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Abstract

We corrected proofs of two results on the greedy algorithm for the Symmetric TSP and answered a question in Gutin
and Yeo, Oper. Res. Lett. 30 (2002), 97–99.
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1. Introduction

Many combinatorial optimization problems can be
formulated as follows [7]. We are given a pair(E,F),
whereE is a finite set andF is a family of subsets of
E, and a weight functionc that assigns a real weight
c(e) to every element ofE. The weightc(S) of S ∈ F
is defined as the sum of the weights of the elements
of S. It is required to find a maximal (with respect to
inclusion) setB ∈ F of minimum weight. Thegreedy
algorithm starts from an element ofE of minimum
weight that belongs to a set inF . In every iteration the
greedy algorithm adds a minimum weight unconsidered
elemente to the current setX providedX ∪ {e} is a
subset of a set inF .

The sequence [5,4,1] of papers studied the greedy
algorithm for the Asymmetric and Symmetric Travel-
ing Salesman Problems (ATSP and STSP) and wide
classes of combinatorial optimization problems that in-
clude both TSPs. It was proved in [5] that for each
n ≥ 3, there is an instance of ATSP onn vertices
for which the greedy algorithm produces the unique
worst possible solution. In [4] we introduced a wide
class of optimization problems, which we called anti-
matroids (they are defined later), for which the greedy
algorithm similarly fails. The Assignment Problem and
ATSP were proved to be anti-matroids by showing that
they belong to a special family of anti-matroids (I-
anti-matroids, also defined later). Erroneously, we also
claimed that STSP is also anI-anti-matroid. However,
this is not true as we show in Proposition 1 of this pa-
per. We also prove, in Theorem 2, that STSP is an anti-
matroid by giving a direct proof. (It is worth pointing
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out that anti-matroids defined in [4] form a combinato-
rial structure different to the one with same name used
in some papers, see, e.g., [2].)

Both Proposition 1 and Theorem 2 answer an open
question in [4] to provide a well-studied combinato-
rial optimization problem which is an anti-matroid, but
not anI-anti-matroid. Another proof that STSP is anti-
matroid is given in [1], but the proof there is indirect and
relatively long. Our proof of Theorem 2 is also of inter-
est since it can be used to correct the proof of Theorem
4.3 in [1] (see Theorem 3) for STSP, which is incorrect
due to the fact that STSP is not anI-anti-matroid. (The
proof of Theorem 4.3 in [1] is correct for ATSP.) Notice
that the result of Theorem 3 is stronger (by a factor of
n) than Theorem 4.3 in [1] for STSP.

Interestingly, there are numerous STSP heuristics
which always find a tour that is better than a large
number of other tours, see, e.g., [5,6].

An anti-matroidis a pair(E,F) such that there is an
assignment of weights to the elements ofE for which
the greedy algorithm for finding a maximal setB in F
of minimum weight constructs the unique maximal set
of maximum weight.

An I-independence familyis a pair consisting of a
finite setE and a familyF of subsets (calledindepen-
dent sets) of E such that (I1)-(I3) are satisfied.
(I1) the empty set is inF ;
(I2) If X ∈ F andY is a subset ofX , thenY ∈ F ;
(I3) All maximal sets ofF (called bases) are of the

same cardinalityk.
If S ∈ F , then letI(S) = {x : S ∪ {x} ∈ F} − S.
This means thatI(S) contains all elements (different
from S), which can be added toS, in order to have an
independent set. AnI-independence family(E,F) is
an I-anti-matroidif
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(I4) There exists a baseB′ ∈ F , B′={x1, x2, . . . , xk}
such that the following holds for every baseB ∈ F ,
B 6= B′,

k−1
∑

j=0

|I(x1, x2, . . . , xj) ∩ B| < k(k + 1)/2.

Consider STSP onn vertices,n ≥ 3. We recall that
STSP is the problem of finding a minimum weight
Hamilton cycle in a weighted complete graphKn. We
view STSP as anI-independence family whose inde-
pendent sets are collections of disjoint paths ofKn and
Hamilton cycles inKn. We will represent independent
sets of STSP as sets of their edges. We denote the ver-
tices ofKn 1, 2, . . . , n and call Hamilton cyclestours.

2. Results

Proposition 1 For n ≥ 4, STSP is not anI-anti-
matroid.

Proof: LetT ′ = {e1, e2, . . . , en}, whereei = {i, i+1}
for i < n anden = {n, 1}. Let T = T ′ ∪ {f1, f3} −
{e1, e3}, wheref1 = {1, 3} and f3 = {2, 4}. Since
we can considerT ′ as an arbitrary tour (i.e., a base) of
STSP, if STSP was anI-anti-matroid, we would have

n−1
∑

j=0

|I(e1, e2, . . . , ej) ∩ T | < n(n + 1)/2.

However,|T | = |I(e1)∩T | = n, |I(e1, e2)∩T | = n−3,
and |I(e1, e2, . . . , ej) ∩ T | = n − j for eachj ≥ 3.

Hence,
∑n−1

j=0 |I(e1, e2, . . . , ej) ∩ T | = n(n + 1)/2.

Theorem 2 STSP is an anti-matroid.

Proof: Let T ′ = {e1, . . . , en} be the tour, whereei =
{i, i + 1} for i < n anden = {n, 1}. We first show the
following:

Claim A: For every tourT 6= T ′, we have the follow-
ing:

n−1
∑

j=0

|I(e1, e2, . . . , ej) ∩ T |≤

{

n(n−1)
2 if e1 6∈ T

n(n−1)
2 − 1 if e1 ∈ T

Proof of Claim A:We will first prove that|I(e1, e2,
. . . , ej)∩T | ≤ n−j for all j = 0, 1, 2, . . . , n−1, except
for e1 6∈ T andj = 1, in which case|I(e1) ∩ T | = n.
This statement is clearly true whenj = 0, j = 1 and

j = n−1, so now assume that2 ≤ j < n−1, and note
that all edges ofT belong toI(e1, e2, ..., ej), except for
those with one end-vertex inJ = {2, 3, ..., j} and the
edge{1, j + 1}. Let Qj denote the set of edges inT
with at least one end-vertex inJ . Let mj denote the
number of edges inT in which both end-vertices belong
to the setJ and observe that|Qj | = 2(j − 1) − mj

(since each vertex inJ has degree 2 inT and every
edge ofT between vertices inJ ’cancels’ one degree
unit). Observe thatmj ≤ j − 2, which implies that
|I(e1, e2, ..., ej)∩T | ≤ n−|Qj| = n−2(j−1)+mj ≤
n − j.

Now let ab be an edge inT such thata < b −
1 < n − 1 and a is as small as possible. Observe
that ab exists sinceT ′ 6= T . If a = 1 then we have
|I(e1, e2, ..., eb−1)∩T | ≤ n−(b−1)−1, asab 6∈ Qb−1,
butab 6∈ I(e1, e2, ..., eb−1)∩T . If a > 1 then123 . . . a
is a path inT andma+1(a + 1)− 3 asea 6∈ T . Hence,
|I(e1, e2, ..., ea+1) ∩ T | ≤ n − (a + 1) − 1. Therefore
the following holds.

n−1
∑

j=0

|I(e1, e2, . . . , ej) ∩ T |

≤

{

(n + n +
∑n−1

j=2 (n − j)) − 1 if e1 6∈ T

(n + (n − 1) +
∑n−1

j=2 (n − j)) − 1 if e1 ∈ T

This proves Claim A.
Now let M > n and assign weights to the edges of

Kn as follows:

c(e1) = 2M

c(ei) = iM for all i ≥ 2 (1)

c(e) = 1 + jM if e 6∈ T ′, e ∈ I(e1, e2, . . . , ej−1)

but e 6∈ I(e1, e2, . . . , ej)

Observe thatc(e) ≥ 2M for eache. By this remark
and the definition of costs, the greedy algorithm con-
structsT ′ andc(T ′) = Mn(n + 1)/2 + M.

Let T = {f1, f2, . . . , fn} be an arbitrary tour dis-
tinct from T ′. By the choice ofc made above, we have
that c(fi) ∈ {aiM, aiM + 1} for some positive inte-
ger ai. First assume thatfi 6= e1, in which casefi ∈
I(e1, e2, . . . , eai−1) but fi 6∈ I(e1, e2, . . . , eai

). There-
forefi ∈ I(e1, e2, . . . , ej)∩T exactly whenj ≤ ai−1,
which implies thatfi is countedai times in the sum in
Claim A. So if e1 6∈ T then, by Claim A, the following
holds:
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n(n + 1)

2
≥

n−1
∑

j=0

|I(e1, e2, . . . , ej) ∩ T | =

n
∑

i=1

ai.

Since
c(T ) ≤

∑n
i=1(aiM +1) ≤ Mn(n+1)/2+n < c(T ′),

we are done in the case whene1 6∈ T . If fi = e1 then
ai = 2 andfi ∈ I(e1, e2, . . . , ej)∩T only whenj = 0,
which, by Claim A, implies the following:

n(n + 1)

2
− 1 ≥

n−1
∑

j=0

|I(e1, e2, . . . , ej) ∩ T |

=

(

n
∑

i=1

ai

)

− 1.

As above we note thatc(T ) ≤
∑n

i=1(aiM + 1) ≤
Mn(n+1)/2+n < c(T ′), which completes the proof.

Theorem 3 For each evenn ≥ 4 there exists an in-

stance of STSP that hasΩ(
(n − 1)!

2nn1/2
) optimal tours,

each of which is at leastf(n) times shorter than the
unique worst tour, wheref(n) ≥ 1 is an arbitrary func-
tion in n, and yet the greedy algorithms produces the
unique worst tour.

Proof: Let Kn be a complete graph on vertices
{1, 2, . . . , n} and let edge{i, i + 1} be denoted by
ei for i = 1, 2, . . . , n, where n + 1 = 1. Then
T ′ = {e1, e2, . . . , en} is a base. Assign weightsc(e)
for each edgee of Kn as in the proof of Theorem
2, see (1), withM > n. It is proved in Theorem 2
that T ′ is the unique heaviest tour inKn; let P (n)
be the weight ofT ′. Let L = {2, 3, . . . , n

2 + 1} and
R = {n

2 + 2, n
2 + 3, . . . , n} ∪ {1}. We define the new

weights of edgese of Kn as follows: w(e) = c(e)
unless both end-vertices ofe are in R, in which case
w(e) = c(e) + f(n)P (n).

Clearly, the greedy algorithm constructsT ′ and T ′

remains the unique heaviest tour ofKn. LetA be the set
of all tours alternating betweenL andR and contain-
ing the edgee′ = en/2+1 and not containing the edge
e′′ = e1. Observe that for each tourH in A, we have
w(T ′)/w(H) ≥ f(n). It remains to prove that every
H ∈ A is an optimal tour and

|A| = Ω(
(n − 1)!

2nn1/2
).

Let A′ be the set of tours alternating betweenL and
R and containing the edgee′. LetA′′ be the set of tours

in A′ containinge′′. Clearly,A = A′\A′′. Let G be the
induced subgraph ofKn obtained fromKn by deleting
the verticesn

2 + 1 and n
2 + 2. Observe that there are

[(n/2 − 1)!]2 Hamilton paths inG. Each such pathQ
can be transformed into a tour inKn by adding the edge
e′ and two more edges linking the end-vertices ofQ
with the end-vertices ofe′. Thus,|A′| = [(n/2− 1)!]2.
Observe that there are[(n/2 − 2)!]2 tours alternating
betweenL and R and containing the edgee′′ in the
graphG. To form a tour containinge′, e′′ in Kn from a
tour C containinge′′ in G, it suffices to insert the edge
e′ into C such thate′′ remains in the tour. This can be
done inn−3 ways. Hence,|A′′| = [(n/2−2)!]2(n−3).
So, we obtain that

|A| = |A′| − |A′′|

= [(n/2 − 1)!]2(1 − o(1)) = Ω(
(n − 1)!

2nn1/2
).

Let H 6= H ′ ∈ A. Observe that every tourC not al-
ternating betweenL andR must contain an edge with
both end-vertices inR. This, by the definition ofw,
implies thatw(H) < w(C). Let C be a tour alter-
nating betweenL andR, but not inA. To prove that
w(H) = w(H ′) < w(C), we addM to the weight of
each edge incident to the vertex 1. Now observe that
the sum of the weights of two edges ofC incident to a
vertexi ∈ L equals2iM + 2 provided none of the two
edges coincides withe′ or e′′. Includinge′ into C, we
decrease the weight ofC by one and includinge′′ we
increase it byM. Thus,w(H) = w(H ′) < w(C).
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