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Abstract

One of the most celebrated polynomially solvable cases of the TSP is the Gilmore-Gomory TSP. The patching scheme
for the problem developed by Gilmore and Gomory has several interesting features. Its generalization, called the GG-
scheme, has been studied by several researchers and polynomially testable sufficiency conditions for its validity have
been given, leading to polynomial schemes for large subclasses of the TSP. A good characterization of the subclass of
the TSP for which the GG-scheme produces an optimal solution, is an outstanding open problem of both theoretical and
practical significance. We give some necessary conditions and a new, polynomially testable sufficiency condition for the
validity of the GG-scheme that properly includes all previously known such conditions.
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1. Introduction

Given ann × n cost matrixC, the traveling sales-
man problem (TSP) requires finding a tour (cyclic per-
mutation)Γ on N = {1, 2, . . . , n} such that its cost
c(Γ) =

∑n
i=1 ci,Γ(i) is minimum. (Though diagonal el-

ements of the cost matrixC do not play any role in
the definition of the TSP, interestingly, many of the al-
gorithms for polynomially solvable cases of the TSP
require the diagonal elements to be finite and to sat-
isfy specific properties. The subclass of the TSP con-
sidered in this paper is of this type.) If the cost matrix
C is symmetric, then the instance of the TSP is called
a symmetric TSP(STSP). To distinguish from this spe-
cial case, the general case of the TSP is often referred
to as anasymmetric TSP(ATSP). Throughout this pa-
per, we deal with the general case, which we shall, for
the most part, refer to as the TSP.

The TSP is a well known NP-hard problem [6] and
significant literature exists on polynomially solvable
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special cases of it [8,14]. One of the most celebrated
polynomially solvable cases of the TSP is the Gilmore-
Gomory TSP [7], which can be stated as follows:

A set ofn given jobs are to be heat-treated in a fur-
nace and only one job can be treated in the furnace at
any given time. The treatment of theith job involves
introducing it into the furnace at a given temperatureai
and heating/cooling it in the furnace to a given temper-
aturebi. The costs of heating and cooling the furnace
are given by functionsf(.) andg(.), respectively. Thus,
for any u, v in R, u < v, the cost of heating the fur-
nace from temperatureu to temperaturev is

∫ v

u
f(x)dx,

while the cost of cooling the furnace fromv to u is
∫ v

u
g(x)dx. Gilmore and Gomory impose the realistic

condition that

for anyx ∈ R, f(x) + g(x) ≥ 0. (1)

For each ordered pair(i, j) of jobs, if we decide to
heat-treat jobj immediately after jobi, then the furnace
temperature has to be changed frombi to aj . This cost,
which we call the change-over cost and denote bycij ,
is given by

cij =

{
∫ aj

bi
f(x)dx if bi ≤ aj

∫ bi

aj
g(x)dx if aj < bi
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Starting with the furnace at temperaturea1 and process-
ing job1 first, we want to sequentially heat-treat all the
jobs and in the end return the furnace temperature to
a1. The problem is to decide the order in which the jobs
should be treated in the furnace so as to minimize the
total change-over cost.

Subsequent to the Gilmore-Gomory paper [7], an al-
ternate, simple, strongly polynomial time algorithm for
this special case of the TSP, with a simple proof of its va-
lidity, is given in [3] and is further extended in [12] to a
larger class of problems. However, the patching scheme
for the problem developed by Gilmore and Gomory in
[7] is more efficient and has several interesting features;
it has been further generalized to larger subclasses of
the TSP in [8,14]. The most general known results in
this direction are the ones in [2,15] where a generaliza-
tion of the Gilmore-Gomory patching scheme, called
theGG-scheme, is considered while fairly general poly-
nomially testable sufficiency conditions for its validity
are given, leading to polynomial schemes for large sub-
classes of the TSP. (See also [14].)

The GG-scheme has two main steps: (These will be
described in further detail later.) (i) Choose a suitable
permutationΓ onN = {1, 2, . . . , n}. (ii) If Γ is a tour
(cyclic permutation), then stop withΓ as the optimal
tour. Otherwise, ifΓ hasℓ > 1 subtours, then obtain
the best possible tour using a patching scheme of the
following type: starting withΓ, perform a succession of
(ℓ− 1) patching operations, where each patching oper-
ation involves choosing ani ∈ N such thati and(i+1)
lie in two different subtours, breaking the two subtours
by deleting the arcs, leaving nodesi and (i + 1), and
linking together the two resulting directed paths. Hence-
forth, we shall call a patching scheme of this typeGG-
patching. It is shown in [8] that the problem of choosing
an optimal GG-patching is NP-hard. However, many of
the well-known heuristics for the ATSP, such as those
named Patch, COP in [10], which perform well in prac-
tice, can be looked upon as approximations to the GG-
scheme, in which a polynomial heuristic is used to find
a good GG-patching. Study of the class of the TSP for
which the GG-scheme gives an optimal solution, be-
sides being an interesting theoretical issue, also pro-
vides greater insight into the subclass of the TSP on
which these heuristics perform well. As shown in [14],
testing if the GG-scheme produces an optimal solution
to a given instance of the TSP is an NP-hard prob-
lem. Hence, it seems unlikely that one will be able to
develop polynomially testable necessary and sufficient
conditions for the validity of the GG-scheme. In this

paper, we give some necessary conditions and a new,
more general polynomially testable sufficiency condi-
tion for the validity of the GG-scheme. What makes
this result more interesting is the fairly small gap be-
tween the necessary and the sufficiency conditions. We
also provide classes of the TSP which satisfy the new
sufficiency conditions, but do not satisfy any of the pre-
viously known polynomially testable sufficiency condi-
tions.

After giving our notations, definitions and some ba-
sic results in Section2, we describe the GG-scheme in
Section3. Current results on the validity of the GG-
scheme are discussed in Section4. The main results of
this paper are given in sections5 and6.

Most of the results in this paper were first reported
in [13].

2. Notations, Definitions and Some basic results

Throughout, we assume a familiarity with the existing
results on the Gilmore-Gomory TSP and its extensions.
We direct the reader to [14] for details. We present in
this section the main notations, definitions and the basic
results that we are seeking. Additional notations used
are standard ones as in [9,14].

We associate with any permutationπ onN a digraph
Gπ = [N,Eπ ], whereEπ = {(i, π(i)) : i ∈ N}. Let
G1, G2, . . . , Gℓ be the connected components ofGπ
with node setsN1, N2, . . . , Nℓ, respectively. Then each
Gi defines a subtourCi on the node setNi. We call
C1,C2, . . . ,Cℓ the subtours ofπ. If ℓ = 1 thenπ defines
a tour onN and such a permutation is called a tour.
If |Ni| > 1 then the subtourCi is called a non-trivial
subtour ofπ. Otherwise, we call it a trivial subtour. A
permutation with a single non-trivial subtour (and with
all other subtours trivial) is called a circuit. A circuit
with its only non-trivial subtour of the form(i, j, i) is
called a transposition and is denoted byαij . A transpo-
sition of the formαi,i+1 = αi+1,i is called an adjacent
transposition and is denoted byβi. We denote byξ the
identity permutation (that is,ξ(i) = i for all i in N ).
For any two permutationsπ andψ on N, we define
π ◦ ψ (product ofπ with ψ), asπ ◦ ψ(i) = π(ψ(i)) for
all i ∈ N .

Observation 1 [7] Let π be an arbitrary permutation
onN and let{i, j} ⊆ N.
(i) If i and j both belong to the same subtourC of π
then inπ ◦ αij , the subtourC is decomposed into two
subtours, one containingi and the other containingj,
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while all other subtours ofπ ◦ αij are precisely the
same as those ofπ.
(ii) If i and j belong to two different subtoursC1 and
C2 of π, then inπ ◦ αij , the two subtoursC1 and C2

are combined into a single subtourC while all other
subtours ofπ◦αij are precisely the same as those ofπ.

In case (ii) of Observation1, we say that subtourC
is obtained by patching the subtoursC1 andC2. If, in
addition,j = i + 1, then we call it an adjacent patch-
ing scheme. Starting with a permutationΓ onN with ℓ
subtours, the GG-patchings in the GG-scheme is a se-
quence of(ℓ− 1) adjacent patchings, which result in a
tour.

The following concept of pyramidal tours introduced
in [1] plays an important role in the study of a GG-
scheme.

Definition 1. [1] A path in a digraphG = [N,E] is said
to be a pyramidal path if and only if it is of the form
(i1, i2, . . . , iu, j1, j2, . . . , jv) with i1 < i2 < · · · < iu
and j1 > j2 > · · · > jv. A closed, pyramidal path is
called a pyramidal subtour. A permutation is said to be
pyramidal if and only if all its non-trivial subtours are
pyramidal. An instance of the TSP, TSP(C), is said to
be pyramidally solvable if and only if it has an optimal
tour which is pyramidal.

It may be noted that whether a path is pyramidal de-
pends on the numbering of the nodes. For a given node
numbering, an optimal pyramidal tour can be computed
in O(n2) time [17]. However, testing if, for a given
node numbering, the given instance of the TSP is pyra-
midally solvable is an NP-hard problem [14] and var-
ious polynomially testable sufficiency conditions for it
are reported in relevant literature [14].

Definition 2. [5] A permutation is said to be dense
if and only if the node set of each of its non-trivial
subtours is of the form{i, i + 1, . . . , j}. Let π be a
dense permutation with its non-trivial subtoursC1, C2

, . . . , Cℓ on node sets{i1, i1 + 1, . . . , j1}, {i2, i2 +
1, . . . , j2}, . . . , {iℓ, iℓ+1, . . . , jℓ}, respectively. Then
we say thatπ is dense on node set{i1, i1 + 1, . . . , j1 −
1}∪{i2, i2+1, . . . , j2−1}∪. . .∪{iℓ, iℓ+1, . . . , jℓ−1}.

The relationship between GG-patchings and pyrami-
dal tours is established by the following lemma.
Lemma 1 For any set S = {u, u + 1, . . . , v} ⊆
{1, 2, . . . , n − 1}, k = |S| and any ordering
(i1, i2, . . . , ik) of elements ofS, permutationψ =
βi1 ◦ βi2 ◦ · · · ◦ βik is a pyramidal circuit dense on set
S. Conversely, for any pyramidal circuitψ, dense on
S, there exists an ordering(i1, i2, . . . , ik) of elements

of S such thatψ = βi1 ◦ βi2 ◦ · · · ◦ βik .

Definition 3. For anyN ⊇ X = {i1, i2, . . . , ik}, where
1 ≤ i1 < i2 < · · · < ik ≤ n,
(i) [i1, ik − 1] is the range ofX .
(ii) For each1 ≤ u < k, {iu, iu + 1, . . . , iu+1 − 1} is
a region ofX .
(iii) If X is the node set of a subtourC, then we call the
range and the regions ofX as, respectively, the range
and the regions ofC.

Definition 4. Suppose digraphGπ , associated with a
permutationπ, hasℓ connected components with node
setsN1, N2, . . . , Nℓ. ThenGπp = [Nπ

p , E
π
p ], the patch-

ing pseudograph ofπ, is defined asNπ
p = {1, 2, . . . , ℓ}

andEπp = {ei = (u, v) : i ∈ {1, 2, . . . , n − 1}, i ∈
Nu, (i+ 1) ∈ Nv}. For anyS ⊆ {1, 2, . . . , n− 1} we
denote byEπp [S] the set{ei ∈ Eπp : i ∈ S}.

It is observed in [7] that for a permutationπ on
N with ℓ > 1 connected components, and a setS =
{i1, i2, . . . , i(ℓ−1)} ⊆ N , π ◦ βi1 ◦ βi2 ◦ · · · ◦ βi(ℓ−1))

is
a tour if and only ifEπp [S] is the edge set of a spanning
tree ofGπp .

For ann × n cost matrixC, we denote its(i, j)th

element byci,j and for any permutationψ on N , we
define the cost ofψ as

c(ψ) =

n
∑

i=1

ci,ψ(i)

The traveling salesman problem is then to find a tourΓ
onN = {1, 2, . . . , n} such thatc(Γ) is minimum.

Definition 5. For anyn × n cost matrixC with finite
entries (including the diagonal entries), the density ma-
trix D of C is an(n− 1) × (n− 1) matrix defined as

dij = ci,j+1 + ci+1,j − cij − ci+1,j+1 ∀ 1 ≤ i, j < n.

For example, the density matrix of

C =





2 4 1
3 6 5
4 5 3



 is D =

[

−1 −2
2 1

]

.

Definition 6. For any cost matrixC and any two per-
mutationsπ andψ onN, we define the permuted cost
matrixCπ,ψ as

cπ,ψij = cπ(i),ψ(j) ∀ i, j.

We denoteCξ,ψ by Cψ . (It may be recalled thatξ
denotes the identity permutation.) Thus,c(π ◦ ψ) =
cπ(ψ) =

∑

i∈N c
π
i,ψ(i).
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We define the cost ofψ relative toπ as

c(π ◦ ψ) − c(π) = cπ(ψ) − cπ(ξ).

As shown in [2,15], the cost ofψ relative toπ depends
only on the density matrixD of Cπ and we denote it by
D(ψ). LetF be the set of all orderings of the elements
of S. We define,

D[S] = min{D(βi1 ◦ βi2 ◦ · · · ◦ βik) :

(i1, i2, . . . , ik) ∈ F}. (2)

Observation 2. For anyS ⊆ {1, 2, . . . , n−1}, let (S1∪
S2 ∪ · · · ∪Sℓ) be its natural partition. (That is, for any
x ∈ {1, 2, . . . , ℓ}, Sx is of the form{ix, ix+1, . . . , jx}
and for allx ∈ {1, 2, . . . , ℓ−1}, jx+1 < ix+1.) Then
D[S] =

∑ℓ
i=1D[Si].

3. GG-scheme : A generalization of the Gilmore-
Gomory patching scheme

The following generalization, of the Gilmore-
Gomory patching scheme (called the GG-scheme) is
studied in [2,4,5,11,15,16]. (See also [8,14].)
Algorithm 1 GG-Scheme
Input: Ann×n cost matrixC and a suitable permuta-
tion Γ onN = {1, 2, . . . , n}
Step 1: IfΓ is a tour, then stop withΓ as the output.
Otherwise, letℓ be the number of subtours ofΓ and let
N1, N2, . . . , Nℓ be the node sets of these subtours.
Step 2: Construct the patching pseudograph
GΓ
p = [NΓ

p , E
Γ
p ] of Γ.

Step 3: Compute the density matrixD of CΓ. Find a
spanning tree inGΓ

p with an edge set, say{ei : i ∈ T ∗},
such thatD[T ∗] is minimum.
Let (i1, i2, . . . , iℓ−1) be an ordering of the elements of
T ∗ such thatD[T ∗] = D(βi1 ◦ βi2 ◦ · · · ◦ βiℓ−1

). Let
Ψ = βi1◦βi2◦· · ·◦βiℓ−1

. Construct the tourΓ∗ = Γ◦Ψ.
OutputΓ∗ and stop.

4. Existing sufficiency results for the validity of the
GG-scheme

As shown in [14], checking if, for a given pair(C,Γ),
the GG-scheme, withΓ as the suitable permutation, pro-
duces an optimal tour is NP-hard even for the special
caseΓ = ξ. Hence, it seems unlikely that one will be
able to find polynomially testable necessary and suffi-
cient conditions on an(n− 1)× (n− 1) matrixD un-
der which, for any pair(C,Γ) of a cost matrixC and a

permutationΓ onN such thatD is the density matrix
of CΓ, the GG-scheme withΓ as the suitable starting
permutation will produce an optimal tour.

The most generally known such polynomially
testable sufficiency condition onD is the one given in
[2,15] and is a special case of the condition in Theorem
3 below, which is a minor modification of a theorem in
[2,15].

For anyn×n matrixC, with a density matrixD and
any1 ≤ i, j < n and1 ≤ u, v < n, we denote

MD
i,j,u,v =

v
∑

y=u

j
∑

x=i

dxy. (3)

From the definition of a density matrix, it follows
that,

MD
i,j,u,v =











ci,v+1 + cj+1,u − ci,u − cj+1,v+1,

if i ≤ j andu ≤ v

0, otherwise

Definition 7. For any permutationΨ on N with non-
trivial subtours
C1,C2, . . . ,Cℓ, having respective ranges[i1, j1 − 1],
[i2, j2−1], . . . , [iℓ, jℓ−1], the intersection graph of the
non-trivial subtours ofΨ is the graph
GIΨ = [NΨ, E

I
Ψ], whereNΨ = {1, 2, . . . , ℓ} and

EIΨ = {(i, j) : 1 ≤ i, j ≤ ℓ, i 6= j; ranges of the sub-
toursCi andCj intersect}.

Theorem 2 [14] Suppose thatΓ◦ Ψ is a tour. Sup-
poseΨ hasℓ non-trivial subtours andGIΨ hasr con-
nected components. LetN1

Ψ, N2
Ψ, . . . , N

r
Ψ be the node

sets of ther connected components ofGIΨ. For each
i ∈ {1, 2, . . . , r}, let |N i

Ψ| = ℓi and letX i
Ψ be the

union of the node sets of all the non-trivial subtours of
Ψ corresponding to the nodes inN i

Ψ. Then, there exists
S ⊆ {1, 2, . . . , n−1} and a partition{S1, S2, . . . , Sr}
of its elements such that:
(i) EΓ

p [S] = {ei ∈ EΓ
p : i ∈ S} is the edge set of a

spanning tree ofGΓ
p .

(ii) For 1 ≤ i ≤ r, every element ofSi lies in the range
ofX i

Ψ; and where every region ofX i
Ψ contains, at most,

one element ofSi; and where|Si| ≤ (|X i
Ψ| − ℓi).

(iii) |S| ≡ ((
∑r

i=1 |X
i
Ψ|) − ℓ)mod2.

Theorem 3 SupposeD is an(n− 1)× (n− 1) matrix
satisfying the following condition:

Let Ψ be any arbitrary permutation onN . Suppose
Ψ hasℓ non-trivial subtours andGIΨ hasr connected
components of sizesℓ1, ℓ2, . . . , ℓr. Let
X1

Ψ, X
2
Ψ, . . . , X

r
Ψ be the unions of the node sets of the
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non-trivial subtours ofΨ corresponding, respectively,
to nodes of ther connected components ofGIΨ. Let S
be any subset ofN with a partition {S1, S2, . . . , Sr},
such that (i) for any1 ≤ i ≤ r, every element ofSi
lies in the rangeX i

Ψ; and where every region ofX i
Ψ

contains, at most, one element ofSi; and where|Si| ≤
(|X i

Ψ| − ℓi); and (ii) |S| ≡ ((
∑r

i=1 |X
i
Ψ|) − ℓ)mod2.

ThenD(Ψ) ≥ D[S].
Under this condition, for any cost matrixC and any

permutationΓ onN such thatD is the density matrix
of CΓ, the GG-scheme withΓ as the suitable starting
permutation produces an optimal solution to the corre-
sponding TSP.

Proof: Let D be an(n − 1) × (n − 1) matrix satis-
fying the condition of the theorem and let a cost ma-
trix C and a permutationΓ on N be such thatD is
the density matrix ofCΓ. Let Υ be an optimal tour
to the corresponding instance of the TSP. LetΨ =
Γ−1 ◦ Υ. SupposeΨ has ℓ non-trivial subtours and
GIΨ hasr connected components of sizesℓ1, ℓ2, . . . , ℓr.
Let X1

Ψ, X
2
Ψ, . . . , X

r
Ψ be the unions of the node sets

of the non-trivial subtours ofΨ corresponding respec-
tively to ther connected components ofGIΨ. Then, by
Theorem 2, there exist a subsetS of N with partition
{S1, S2, . . . , Sr} such that:(i) for each1 ≤ i ≤ r, ev-
ery element ofSi lies in the rangeX i

Ψ; and where ev-
ery region ofX i

Ψ contains, at most, one element of
Si; and where|Si| ≤ (|X i

Ψ| − ℓi); (ii) EΓ
p [S] is the

edge-set of a spanning tree of the patching pseudograph
GΓ
p ; and, therefore, (iii)|S| ≡ ((

∑r
i=1 |X

i
Ψ|)−ℓ)mod2.

Let (i1, i2, . . . , ir) be an ordering of the elements of
S for which D(βi1 ◦ βi2 ◦ · · · ◦ βir ) = D[S]. Then,
τ∗ = Γ ◦ βi1 ◦ βi2 ◦ · · · ◦ βir is a tour onN ; and
c(τ∗) − c(Υ) = (c(τ∗) − c(Γ)) − (c(Υ) − c(Γ)) =
D[S] −D(Ψ) ≤ 0. Hence,τ∗ is an optimal tour. This
proves the Theorem.

5. Some necessary conditions for the validity of the
GG-scheme

In this section, we investigate necessary conditions
on an(n − 1) × (n − 1) matrixD, for which, for any
cost matrixC, and any permutationΓ onN such that
D is the density matrix ofCΓ, the GG-scheme withΓ,
as the suitable permutation, produces an optimal tour.

The following examples dispel a commonly held false
belief that it is a necessary condition forΓ to be an opti-
mal solution to the corresponding Assignment problem
onC.

Example 1[14]: LetD be a2×2 matrix withd1,1 = −1
with each of the other three entries equal to5. Then it is
easy to see that for any3×3 matrixC and permutation
Γ on{1, 2, 3}, such thatD is the density matrix ofCΓ,
Γ ◦β1 is the unique optimal solution to the Assignment
problem onC and the GG-scheme, withΓ as the suitable
permutation, produces an optimal tour.
Example 2: Consider a TSP with the following cost
matrixC:













3 0 15 9 11
0 2 17 11 13
4 1 6 0 2
17 9 4 3 0
33 20 0 9 1













Consider a non-optimal assignmentΓ = (1, 1) (2, 2)
(3, 4, 5, 3) . The permuted matrixCΓ is shown below:













3 0 9 11 15
0 2 11 13 17
4 1 0 2 6
17 9 3 0 4
33 20 9 1 0













The density matrixD of CΓ is shown below:








−5 0 0 0
5 10 0 0
5 5 5 0
5 5 5 5









The optimal assignment,Γ∗ = (1, 2, 1) (3, 4, 5, 3)
is non-diagonal, unique and has two subtours(1, 2, 1)
and (3, 4, 5, 3) . The cost of the optimal assignment
is 0. The GG subtour patching scheme, starting with
optimal assignmentΓ∗, finds only one candidate tour
(1, 2, 4, 5, 3, 1), which has a cost of 15. However, the
GG-scheme starting with the non-optimal assignmentΓ
finds two candidate tours and picks the unique optimal
tour (1, 4, 5, 3, 2, 1), which has a cost of 10. Thus, the
example shows that the GG-scheme may fail to obtain
an optimal tour when the initial assignment is an opti-
mal assignment. But, the GG-scheme obtains an opti-
mal tour when the initial assignment is not an optimal
assignment at all.
Theorem 4 Each of the following conditions on an
(n − 1) × (n − 1) matrix D is a necessary condition
for the GG-scheme, with a permutationΓ onN as the
suitable permutation, to produce an optimal tour for an
instance of the TSP with a cost matrixC, whereC and
Γ are such thatD is the density matrix ofCΓ:
(i) ∀1 ≤ i, j ≤ n−1, such that|i−j| > 1,dii+djj ≥ 0;
(ii) ∀1 ≤ i ≤ n− 2, D[{i, i+ 1}] ≥ 0;
(iii) ∀1 ≤ i < j ≤ n− 1, MD

i,j,i,j ≥ duu∀i ≤ u ≤ j;
(iv) ∀1 ≤ i < j ≤ n− 1, MD

i,j,i,j ≥ 0;
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(v) ∀1 ≤ i ≤ j < j + 1 ≤ k ≤ n− 1

MD
i,j,i,j+M

D
j+1,k,j+1,k+min

(

MD
i,j,j+1,k,M

D
j+1,k,i,j

)

≥ djj + dj+1,j+1 + min (dj,j+1, dj+1,j) ≥ 0;
(vi) ∀1 ≤ i ≤ j < j + 1 ≤ k ≤ n− 1

MD
i,j,i,j+M

D
j+1,k,j+1,k+min

(

MD
i,j,j+1,k,M

D
j+1,k,i,j

)

≥ duu + dvv ≥ 0∀i ≤ u ≤ j < j + 1 ≤ v ≤ k,
∀u+ 1 < v;
(vii) For any circuitϕ with its non-trivial cycle on node
set{i, u, u+1, . . . , v, j}, 1 ≤ i < u ≤ v < j ≤ n, and
any optimal pyramidal and dense permutationβ with its
non-trivial cycle on node set{u−1, u, u+1, . . . , v, v+
1}, D(ϕ) ≥ D(β) ≥ 0;
(viii) For any principal submatrixD′ of D on a con-
secutive subset of its rows and columns, and any cost
matrix C havingD′ as its density matrix, the TSP on
C is pyramidally solvable;
(ix) At most, two diagonal entries are negative. If two
diagonal entries are negative, they must be consecutive.
If dii < 0 and di+1,i+1 < 0 for somei, then at least
one ofΓ ◦ βi and Γ ◦ βi+1 is an optimal assignment.
If exactly one diagonal entry is negative,Γ ◦ βi is an
optimal assignment, wheredii < 0 for somei. If all
dii ≥ 0, thenΓ is an optimal assignment.

Proof: Consider an(n−1)×(n−1) matrixD for which
for anyC andΓ, such thatD is the density matrix of
CΓ, the GG-scheme withΓ as the suitable permutation
produces an optimal tour.

(i) Suppose1 ≤ i < j − 1 ≤ n − 2, such thatdii +
djj < 0. DefineΓ as follows:Γ(i) = j; Γ(j) = i+ 1;
Γ(j − 1) = j + 1; Γ(n) = 1; andΓ(ℓ) = ℓ + 1 for all
other1 ≤ ℓ ≤ n. Let C be any cost matrix such thatD
is the density matrix ofCΓ. ThenΓ is a tour onN and
therefore the GG-scheme will terminate withΓ as the
output. ButΓ ◦ βi ◦ βj is a tour having a strictly lower
cost thanΓ. We thus have a contradiction.

(ii) Suppose1 ≤ i ≤ n−2, such thatD[{i, i+1}] < 0.
DefineΓ as follows:Γ(n) = 1; andΓ(j) = j + 1 for
all 1 ≤ j < n. Let C be any cost matrix such thatD
is the density matrix ofCΓ. ThenΓ is a tour onN and
therefore the GG-scheme will terminate withΓ as the
output. But at least one of the toursΓ ◦ βi ◦ βi+1 and
Γ ◦ βi+1 ◦ βi has a strictly lower cost thanΓ. We thus
have a contradiction.

(iii) Suppose1 ≤ i < j ≤ n − 1, i ≤ u ≤ j, such
thatMD

i,j,i,j < duu. DefineΓ as follows:Γ(u) = 1;
Γ(n) = u + 1; Γ(ℓ) = ℓ + 1 for all other1 ≤ ℓ ≤ n.
Then, for any cost matrixC such thatD is the density

matrix of CΓ, the GG-scheme withΓ as the suitable
starting permutation produces the tourΓ ◦ βu as the
output. But the tourΓ ◦ αi,j has a strictly lower cost
thanΓ ◦ βu. We thus have a contradiction.

(iv) Suppose1 ≤ i < j ≤ n − 1, such thatMD
i,j,i,j <

0. Then it follows from (i) and (iii) thatj = i + 1.
Now, by (ii), di,i+1 ≥ −(dii + di+1,i+1) anddi+1,i ≥
−(dii + di+1,i+1). Therefore,MD

i,i+1,i,i+1 ≥ −(dii +
di+1,i+1) > 0. We thus have a contradiction.

(v) Suppose1 ≤ i ≤ j < j + 1 ≤ k ≤ n− 1, such that

MD
i,j,i,j +MD

j+1,k,j+1,k + min
(

MD
i,j,j+1,k,M

D
j+1,k,i,j

)

< djj +dj+1,j+1 + min (dj,j+1, dj+1,j). DefineΓ as
follows: Γ(j) = 1; Γ(j + 1) = j + 1; Γ(n) = j + 2;
Γ(ℓ) = ℓ+1 for all other1 ≤ ℓ ≤ n. Then, for any cost
matrixC such thatD is the density matrix ofCΓ, the
GG-scheme withΓ as the suitable starting permutation
produces the tourΓ ◦ βj ◦ βj+1 or Γ ◦ βj+1 ◦ βj as the
output. But at least one of the toursΓ ◦ αi,j ◦ αj+1,k

or Γ ◦ αj+1,k ◦ αi,j has a strictly lower cost than both
toursΓ ◦ βj ◦ βj+1 andΓ ◦ βj+1 ◦ βj . We thus have a
contradiction. The non-negativitiy part of condition (v)
follows from (ii).

(vi) Suppose1 ≤ i ≤ j < j + 1 ≤ k ≤ n − 1, i ≤
u ≤ j < j + 1 ≤ v ≤ k, u + 1 < v such thatMD

i,j,i,j

+MD
j+1,k,j+1,k + min

(

MD
i,j,j+1,k,M

D
j+1,k,i,j

)

< duu

+dvv. DefineΓ as follows:Γ(u) = 1; Γ(v) = u + 1;
Γ(n) = v + 1; Γ(ℓ) = ℓ + 1 for all other1 ≤ ℓ ≤ n.
Then, for any cost matrixC, such thatD is the density
matrix of CΓ, the GG-scheme withΓ as the suitable
starting permutation produces the tourΓ ◦ βu ◦ βv or
Γ ◦ βv ◦ βu as the output. But at least one of the tours
Γ◦αi,j ◦αj+1,k or Γ◦αj+1,k ◦αi,j has a strictly lower
cost than both toursΓ ◦ βu ◦ βv andΓ ◦ βv ◦ βu. We
thus have a contradiction. The non-negativitiy part of
condition (vi) follows from (i).

(vii) Suppose there exists a circuitϕ with its non-trivial
cycle on node set{i, u, u + 1, . . . , v, j}, 1 ≤ i <
u ≤ v < j ≤ n, and an optimal pyramidal and dense
permutationβ with its non-trivial cycle on node set
{u−1, u, u+1, . . . , v, v+1}, such thatD(ϕ) < D(β).
DefineΓ as follows:Γ(u−1) = 1; Γ(n) = v+1; Γ(ℓ) =
ℓ ∀u ≤ ℓ ≤ v; Γ(ℓ) = ℓ + 1 for all other1 ≤ ℓ ≤ n.
Then, for any cost matrixC, such thatD is the density
matrix of CΓ, the GG-scheme withΓ as the suitable
starting permutation produces the tourΓ ◦ β as the out-
put. But the tourΓ ◦ϕ has a strictly lower cost than the
tour Γ ◦ β. We thus have a contradiction. Now suppose
D(β) < 0. If (v − u) is odd, there exists at least onek,
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such that(u− 1) ≤ k ≤ v anddkk > 0. DefineΓ as
follows: Γ(k) = 1; Γ(n) = (k + 1); andΓ(ℓ) = ℓ + 1
for all 1 ≤ ℓ < n. LetC be any cost matrix such thatD
is the density matrix ofCΓ. Then the GG-scheme, with
Γ as the suitable starting permutation, produces the tour
Γ ◦ βk as the output. But the tourΓ ◦ β has a strictly
lower cost thanΓ ◦ βk. We thus have a contradiction.
If (v − u) is not odd, defineΓ as follows:Γ(n) = 1;
andΓ(ℓ) = ℓ+ 1 for all 1 ≤ ℓ < n. Let C be any cost
matrix such thatD is the density matrix ofCΓ. Then
the GG-scheme, withΓ as the suitable starting permu-
tation, will terminate withΓ as the output. But the tour
Γ ◦ β has a strictly lower cost thanΓ. We thus have a
contradiction.

(viii) For any 1 ≤ i < j ≤ n − 1, consider the set
S = {i, i+1, . . . , j}. LetD′ be the principal submatrix
of D on row/column setS. Define a permutationΓ on
N as follows: Γ(i) = 1; Γ(n) = j + 1; Γ(ℓ) = ℓ
∀i < ℓ ≤ j; Γ(ℓ) = ℓ + 1 for all otherℓ ∈ N . Let Υ
be the tour produced by the GG-scheme onD with Γ
as the initial suitable permutation. ThenΩ = Γ−1 ◦ Υ
is a circuit with its only non-trivial subtour a pyramidal
one on the node set{i, i+ 1, . . . , j + 1}. Furthermore,
it is easy to see that for any circuitϕ on N with its
only nontrivial subtour on node set{i, i+1, . . . , j+1},
Γ ◦ ϕ is a tour. Since the GG-scheme works onD, we
must haveD(Ω) ≤ D(ϕ). Hence,Ω is an optimal tour
for any cost matrixC′ with D′ as its density matrix.

(ix) If there are more than two diagonal entries negative,
there is at least one pair of non-consecutive diagonal
entries and (i) does not hold. Hence, there may be, at
most, two consecutive negative diagonal entries or just
one negative diagonal entry or none. If condition (ix)
is false, there exists a permutationΨ such thatΓ◦ Ψ is
an optimal assignment andΨ has at least one subtour
C such thatD(C) < 0. It follows from (i)-(iv) that
|C| ≥ 3. For some1 ≤ i1 < i2 < . . . < ik ≤ n, let
S = {i1, i2, . . . , ik} be the node set of subtourC. Define
Γ as follows:Γ(i1) = 1; Γ(n) = ik−1 + 1; Γ(ij) =
ij−1 + 1 ∀2 ≤ j ≤ (k − 1); Γ(ℓ) = ℓ+ 1 for all other
1 ≤ ℓ ≤ n. Let β be an optimal pyramidal and dense
permutation on node set{i1, i2, . . . , ik−1}. Then, for
any cost matrixC, such thatD is the density matrix
of CΓ, the GG-scheme withΓ as the suitable starting
permutation produces the tourΓ ◦ β as the output. But
the tourΓ◦ C has a strictly lower cost than the tour
Γ ◦ β. We thus have a contradiction.
This proves the theorem.

6. A general sufficiency condition for the validity of
the GG-scheme

The sufficiency condition of Theorem 3 does not
seem to be polynomially testable in general. The only
polynomially testable sufficieny conditions on the den-
sity matrixD, for which for any instance of the TSP,
with cost matrixC and a permutationΓ, such thatD
is the density matrix ofCΓ, the GG-scheme withΓ as
the starting permutation produces an optimal solution,
are those reported in [2,4,5,11,15,16]. (See also [14].)
In [4], it is proved that the non-negativity ofD is a suf-
ficient condition. From Equation 1, it follows that the
Gilmore-Gomory case [7] is of this type. A minor gen-
eralization of the non-negative case is obtained in [5].
Both these cases can be easily shown to satisfy the con-
dition of Theorem 3. The most generally known such
polynomially testable sufficiency condition onD is the
one reported in [2,15]. This condition is a special case of
the condition of Theorem 3 and it properly generalizes
the results in [4,5]. However, even this condition seems
highly constrained. For example, consider Examples 1
& 2 of the previous section. Both examples satisfy the
condition of Theorem 3. Hence the GG-scheme is valid
for both cases. However, the density matrices shown
in these two examples do not satisfy the polynomially
testable sufficiency condition in [2,15].

We give below a more general special case of The-
orem 3, which can be polynomially tested and which
properly generalizes the polynomially testable suffi-
ciency conditions in [2,15].

Definition 8. For a positive integern and ann × n
matrix A, and any1 ≤ i, j ≤ q ≤ u, v ≤ n − 1 such
that |{i, j, q, u, v}| ≥ 2,

FAU (i, q, u, j, q, v) = MA
i,u,q,v + MA

q,u,j,q−1;
and

FAL (i, q, u, j, q, v) = MA
i,u,j,q +MA

i,q,q+1,v.

Lemma 5 SupposeD is an (n − 1) × (n − 1) matrix
satisfying the following two conditions:
(i) ∀ 1 ≤ i, j ≤ q ≤ u, v ≤ n − 1 such that
|{i, j, q, u, v}| ≥ 2, except for the

case {u = v = q and i = j 6= q − 1},
FDU (i, q, u, j, q, v) ≥ 0; and
(ii) ∀ 1 ≤ i, j ≤ q ≤ u, v ≤ n − 1 such that
|{i, j, q, u, v}| ≥ 2, except for the

case {i = j = q and u = v 6= q + 1},
FDL (i, q, u, j, q, v) ≥ 0.

Let a circuitϕ onN with its unique non-trivial sub-
tour C and a set∅ 6= S ⊆ N be such that each ele-
ment ofS lies in the range ofC and every region of
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C contains, at most, one element ofS. Then, there ex-
ists a permutationζ onN that is dense onS such that
D(ϕ) ≥ D(ζ).

Proof: Let the node set ofC beX and let its range be
[a, b− 1]. Let (b − a) = r and|S| = m. We prove the
result by induction onr andm.
For r = 1, the result is obviously true.
Suppose, for somek > 1, the result is true∀ r < k and
∀ 1 ≤ m ≤ r. Let us now consider the caser = k.
Case 1:X = {a, b}: Let S = {x} for somea ≤ x ≤
b− 1.
If k = 2 then let us consider the casex = a. (The case
x = b−1 follows similarly.) Letω be the circuit with its
unique non-trivial subtour on node set{a, b− 1}. Then
D(ϕ)−D(ω) = FDU (a, a+1, a+1, a, a+1, a+1) ≥ 0.
If k = 3 andx = a+1, then letω be the circuit with its
unique non-trivial subtour on node set{a+ 1, a+ 2}.
ThenD(ϕ) −D(ω) = FDU (a, a + 2, a+ 2, a+ 1, a+
2, a+ 2) + FDL (a, a, a + 2, a, a, a+ 1) ≥ 0 and in all
other cases wherek ≥ 3, x−a ≥ 2 or b−1−x ≥ 2. Let
us consider the casex−a ≥ 2. (The other case follows
similarly.) Let ω be the circuit with its unique non-
trivial subtour on node set{x, b}. ThenD(ϕ)−D(ω) =
FDL (a, x− 1, b− 1, a, x− 1, b− 1) ≥ 0. In each of the
above cases, the permutationω has smaller value ofr.
Hence, the result follows by the induction hypothesis.
Case 2:|X | > 2: Supposea /∈ S. Let u = ϕ−1(a). If
(a+1) ∈ X , then letω = ϕ ◦αa,u and if (a+1) /∈ X ,
then letω = ϕ ◦ αa,u ◦ αa+1,u. In either case,ω is
a circuit with (X ∪ {a + 1}) − {a} as the node set
of its unique, nontrivial subtourC′. In the first case,
D(ϕ) −D(ω) = FDU (a, a, u − 1, a, a, ϕ(a) − 1) ≥ 0;
and in the second case,D(ϕ) −D(ω) = FDL (a, a, u−
1, a, a, ϕ(a)− 1) ≥ 0. In either case, the range ofC′ is
k−1; andω andS satisfy the conditions of the lemma.
Hence, by the induction hypothesis, the result follows.
The case when(b− 1) /∈ S follows similarly.

Now, if m = 1, then eithera /∈ S or (b − 1) /∈ S,
and the result follows from the above.

Suppose the result is true∀m < t, for somek ≥ t >
1. Let us consider the casem = t.

If t = k, thenϕ is dense onS and the result follows
trivially. If either a /∈ S or (b− 1) /∈ S, then the result
follows as shown above. So let us consider the case
when {a, b − 1} ⊆ S, and t < k. Let q = min{i :
a < i < b − 1; i /∈ S}. We say that an arc(i, j) ∈ Eϕ
crossesq if either i ≤ q < j or j ≤ q < i.

Subcase (i):q /∈ X : Let (u1, v1) and (v2, u2) be a
pair of arcs crossingq encountered consecutively when

we traverse the subtourC and such thatu1 > q. Let
ω = ϕ ◦ αv2,u1 ◦ αv2,q. Thusω is obtained fromϕ by
replacing subtourC by two subtours:C1 on node set
X1 ⊆ (X ∩ {i : i ≤ q}) ∪ {q} andC2 on node set
X2 = X −X1; andD(ϕ) −D(ω) = FDU (v2, q, u1 −
1, v1, q, u2 − 1) ≥ 0.

Let S1 = S ∩X1 andS2 = S − S1. Let the ranges
of X1 andX2 be [a1, q] and [a2, b] respectively. Then
S1 6= ∅ and ifb−a2 > 0 thenS2 6= ∅. Letω1 andω2 be
circuits onN with unique non-trivial subtoursC1 and
C2, respectively. Thus, the pairs(ω1, S1) and(ω2, S2)
satisfy the conditions of the lemma and(q − a1) < k,
(b − a2) ≤ k and |S2| < t. Hence, by the induction
hypothesis, there exists a permutationζ1 dense onS1

such thatD(ζ1) ≤ D(ω1), and a permutationζ2 dense
on S2 such thatD(ζ2) ≤ D(ω2). Let ζ = ζ1 ◦ ζ2.
Thenζ is dense onS andD(ζ) = D(ζ1) +D(ζ2) ≤
D(ω1) +D(ω2) ≤ D(ϕ).

Subcase (ii):q ∈ X : Let (u1, v1) and (v2, u2) be a
pair of arcs crossingq encountered consecutively when
we traverse the subtourC such that (i)u1 > q and (ii)
the directed path inGϕ from nodev1 to nodev2 contains
the nodeq. If (q + 1) ∈ X , then letω = ϕ ◦ αv2,u1 ;
else, letω = ϕ ◦ αv2,u1 ◦ αq+1,u1 . Thusω is obtained
fromϕ by replacing the subtourC by two subtours:C1

on node set sayX1 ⊆ X ∩ {i : i ≤ q} andC2 on node
setX2 = (X ∪ {q + 1})−X1.
In the first case,

D(ϕ) −D(ω)

=

{

FDU (v2, v1, u1 − 1, v1, v1, u2 − 1) ≥ 0 if v2 ≤ v1,
FDU (v2, v2, u1 − 1, v1, v2, u2 − 1) ≥ 0 otherwise.

In the second case,D(ϕ) − D(ω) = FDL (v2, q, u1 −
1, v1, q, u2 − 1) ≥ 0.

Let S1 = S ∩X1 andS2 = S − S1. Let the ranges
of X1 andX2 be [a1, q] and [a2, b] respectively. Let
ω1 and ω2 be circuits onN with unique non-trivial
subtoursC1 andC2, respectively. Ifq − a1 > 0, then
S1 6= ∅. Also, b − a2 > 0 and S2 6= ∅. Thus, the
pairs(ω1, S1) and(ω2, S2) satisfy the conditions of the
lemma. Since(q− a1) < k, it follows by the induction
hypothesis that there exists a permutationζ1 dense on
S1 such thatD(ζ1) ≤ D(ω1). Also, (b − a2) ≤ k and
|S2| ≤ t. If |S2| < t, then by induction hypothesis,
there exists a permutationζ2, dense onS2 such that
D(ζ2) ≤ D(ω2). If |S2| = t, then(b − a2) = k and
q /∈ X2. Hence, by Subcase (i) above, there exists a
permutationζ2 dense onS2 such thatD(ζ2) ≤ D(ω2).
In either case, letζ = ζ1 ◦ζ2. Thenζ is dense onS and
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D(ζ) = D(ζ1) +D(ζ2) ≤ D(ω1) +D(ω2) ≤ D(ϕ).
This proves the lemma.

Lemma 6 SupposeD is an (n − 1) × (n − 1) matrix
satisfying the following three conditions:
(i) ∀ 1 ≤ i, j ≤ q ≤ u, v ≤ n − 1 such that
|{i, j, q, u, v}| ≥ 2, except for the case
{u = v = q andi = j 6= q−1},FDU (i, q, u, j, q, v) ≥ 0
(ii) ∀ 1 ≤ i, j ≤ q ≤ u, v ≤ n − 1 such that
|{i, j, q, u, v}| ≥ 2, except for the case{i = j = q and
u = v 6= q + 1}, FDL (i, q, u, j, q, v) ≥ 0;
(iii) for any 1 ≤ i ≤ n− 2, D[{i, i+ 1}] ≥ 0.

Let ϕ be the circuit onN with a unique non-trivial
subtourC. Suppose the node setX of C is not of the
type{i, i+ 1}. ThenD(ϕ) ≥ 0.

Proof: We prove the result by induction on the size
|X | = r of the subtourC.
If X = {i, j} with |i− j| > 1, then
D(ϕ) = FDU (i, i, j − 1, i, i, j − 1) ≥ 0.
If X = {i, j, k} with i < j < k, and if (j − i) =

(k − j) = 1, the result follows from the condition (iii)
of the lemma.
Otherwise, ifj > i+1, then letϕ(i) = x andϕ−1(i) =
y. Let ω = ϕ ◦ αi,y ◦ αi+1,y.

The node set of the unique subtourC′ of ω is {i +
1, j, k} and
D(ϕ) −D(ω) = FDL (i, i, y − 1, i, i, x− 1) ≥ 0.

If j = i+1, then we must havek > j+1. Letϕ(k) = x
andϕ−1(k) = y; and letω = ϕ ◦ αy,k ◦ αy,k−1. The
node set of the unique subtourC′ of ω is{i, j, k−1} and
D(ϕ)−D(ω) = FDU (y, k−1, k−1, x, k−1, k−1) ≥ 0.

In either of the above cases, by repeating this ar-
gument withω, we end up with a circuitζ such that
D(ϕ) ≥ D(ζ) and the node set of the unique subtour
C̄ of ζ is of the form{ℓ, ℓ+ 1, ℓ+ 2}, which implies,
by condition (iii) of the lemma, thatD(ζ) ≥ 0.

Now suppose the result is true for allr < k and
for somek > 3. Let us consider the caser = k. Let
X = {i1, i2, · · · , ik} wherei1 < i2 < · · · < ik. Let
ϕ(i1) = iu andϕ−1(i1) = iv. Let ω = ϕ ◦ αiv ,i1 . The
node set of the unique subtourC′ of ω is {i2, · · · , ik};
and
D(ϕ)−D(ω) = FDU (i1, i1, iv−1, i1, i1, iu−1) ≥ 0.

Thus, by the induction hypothesis, we get,D(ϕ) ≥
D(ω) ≥ 0.

Lemma 7 SupposeD is an (n − 1) × (n − 1) matrix
satisfying the following three conditions:

(i) ∀ 1 ≤ i, j ≤ q ≤ u, v ≤ n − 1 such that
|{i, j, q, u, v}| ≥ 2, except for the case{u = v = q
and i = j 6= q − 1}, FDU (i, q, u, j, q, v) ≥ 0;
(ii) ∀ 1 ≤ i, j ≤ q ≤ u, v ≤ n − 1 such that
|{i, j, q, u, v}| ≥ 2, except for the case{i = j = q
andu = v 6= q + 1}, FDL (i, q, u, j, q, v) ≥ 0;
(iii) for any 1 ≤ i ≤ n− 2, D[{i, i+ 1}] ≥ 0.

Let ϕ be an arbitrary circuit. Let the node set and
range of its unique subtourC be X and [p,m − 1],
respectively. LetS ⊆ N be such that each element of
S lies in the range ofC; every region ofC contains,
at most, one element ofS; and there exists a region
[a, b−1] ofC that contains no element ofS. Then there
existsp ≤ i ≤ a ≤ q ≤ b − 1 ≤ j ≤ m − 1, and a
permutationζ that is dense onS such that
D(ϕ) ≥ D(ζ)+MD

i,j,q,q, orD(ϕ) ≥ D(ζ)+MD
q,q,i,j .

Proof: Let (s1, t1) and(t2, s2) be a pair of arcs cross-
ing nodea that are encountered consecutively when we
traverse the subtourC, such that (i)s1 ≥ b and (ii) the
directed path inGϕ from nodet1 to nodet2 contains
the nodea. Let ω = ϕ ◦ αt2,s1 . Thusω is obtained
from ϕ by replacing subtourC with two subtours:C1

on node setX1 ⊆ X ∩ {i : i ≤ a} andC2 on node set
X2 = X −X1. It is readily seen that

D(ϕ) −D(ω)

=

{

FDU (t2, t1, s1 − 1, t1, t1, s2 − 1) ≥ 0 if t2 ≤ t1,
FDU (t2, t2, s1 − 1, t1, t2, s2 − 1) ≥ 0 otherwise.

In either case,D(ϕ) −D(ω) ≥MD
i,j,q,q orMD

q,q,i,j for
somep ≤ i ≤ a ≤ q ≤ b− 1 ≤ j ≤ v − 1.

Let ω1 and ω2 be the circuits onN with unique
subtoursC1 andC2, respectively.
LetX1 = {i1, i2, . . . , iℓ = a}; let S1 = {xj : xj is the
unique element ofS in the region ofX having lower
limit ij ; 1 ≤ j < ℓ}; and letS2 = S − S1. Then,
every element ofS1 (S2) lies in the range ofX1 (X2)
and every region ofX1 (X2) contains, at most, one
element ofS1 (S2). Hence, by Lemma 5, there exist
permutationsζ1 andζ2 dense, respectively, onS1 and
S2, such thatD(ω1) ≥ D(ζ1) andD(ω2) ≥ D(ζ2).
Let ζ = ζ1 ◦ ζ2. Thenζ is dense onS andD(ζ) =
D(ζ1) +D(ζ2) ≤ D(ω1) +D(ω2) ≤ D(ϕ)−MD

i,j,q,q

orD(ϕ)−MD
q,q,i,j for somep ≤ i ≤ a ≤ q ≤ b− 1 ≤

j ≤ m− 1. This proves the lemma.

Theorem 8 SupposeD is an(n− 1)× (n− 1) matrix
satisfying the following five conditions:
(i) ∀ 1 ≤ i, j ≤ q ≤ u, v ≤ n − 1 such that
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|{i, j, q, u, v}| ≥ 2, except for the case{u = v = q
and i = j 6= q − 1}, FDU (i, q, u, j, q, v) ≥ 0.
(ii) ∀ 1 ≤ i, j ≤ q ≤ u, v ≤ n − 1 such that
|{i, j, q, u, v}| ≥ 2, except for the case{i = j = q
andu = v 6= q + 1}, FDL (i, q, u, j, q, v) ≥ 0.
(iii) for any 1 ≤ i ≤ n− 2, D[{i, i+ 1}] ≥ 0.
(iv) For any1 ≤ i ≤ u ≤ j < n and any1 ≤ k < i or
j < k < n, MD

i,j,u,u+dkk ≥ 0 andMD
u,u,i,j+dk,k ≥ 0.

(v) For any principal submatrixD′ of D on a consec-
utive subset of its rows/columns, the corresponding
instance of the TSP is pyramidally solvable.

Then, for any cost matrixC and any permutation
Γ on N , such thatD is the density matrix ofCΓ, the
GG-scheme withΓ as the suitable starting permutation
produces an optimal solution to the corresponding TSP.

Proof: Let D be a matrix satisfying the conditions of
the theorem. We shall show that it satisfies the condi-
tions of Theorem 3.

Thus let Ψ be any arbitrary permutation onN .
SupposeΨ has ℓ non-trivial subtours andGIΨ has
r connected components of sizesℓ1, ℓ2, . . . , ℓr. Let
X1

Ψ, X
2
Ψ, . . . , X

r
Ψ be the unions of the node sets of the

non-trivial subtours ofΨ corresponding, respectively, to
the node sets of ther connected components ofGIΨ. Let
S be any subset ofN with a partition{S1, S2, . . . , Sr}
such that (i) for any1 ≤ i ≤ r, every element ofSi lies
in the rangeX i

Ψ; every region ofX i
Ψ contains, at most,

one element ofSi; and where|Si| ≤ (|X i
Ψ| − ℓi); and

where (ii) |S| ≡ ((
∑r

i=1 |X
i
Ψ|) − ℓ)mod2.

We shall, first of all, produce a permutationΨ0 on
N with D(Ψ0) ≤ D(Ψ), such thatΨ0 has precisely
r non-trivial subtours, one on each of the node sets
X1

Ψ, X
2
Ψ, . . . , X

r
Ψ. If ℓ = r, thenΨ0 = Ψ. Else, letC1

andC2 be two non-trivial subtours ofΨ such that their
ranges,[i1, j1] and [i2, j2], intersect. Without loss of
generality, let us assume thati1 < i2 < j1. Then there
exist nodesu andv of subtoursC1 andC2, respectively,
such thati1 ≤ u < i2 < v andΨ(u) > i2 andΨ(v) =
i2. Let Ψ′ = Ψ ◦ αu,v. In Ψ′, the two subtoursC1

andC2 of Ψ are combined into one, while the other
subtours ofΨ′ are precisely those ofΨ. Furthermore,
D(Ψ) − D(Ψ′) = MD

u,v−1,i2,Ψ(u)−1 = FDU (u, i2, v −

1, i2, i2,Ψ(u) − 1) ≥ 0. By repeating the process, we
get the desired permutationΨ0.

Ψ0 hasr non-trivial subtours, sayC1, C2, . . . , Cr, on
the node sets
X1

Ψ, X
2
Ψ, . . . , X

r
Ψ, respectively. For eachi ∈ {1, 2, . . . ,

r}, let ζi be the circuit onN with Ci as its unique
non-trivial subtour. LetY ⊆ {1, 2, . . . , r} be such that

∀ j ∈ Y , Xj
Ψ is of the type{i, i+ 1} andSj = ∅. Let

|Y | = k.
Case (i) k = 0: In this case,D(Ψ) ≥ D(Ψ0) =
∑r

i=1D(ζi) ≥
∑r

i=1D[Si], (by Lemma 5 and condi-
tion (v) of the Theorem)= D[S].
Case (ii)k = 1: Let C1 be the only subtour with a
node set of the type{i, i+ 1} andS1 = ∅. In this case,
since|S| ≡ ((

∑r
i=1 |X

i
Ψ|) − ℓ)mod2 and∀ 1 ≤ i ≤ r,

|Si| ≤ (|X i
Ψ| − ℓi), there exists some1 < j ≤ r, such

that the setXj
Ψ is not of the type{i, i+ 1} and some

region ofXj
Ψ contains no element ofSj . Let the range

of Xj
Ψ be [a, b− 1]. Then, by Lemma 7, there exists a

permutationζ that is dense onSj and somei ≤ a ≤
u ≤ b − 1 ≤ j such thatD(ζj) ≥ D(ζ) +MD

i,j,u,u or
D(ζj) ≥ D(ζ) +MD

u,u,i,j. Delete subtoursC1, andCj
from Ψ0 and add to them the non-trivial subtours ofζ
to get a new permutationΨ1. Then, by condition (iv)
of the theorem,
D(Ψ0) −D(Ψ1) = D(ζ1) +D(ζj) −D(ζ)

≥







D(ζ1) +MD
i,j,u,u ≥ 0

or
D(ζ1) +MD

u,u,i,j ≥ 0

Now,D(Ψ1) = D(ζ)+
∑

{D(ζi) : i ∈ {2, 3, . . . , r};
i 6= j}. By condition (v) of the theorem,D(ζ) ≥ D[Sj ]
and by Lemma 5 and condition (v) of the theo-
rem, D(ζi) ≥ D[Si] ∀ 2 ≤ i ≤ r, i 6= j. Hence,
D(Ψ1) ≥ D[S].
Case (iii) k > 1 and even: LetY = {1, 2, . . . , k}
and let Ψ1 be the permutation with non-trivial sub-
tours {Ci : i ∈ {k + 1, k + 2, . . . , r}}. Then by
condition (iv) of the theorem,D(ζi) + D(ζi+1) ≥
0 ∀i = 1, 3, . . . , k − 1}; and hence,D(Ψ1) ≤ D(Ψ0).
By Lemma 5 and condition (v) of the theorem,
D(Ψ1) =

∑

{D(ζi) : i ∈ {k + 1, k + 2, . . . , r}} ≥
∑

{D[Si] : i ∈ {k + 1, k + 2, . . . , r}} = D[S].
Case (iv)k > 1 and odd: LetY = {1, 2, . . . , k} and
let Ψ1 be the permutation with non-trivial subtours
{Ci : i ∈ {k, k + 2, . . . , r}}. By condition (iv) of the
theorem,D(ζi) +D(ζi+1) ≥ 0 ∀i = 1, 3, . . . , k − 2};
and hence,D(Ψ1) ≤ D(Ψ0). By Case (ii) above,
D(Ψ1) ≥ D[S].

Thus, the matrixD satisfies the sufficiency condition
of Theorem 3. The result now follows from Theorem 3.

Examples 1 and 2 in Section 5 satisfy the conditions
of Theorem 8. Thus, the theorem properly generalizes
the sufficiency conditions in [2,15].

Conditions (i), (ii), (iii) and (iv) of Theorem 8 can
be trivially tested inO(n4) time. Testing, in general,
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whether for a given density matrixD the corresponding
instance of the TSP is pyramidally solvable, is Co-NP-
hard [14]. However, we do not know if a polynomial
testing scheme exists if the matrix also satisfies condi-
tion (i)-(iv) of the theorem. In general, we can replace
condition (v) of the Theorem by any one of the poly-
nomially testable sufficiency conditions for pyramidal
solvability of the TSP [14] to get a general, polynomi-
ally testable sufficiency condition for the validity of the
GG-scheme.

7. Conclusion

One of the most well-known polynomially solvable
cases of the TSP is the Gilmore-Gomory TSP. Several
researchers have studied and generalized the subtour
patching scheme of Gilmore and Gomory and developed
polynomially testable sufficiency conditions for a TSP
to be polynomially solvable. However, finding a good
characterization of the class of the TSP, for which the
GG-scheme produces an optimal solution, is still an im-
portant open problem. In this paper, we have given some
necessary conditions and a new polynomially testable
sufficiency condition for the validity of the GG-scheme
that properly includes all the previously known condi-
tions.
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