
of the solution component by component.

Our point of view is that the ant colonies metaphor
can be defined like a model considering not only stig-
mergic phenomena, but also, more largely, processes
of recruitment. We developed, according to this idea, a
method aimed at continuous optimization, inspired by
ant colonies, which exploits the concept of interindivid-
ual communication [8]. This method, called CIAC, was
tested on a large set of analytical functions, some of
them of a great number of variables. It was also com-
pared with some of the best methods published so far:
other algorithms based on the colonies of ants, genetic
algorithms, tabu search and simulated annealing.

Like the original “Ant System”, it has been shown
that CIAC is less competitive in local search [8], in spite
of a relatively effective global search. To lessen the im-
pact of this drawback, we chose to implement an hy-
bridization with the Nelder-Mead “simplex” algorithm
[13], we called this hybrid algorithm “HCIAC”. The
present paper describes the HCIAC metaheuristic.

This paper comprises five more sections. The basic
algorithms that are used to build HCIAC are described
in section 2.. The subsequent section 3. is devoted to the
description of the HCIAC algorithm. Then we discuss
in section 4. the tuning of the algorithm parameters us-
ing a particular technique that we called meta-setting of
parameters. In section 5. we present and discuss exper-
imental results. Conclusion makes up the last section.

2. Basic algorithms

2.1. Heterarchical algorithm

An algorithm, being focused on the principles of com-
munication of the ant colonies, was proposed by the
authors of this work [8]. It consists in adding to the
stigmergic processes, i.e. a way to exchange informa-
tions by modifications of the environment (see [3]), the
direct exchanges of information, while being inspired
for that by the “heterarchical” approach, by opposition
to a “hierarchical” approach (see [16,8]). Thus, a for-
malization of the exchanges of information is proposed
around the concept of communication channels. A com-
munication channel may be, to take an example in the

“ant metaphor”, the deposit of pheromonal trail. These
channels transmit an information, here the localization
of a food source, and have some properties, like stig-
mergy and memory. One can define various commu-
nication channels representing the transporting unit of
informations. From the point of view of metaheuristics,
there are three main characteristics:
Scope: the way the information goes through the pop-

ulation. A sub-group of the population, from one to
n agents, can exchange informations with another
group of agents.

Memory: the way the information persists in the sys-
tem. The information can be stored during some pe-
riod of time or be transitory.

Integrity: the way the information is evolving in the
system. The information can be modified, by one or
more agents, by an external process, or not.
These properties can be combined in the same chan-

nel, so that a large variety of different channels can be
built.

The information transmitted during the communica-
tion can take many forms, from a simple value to a com-
plex ”object”, therefore it is difficult to describe some
particular classes. The more intuitive forms are for ex-
ample the vector coordinates of a point and the value
of the objective function at this location.

As an example, let us take a look at the properties
of the “trail laying” channel. Basically, the scope is po-
tentially the whole population, as each ant can perceive
the trail pheromone. There is also a form of memory, as
this is a stigmergic process, the trail persists in the en-
vironment during a certain period of time. Finally, the
integrity of the channel permits that the informations
are damaged by the time, as the pheromones evaporate.

2.2. CIAC

The CIAC algorithm (acronym for “Continuous In-
teracting Ant Colony”) uses two channels of communi-
cation:
• The stigmergic channel calls upon spots of pheromone,

deposited on the search space. These spots will be
more or less attractive for the artificial ants, accord-
ing to their concentrations and their distances. Here,
a spot is defined as a point on the search space and a
value associated with it. We use the verb “to deposit”
when a new spot is created or modified by an ant.
The characteristics of the stigmergic channel are the
following ones. Firstly, the range is maximal, all the
ants can potentially take into account information.
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Secondly, there is use of memory since the spots per-
sist on the search space. Finally information evolves
with time since the spots evaporate. The information
carried by a spot implicitly contains the position of
a point and explicitly the value of the improvement
found by the ant having deposited the spot.

• The direct channel is implemented in the form of
messages exchanged between two individuals. An ar-
tificial ant has a stack of received messages and can
send some messages to another ant. The range of
this channel is of one since only one ant receives
the message, the memory is implemented in the mes-
sages stack which the ant memorizes. Finally, infor-
mation, here a couple position/value of a point, does
not change with time.
The algorithm showed interesting characteristics, in

particular a certain capacity to oscillate between a pro-
cess of intensification and a process of diversification
when the two channels of communication (stigmergic
and direct) are used in synergy [8].

But CIAC is slower than other metaheuristics and is
most times comparable in terms of precision (i.e. ability
to find the optimum with only a small error). In fact,
CIAC can be fruitfully used for a global search for the
most “promising” regions within the search space, but
it has to be hybridized with some local search classical
algorithm for a faster and more accurate localization of
the best solution.

Some other problems have been pointed out: CIAC
allows ants to deposit as many spots as they want, using
the addition of several spots to state the reinforcement
of regions ; but this method sometimes leads to an ex-
cessive number of spots to be handled, which can slow
down the algorithm. Another problem is the fact that
the two channels are used in serial, ants are using first
the stigmergic channel and then the direct channel ; this
working sometimes leads to the loss of gathered infor-
mation as the direct channel can overflow the stigmergic
one.

2.3. Nelder-Mead algorithm

Many of the population-based algorithms are not very
efficient for a fast and accurate finding of local optima,
but are quite good to locate promising areas. The ant
colonies algorithms perform better when they use a local
search, and for discrete problems, this technique is often
used to make the ant algorithms competitive [2].

The Nelder-Mead algorithm [13] is a simple algo-
rithm that presents the advantage of being a derivative-

free method that quickly finds local optima. Instead
of using the derivatives of the objective function, the
Nelder-Mead algorithm uses a little population of points
to handle a non degenerate “simplex”.

3. The HCIAC algorithm

3.1. Improvements to the CIAC algorithm

We found two drawbacks occurring in the design of
the CIAC algorithm, for each one we incorporate a new
feature that intends to solve the problem in order to
improve the algorithm efficiency. The first idea is to use
less spots to structure the search space as a way to speed
up the algorithm and the second improvement concerns
the use of thresholds for the regulation of the different
strategies used.

3.1.1. Spot management
In the CIAC algorithm, the spots are used to describe

the search space as a function of the potential interest
of regions. Each ant can deposit a spot and the function
of interest is more depending on the number of spots
in a region than on the concentration of the spots. Thus
for some test functions with a turmented landscape this
can lead to an excessive number of spots. The problem
in this case is the excessive use of computer memory
needed to handle the vectors used to store the informa-
tion, the time spent to use this information can be pro-
hibitive, specially when the number of variables of the
objective function is high.

The solution we chose consists of putting the infor-
mation of interest on the concentration of pheromone
and no more on the spatial repartition of the spots. Each
ant that decides to deposit a pheromonal spot can then
reinforce an existing spot instead of depositing another
one. The use of computer memory is then limited as the
number of vectors is maintained low.

In practice, the decision between the deposit of a
new spot or the reinforcement of an existing one is
made according to a resolution parameter. Here again,
in order to maintain the parallel design of the algorithm,
each ant has its own resolution parameter which we
can call the “visible zone”. The resolution parameter is
dynamically set according to the ant’s environnement
during the ant evolution on the search space. Basically,
when the ant ends a local search and finally finds a
spot in its visible zone, it reinforces the spot and the
visible zone is reduced to the distance from the farthest
spots in the visible zone (see Figure 1). We talk about
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a “visible spot” when a pheromonal spot is comprised
in this visible zone.
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Fig. 1. Spot management and resolution parameter: after a
local search, if the ant finds some spots, it reinforces the
closest spot and its visible zone is reduced to the distance
from the farthest spot.

With this mechanism, the visible zone of the ant is
automatically set during the search process, according
to the granularity of the search space it finds. From the
point of view of the whole system, this is a resolution
parameter as it describes the local granularity of the ob-
jective function and as it is decreasing during the search
process. One can compare this behaviour with a cooling
parameter as in simulated annealing, but with the ad-
vantage that the temperature is decreased automatically
according to the informations gathered from the objec-
tive function’s landscape (see Figure 2). One must no-
tice that the exponential behaviour observed on figure
2b is not explicitely coded, but results from the whole
system behaviour.

3.1.2. Threshold choices
In biological systems such as ant colonies, there is

no choice made with a simple true/false test. In fact,
the behaviour is based on what biologists call stimulus-
response functions. These functions describe the fact
that the decisions — at the individual level — are taken
with a certain probability according to the internal state
and to a stimulus.

The stimulus-response function is a simple equation,
giving the probability of the decisionp(s) according to
the stimuluss:

p(s) =
1

1 + e(−ρ·s+ρ·τ)

with ρ the power, the “smoothness” of the choice and
τ the threshold.

For example, an individual perceives a pheromonal
trail (this is the stimulus), let say that this trail has an
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Fig. 2. Decreasing of the resolution parameter: evolution of
the visible zone size of some ants acording to time. (a) for
2 ants, (b) with 10 ants the global exponential dynamics
appears.

interest ofs = 0.5 (in an arbitrary unit, typically in
[0, 1]). This individual is quite sensible to pheromones
of τ = 0.3 (this is the internal state, the threshold). With
ρ = 10 the probability of laying a trail, the decision in
our example, is thus ofp(s) = 0.88.

The interest of such functions for optimization algo-
rithms is to increase the flexibility of the metaheuristic
by adding more information in the system. As in bio-
logical systems, if we aim to build a generic algorithm,
it is impossible to precisely tune parameters. We thus
generally need to make a compromise in order to main-
tain a good average performance. But with threshold
choices, a parallel metaheuristic such as an ant colony
algorithm can avoid this delicate tuning. Indeed, an ant
can make an interesting move, because of the proba-
bilistic choice, where all the other ants failed. One can
notice that with this technique we replace one parame-
ter by two parameters (τ andρ), that could be consid-
ered as a bad solution for a parameter setting problem.
But we argue that the loss of difficulty in the parame-
ter setting for the user of the metaheuristic and the gain
of flexibility, in combination with a meta-setting of pa-
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rameters (see Section 4.1.), justify this choice.

3.2. Hybridization

3.2.1. Linking the two algorithms
Two versions of the hybrid algorithm were imple-

mented, because of the various possible relations be-
tween the two methods. Firstly the temporal relation,
where local search is launched at regular intervals start-
ing from the best solution. Secondly, space relation,
where local search is launched independently by each
ant. We will qualify the first algorithm of “simple”,
since it simply consists in improving the best solution at
a given time. The second hybridization makes it possi-
ble to maintain the strongly decentralized feature which
characterizes the ant colonies algorithms. Indeed, each
agent decides to do a local search only on the basis of
information it has, and not, as in the first case, on the
basis of the whole system’s information. One can qual-
ify this hybridization of “decentralized”.

The simple hybridization is easy to implement and
leads to a simple behaviour of the algorithm. However,
it loses the parallel structure of the algorithm as there
must be a global control to determine which ant is the
best among all the population. In addition, the sim-
ple hybridization does not permit to explore the search
space with a better efficiency as it does not take into
account the information found by the local search. In
fact, the decentralized hybridization is more efficient as
it takes into account the local search, and does not con-
sider it as just a way to improve the final result, but as a
way to simplify the landscape of the objective function.

3.2.2. Motivation
Given the idea that the decentralized hybridization is

more interesting to preserve the ant colonies algorithms
properties, we must consider a way to decide when the
local search is launched. In order to maintain the parallel
architecture of the algorithm, the decision must be taken
by the individual, according to local informations. One
other desirable behaviour consists in avoiding a simple
periodicity, as it does not conform with the informations
gathered by the ants. The local search must be used by
a single ant, according to local information and only
when necessary.

The rules we have chosen are based on the notion of
motivation, which describes the probability of starting
a local search. Each ant has an internal counter that is
used as a stimulus in a threshold choice to decide if
the ant makes a local search or sends a message. The

motivation increases when the ant does not see any spot,
has no message queueing and does not make a local
search. At this moment, the motivation is increased by
a small amount.
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Fig. 3. Dynamics of the motivation parameter for an ant (the
threshold here is of0.5).

The dynamics of the motivation is shown on Fig-
ure 3. One can notice that the local search is launched
(when the motivation returns to0 on the figure) mainly
when the motivation is of0.5, as this is the threshold of
the stimulus-response function. But the local search can
also be launched with a motivation of0.1, according to
the probabilistic aspect of the decision process.

3.3. Final algorithm

The HCIAC algorithm is described on Figure 4.
The first step of the algorithm is to randomly put the

η ants over the search space according to an uniform
distribution and to initialize all parameters.

Then the pheromonalspots evaporate, the valueτj,t+1

of each spotj at timet + 1 is set according to:

τj,t+1 = ρ · τj,t

with ρ the persistence parameter.
At this step, a decision is taken, according to a thresh-

old choice function: the ant chooses to handle one of the
two communication channels. Here the two parameters
of the stimulus-response function are calledχτ for the
threshold andχρ for the power, these parameters are
set for the whole population, as each anti has a partic-
ular stimulus parameterχi, initialized at the first step
according to a normal distributionNχm,χd

.
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Fig. 4. The HCIAC algorithm
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If the ant chooses the stigmergic channel, it looks
for pheromonal spots in the visible zoneπi (see Sec-
tion 3.1.1.) which is initialized according toNπm,πd

at
the first step. If there is some spots, it moves towards
the weighted gravity center of the visible spots, else it
goes on the step of motivation decision.

On the contrary, if the ant chooses the direct channel,
it looks for messages in its message queue (see section
2.2.). If there is some messages, it moves towards the
location indicated by the message and then adds some
noise to its new location (i.e. it moves randomly in the
visible zone), else it goes on the step of motivation
decision.

If there is no spot and no message, the ant takes a
decision based on its motivationωi. The choice is made
according to a stimulus-response function, the threshold
ωρ and the powerωτ are initialized at the first step for
the whole population. The stimulusωi is initialized at
0 at the first step.

The first choice leads to the direct channel, with mes-
sage handling. At this step, another decision is taken ac-
cording to a stimulus-response function with the same
parameter as in the previous step, except that the stim-
ulus is (1 − ωi). If the choice is made to handle mes-
sages, a message is sent to a random ant and the moti-
vation is increased of a small amountωδ. The second
choice is to avoid messages, then the ant goes to the
step of random move.

If the motivation choice is to handle local search, a
Nelder-Mead search is launched with the location of
the ant as base point and the radius of the visible zone
as initial step length, the local search is limited toν

evaluations of the objective function. After this local
search, the ant looks for visible spots. If there is a spot,
it reinforces it according to:

τj,t+1 = τj,t +
τj,t

2

and the radius of the visible zone is reduced to the
distance to the farthest visible spot. Else if there is no
spot, the ant deposits a new one, with a concentration
set to the value of the objective function at this ant’s
current location. After the handling of the stigmergic
channel, the motivation is set to zero.

The possible final step is to make a random move in
the visible zone.

The algorithm stops if it cannot find a better optimum
than the best found duringθ evaluations of the objective
function.

4. Parameter setting

4.1. Meta-setting of parameter

The parameter setting is always a delicate step in the
conception of a metaheuristic. In fact this is an opti-
mization problem, even in case of just one parameter.
Here the objective function is the efficiency of the algo-
rithm and the search space is defined by the parameters
of the metaheuristic.

The objective function is difficult to be described, as
it is difficult to describe the efficiency of an algorithm.
An interesting point of view on metaheuristics has been
proposed by Taillard [15] with the “Adaptive Memory
Programming” theory. In this theory, there are two main
aspects in the metaheuristics: intensification and diver-
sification. In fact if we take a close look to this idea,
this is exactly what is asked to the algorithms: to be fast
(achieve the optimization with a minimum of computa-
tions of the objective function) and accurate (to find the
global optimum with a minimal error). As these objec-
tives are contradictory, this is a true biobjective prob-
lem.

This idea leads us to consider the parameter setting as
a biobjective optimization problem. We argue that there
is a loss of complexity, so that optimizing an optimiza-
tion algorithm is not an endless reasoning. Using this
technique, we do not need to carefully set the param-
eters of the biobjective algorithm, as the optimization
problem is not necessary very difficult. Moreover, the
setting of the parameters needs to be performed only
one time. Once the parameter setting is performed, ei-
ther for a general or a specific problem, it does not need
to be reapeated. This approach is thus interesting for
problems where the optimization needs to be performed
several times.

To set the parameters of our algorithm, we use the
MOGA algorithm, a multiobjective genetic algorithm
described in [9] with standard parameters [6].

The Pareto front, showing the optima in the objective
function space, shows the compromise performed by
the algorithm between the two objectives and is a good
indicator of the algorithm behaviour. The study of the
locations of the optima in the parameter space is also
of great interest as it is an indicator of the impact of the
parameters on the algorithm behaviour.

Moreover, getting the Pareto front permits to reduce
the multi-parameter setting problem to the setting of
only one parameter, that we can call anintensifica-
tion/diversificationindex. Indeed, with the repetition of
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the biobjective optimization, the convex Pareto front can
generally be well sampled, leading to a scatter plot that
can be approximated by an exponential function. In or-
der to get a single index gathering all the parameters
sets, we just need to choose a certain number of points
homogeneously spread over the exponential function.
Given these points, we can associate them with an in-
dex, for example on a10 points scale.

Drawing the Pareto front is also an interesting way to
understand the way the algorithm works. For example,
drawing the Pareto front in the search space of two
parameters helps to understand in which way these two
parameters influence the algorithm, it is then easier for
instance to see if parameters are linked. One can also
draw the Pareto front for one parameter in function of
one objective function, showing here how the parameter
affects the efficiency of the algorithm. As the different
representations of the Pareto fronts are not necessarily
essential to do the parameter setting, we will not insist
on them in this paper.

4.2. Parameter setting of HCIAC

We will use the following notation for the objective
functions used by the multiobjective optimization pro-
gram:Fi the quickness, which needs more intensifica-
tion, andFd the accuracy, which needs more diversifi-
cation.

The Pareto front achieved by the multiobjective opti-
mization of HCIAC parameters is considered as repre-
sentative of a mean parameter setting for classical op-
timization problems. If an user needs to handle a more
specific problem then it is necessary to run again the
meta-setting of parameters.
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Fig. 5. Superposition of 20 samples of the Pareto fronts of
the HCIAC parameters in the objective function space.

As it is shown on Figure 5, the set of the Pareto
fronts found by the bi-objective algorithm is well ap-
proximated (square error:R2 = 0.95) by the exponen-
tial function:

Fi =
2 · 104

e(23·Fd)
+ 105 · 102

In order to handle a simple parameter setting, we
have sampled the Pareto front with simple values on
the exponential function, drawing an easy to use inten-
sification/diversification index. For further reference to
the parameter setting, we will use the notationPi to re-
fer to the pointi of the sampling of the approximated
Pareto front, eachPi point is associated to values of
the corresponding parameters of HCIAC, as shown in
Table 1. We have rounded the parameters associated to
the Pareto front when the influence on the algorithm
efficiency was weak.

Table 1

Sampling of the Pareto front (intensification/diversification
index) for the parameters of the HCIAC algorithm.

Pi 1 2 3 4 5

Fi 1.9e-5 1e-4 5e-3 5e-3 0.16

Fd 44000 33800 20000 19000 14000

ν 950 930 910 890 500

η 950 360 100 100 150

6 7 8 9 10

0.2 0.7 1.3 1.8 4

13200 11000 10500 10500 10000

400 400 340 264 17

80 150 45 12 12

As shown by Figure 5, the Pareto front shows a sharp
shape. Therefore there exists a satisfying compromise
between the two objectives, so that most of users should
choose an intensification/diversification index between
4 and 7.

We have not discussed all the parameters as only the
maximum number of the local search evaluations (ν)
and the number of ants (η) are significant, as they have
a great variance along the Pareto front. All the other
parameters have only a little influence on the algorithm
performances (little variance), comparatively toν and
η. We have found that approximately the same values
are obtained all along the Pareto fronts and are thus well
suited for default values:ρ = 0.5, χm = 0.5, χd = 0.2,
πm = 0.8, πd = 0.5, ωδ = 0.1, χτ = ωτ = 0.5,
χρ = ωρ = 10.
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For the rest of this paper, we will use only one value
of the intensification/diversification index for the com-
parison with competing algorithms. The reason of this
choice is that the results in the literature are shown for
only one parameter set. To make a fair comparison, we
have chosen the indexP4 that achieves the compromise
we often see with our classical continuous problems:
a greater importance is given to the accuracy over the
rapidity.

Finally, one of the most sensible parameters isθ, the
sensitivity of the stopping criterion. The stopping crite-
rion is not considered here as a parameter of the HCIAC
algorithm, as it is very dependent on the optimization
problem. Therefore we have chosen to initialize it with
a single value, and not to use the meta-setting of param-
eters to tune it. We have thus achieved a balance for the
whole set of the test functions, and chosen the value of
10000.

5. Experimental results and discussion

5.1. HCIAC behaviour

To illustrate the behaviour of HCIAC, we have first
applied it on theB2 function.

We used only10 ants to make the figures more read-
able, all the other parameters values are those described
above.

Figure 6 shows that the global dynamics of the algo-
rithm consists of a convergence to the global optimum.
Indeed, the local search permits to the ants to quickly
walk through local optima, the direct channel permits
to force the ants to get out of local optima in addition to
the spot channel, which elaborates a description of the
search space. As described in [8], both channels work
together to adapt the algorithm behaviour to the objec-
tive function. Indeed, with the concomitant use of both
channels appear oscillations of the standard deviation
of the values of the objective functions found by all
the ants. This phenomenon is still present in HCIAC as
shown by figure 7.

5.2. Tests results

We have tested the HCIAC algorithm over a set of an-
alytical test functions found in the literature. In order to
compare HCIAC with other continuous optimization al-
gorithms,we have chosen a set of 13 test functions partly
in the literature devoted to continuous ant colonies al-
gorithms [1,11,12], and partly in papers dealing with
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Fig. 6. The HCIAC algorithm optimizing theB2 function.
(a) x andy positions of the10 ants at different steps of the
optimization, (b) values of the objective function found by3

ants during the50 first evaluations.

other continuous optimization algorithms [14][4][5]. It
can be pointed out that HCIAC can handle as well func-
tions to be minimized as functions to be maximized.

To avoid any problem due to the choice of an ini-
tial population, we performed each test 100 times with
a different random seed at each test. The values of the
objective function evaluation number (“evals”) and of
the average error (“err”) are obtained through averag-
ing the results over all the tests. The standard deviations
are given in parenthesis. A test is considered to be suc-
cessful, thus contributing to “% ok”, if the following
condition 1 held.

|fα − f∗| < ǫ1 · f
∗ + ǫ2 (1)

with:
• f∗ the global optimum of the objective function ;
• fα the optimum found by the algorithm ;
• ǫ1 andǫ2 accuracy parameters: in all tests discussed

in that paper,ǫ1 = ǫ2 = 10−4.
In order to compare HCIAC with two competing con-
tinuous ant colony algorithms, we have performed some
tests with the same test functions than those used in the
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Fig. 7. The HCIAC algorithm optimizing theB2 function.
(a) average of the values of the function found by the ants,
(b) standard deviation of the same values.

related articles. Results are presented in Tab. 2. The val-
ues given in square brackets describe tests with fixed
numbers of evaluations, without any other stopping cri-
terion and empty cells stand when values are not given
in the literature [12,1].

HCIAC outperforms CIAC for most of the test func-
tions, except the Baluja test suite and theGr10 function.
Concerning the other ant colony algorithms, we can ob-
serve that the rapidity of HCIAC tends to be similar,
but due to the lack of complete data in the literature,
the comparison is difficult. What can be said is that,
comparatively to other ant colony algorithms, HCIAC
performs a precise and efficient optimization, but needs
a lot of objective function evaluations.

We finally compared HCIAC with other continuous
optimization algorithms, the results are shown in Tab.3.

We can observe that if HCIAC does not compete
with the other algorithms on rapidity, it gains speed and
efficiency comparatively to CIAC. In addition, HCIAC
outperforms other algorithms concerning precision and
efficiency, except for the Griewangk function, which
seems to be really difficult for HCIAC.

To test if the behaviours of the CIAC and the

HCIAC algorithm are statistically different, we used
the non-parametric Kruskal-Wallis test. These tests
were achieved using theR environment for statistical
computing, version 2.0.0.

For each of the tests functions listed in tables 2 and
3, we test if the distributions of errors are different. For
each problem, we obtainp < 0.005, this means that
there is a statistically signifiant difference in the errors
of CIAC and HCIAC.

To illustrate this result, we have plotted the error dis-
tributions of both algorithms on figure 8. This figure
shows that on theR2 problem, the distributions are rad-
ically different.
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Fig. 8. Error distributions of CIAC and HCIAC for the Rosen-
brock R2 problem.
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Table 2

Results of HCIAC against competing ant colony algorithms.
CACO API

Function % ok evals err % ok evals err
R2 100 6842 0.00 [10000] 0.00 (0.00)
SM 100 22050 [10000] 0.00 (0.00)
Gr5 [10000] 0.18 (0.04)
Gr10 100 50000 0.0
GP 100 5330
MG 100 1688
St [6000] 0.0

Bf1 [200000] 99456
Bf2 [200000] 99123
Bf3 [200000] 45769

CIAC HCIAC
Function % ok evals err % ok evals err

R2 100 11797 3e-3(3e-3) 100 18747(6697) 1e-8(4e-9)
SM 100 50000 9e-10(1e-11) 100 18616(6715) 5e-8(1e-8)
Gr5 63 48402 0.01(9e-3) 75 10870(1347) 1e-4(2e-4)
Gr10 52 50121 0.05(0.05) 18 23206(13132) 1e-3(4e-4)
GP 56 23391 1.51(2.33) 100 34533(4086) 0(0)
MG 20 11751 0.34(0.19) 100 24596(11413) 4e-9(4e-9)
St 94 28201 1.96(1.61) 100 10726(219) 0(0)
Bf1 0 50000 99521(463) 0 20388(7466) 9999(3e-3)
Bf2 0 50000 99635(512) 0 18734(6902) 9999(2e-3)
Bf3 0 50000 99895(86) 0 19685(6863) 9999(1e-3)

Table 3

Results of HCIAC against four competing continuous optimization algorithms.
CGA ECTS DE

Function % ok evals err % ok evals err % ok evals err
St 100 1300

Gr10 100 12804
SM 100 750 0.0002 100 338 3e-8 100 392
R2 100 960 0.004 100 480 100 615
R5 100 3990 0.15 100 2142 0.08
GP 100 410 0.001 100 231 2e-3
S4,5 76 610 0.14 75 825 0.01

CIAC HCIAC
Function % ok evals err % ok evals err

St 94 8201 1.96(1.61) 100 726(219) 0(0)
Gr10 52 50121 0.05(0.05) 18 23206(13132) 1e-3(4e-4)
SM 100 50000 9e-10(1e-11) 100 18616(6715) 5e-8(1e-8)
R2 100 11797 3e-3(3e-3) 100 18747(6697) 1e-8(4e-9)
R5 90 39546 8e-3(7e-3) 100 19469(6606) 6e-8(2e-8)
GP 56 23391 1.51(2.33) 100 34533(4086) 0(0)
S4,5 5 39311 6.34(1.01) 100 17761(5976) 0(0)
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6. Conclusion

We have shown that the heterarchical concept can
be interesting to design new ant colony algorithms, in
particular aimed at the optimization of continuous mul-
timinima functions. We have proposed to extend the
ant colony metaphor to take into account several com-
munication processes. We have proposed an Interacting
Ant Colony Algorithm hybridized with a local search
to improve its performance. We found that the new
HCIAC algorithm performs better than CIAC, espe-
cially in terms of accuracy and efficiency.

When comparing HCIAC with competing algorithms,
we pointed out the high number of evaluations, inher-
ited from the ant colony algorithms concept and from
the use of a less sensible stopping criterion in our tests.
But we have also shown the efficiency and the accuracy
of the algorithm. If a particular problem requires an in-
creased speed, we recommend to make use of the inten-
sification/diversification index. Indeed, it is a good tool
to tune the algorithm according to a given problem. An
end user who needs to fit the algorithm to his problem
can simply decide if he wants a fast, or a precise solu-
tion. HCIAC also inherits the qualities of the ant colony
concept, such as self-management and flexibility.

Furthermore, if we take a look at both the advan-
tages and the drawbacks of the ant colony metaphor,
we can see that these algorithms bear medium perfor-
mance when handling static test functions. Conversely
they seem to be well suited to dynamical problems, due
to their distributed and adaptive features [2].

We believe that HCIAC can be more efficient on dy-
namical problems, probably even on continuous spaces.
Indeed, HCIAC takes advantage of the heterarchical
framework and makes use of communication channels
— which can be used to rapidly diffuse an information
about some variation in the objective function — ; be-
sides HCIAC involves an efficient local search, which
can be easily adapted to dynamical functions, as shown
by [18].
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