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Abstract

We study a problem involving a set of organizations. Eaclamimation has its own pool of clients who either supply
or demand one unit of an indivisible product. Knowing thefprimduced by each buyer/seller pair, an organization’s
task is to conduct such transactions within its databaseliehts in order to maximize the amount of the transactions.
Inter-organizations transactions are allowed: in thisusition, two clients from distinct organizations can tradedgheir
organizations share the induced profit. Since maximizirggdterall profit leads to unacceptable situations where an
organization can be penalized, we study the problem of maixignthe overall profit such that no organization gets less
than it can obtain on its own. Complexity results, an appreadion algorithm and a matching inapproximation bound

are given.
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1. Introduction

We are given a two-sided assignment market
(B, S, A) defined by a set of buyerB, a disjoint set of
sellersS, and a nonnegative matri = (a;;)(; j)eBxs
whereaq,;; represents a profit if the paf§, j) € B x S
trades. In this market products come in indivisible units,

ing to p, andp,. We assume without loss of generality
that0 < p, < ps < 1 (if the profit of the buyer is larger
than the profit of the seller, then we renameinto p,
and the other way around). Moreover, we consider in
this paper values such that + p, = 1.

In this model, buyers and sellers do not make pairs

and each participant either supplies or demands exactlyby themselves, but these pairs are formed by their orga-
one unit. The units need not be alike and the same unit Nizations. Each organization acts as a selfish agent who

may have different values for different participants.
We study a problem involving a set of organizations
{O4,...,04} which forms a partition of the market.
A buyer (resp. seller) is a client of exactly one orga-
nization. It is assumed that for every transactioy),
the organizations of andj make an overall profit;
which is divided between the seller’s organization and
the buyer’s organization as follows. The seller's orga-
nization receive®; a;; while the buyer's organization
getspy ai;, wherep, andp, are fixed numbers between
0 and1 and such thap, + ps = 1. Thusa;; is a sort of
commission that these two organizations divide accord-
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only knows its list of clients and only cares about its
profit. Thus, each organizatian, shall maximize the
weight of a matching on its own list of clients (this task
can be done in polynomial time for example by using
the Hungarian method [9]). However the global profit
can be better if transactions between clients of distinct
organizations are allowed. This leads to a situation of
cooperation where the agents accept to disclose their
lists of clients by reporting them toteusted entity This
trusted entity can conduct transactions between a buyer
and a seller from distinct organizations, and of course,
it can also do it for two clients of the same organization.
The trusted entity shall maximize the collective profits.
However, maximizing the collective profits by returning

a maximum weight matching may lead to unacceptable
situations: each organization is selfish so it does not
want to cooperate if its profit is worse than it could ob-
tain on its own. The optimization problem faced by the
trusted entity is then to maximize the collective profit
so that no organization is penalized.

(© 2013 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All righreserved.
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1.1. The MultiOrganization Assignment problem its goal is to maximize its profit. Therefore each organi-
MOA zation accepts the assignment given by a trusted entity
) _ o if and only if its profit is at least equal to the profit it
The marketis modelled by a weighted bipartite graph \ould have had without sharing its file with the other
G = (B,S; E;w) andgq sets (representing the organi- - organizations. The overall aim is then to find an assign-
zations)Oy, ..., O, forming a partition ofB U S. Ev- ment which maximizes the total amount of transactions

ery buyer (resp. seller) is represented by a vertex in gone, while guaranting that no organization decreases
B (resp.S), E C B x S is the edge set representing jig profit by sharing its file.

pairs andw : £ — R, is a nonnegative weight func-
tion. The subgraph off induced byO; is denoted by

1.2.2. A scheduling example
G;. We haveG; = (Bl, Si; El,w) whereB; = BN O; g P

. i Each organization (which can be a university, labora-
andS; = SN 0;. AsetM C E is anassignmenfor tory, etc.) owns unit tasks (given by its users), and sev-

amatching if and only if each vertex i B, S; M; w) ) . ) ) .
has degree at most one. The weight of an assignmenteral (possibly different) machines. During some given

M (i.e. the sum of the weights of its edges) is denoted :gﬁssg;ttsﬁ;hui;:cg;:ﬁ Ssrzragvisgzbrlzrt(;rse(;gfednugist?gr
by w(M), and the profit of organizatio®; in M is i

. a given machine and a given time slot. These prefer-
denoted byw; (M) and defined as ences are represented by integets)(between 0 (a

wi(M) = Z pyw((z, y]) task can_not be scheduled on this machine at this time),
and a given upper bound. The goal of each organiza-

tion is to maximize the average satisfaction of its users,
+ Z ps w([z, y]) represented by the sum of the satisfactions of its users
{lz,yleM: (z,y)EBxSi} divided by the number of users, in the returned assign-

wherep; andp, are two nonnegative rational num- ment' T_herefor_e an org_anization W.i” accept a multio_r-
ganization assignment if and only if the average satis-

bers such th =land0 <p, <ps <1. X . . i
Wi ahs =P =Ds = faction of its users is at least as high as when the orga-
e say that an edge whose endpoints are in the same

o e o " nization accepts only the tasks from its users. Here, an
organization (resp. in distinct organizations)ier- unmatched user’s satisfaction is 0. This corresponds to
nal (resp.shared. Let G be the graphG in which we ' P

removed all the shared edges. The maximum weight ,\:i(r)nAeV;/Ir(])?nrialihtizz setﬁofl l;%rsBihg set of couples
matching ofGG is denoted by (i.e. M is the maximum ( ' Jps = po =1
weight matching ofG reduced to its internal edges).

{[z,y]€M: (z,y)€ B, x S}

Let M; be the restriction of\/ to G,. The multior- 1.3. Related work

ganization assignment proble(moA for short) is to . o ) ) .
find a maximum weight matching/ of G such that The mult|-org_am|zat|o_n assignment problem is a vari-
wi(M) > w;(M) forall i € {1,...,q}. Herew; (M) ant of the cIaSS|caI_a55|gnment proble_'m (see [17] for a
is what organizatio®; can get on its own. Thef is recent survey). Besides its combinatorial structmMi@a

a feasible solution to theoA problem. As a notation, ~ involves self-interested agents whose cooperation can
M* denotes a maximum weight matching@fvhereas Igad to sig_ni_ficant improvements but a s.o.Iution is fea-
M3,0.4 is an optimum fomoA. sible only if it does not harm any local utility.

Non cooperative game theory studies situations in-
volving several players whose selfish actions affect each
other [13]. In Tucker’s prisoner’s dilemma, two play-
ers can either cooperate (C), i.e. stay loyal to the other
prisoner, or defect (D), i.e. agree to testify against the

1.2. Applications

We give here two applications whexeoA arises.

other.
1.2.1. The “agencies problem” Table 1
Each organization has its own pool of selle$3 and
buyers B) who either supply or demand one unit of an c 3C3 0D4
indivisible product. Consider for example that organi- D 4:0 1: .

zations are real estate agencies. Each organization re-
ceives a commission on each transaction it deals, and the prisoner’s dilemma
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A social optimum is reached if both play but the optimization problem is to fill the (bounded) memory
situation where both prisoners defect is the only stable of each node in order to minimize the overall expected
situation (a Nash equilibrium). In fact, the game de- response time. Since an optimum solution can be unac-
signer of the prisoner’s dilemma filled the payoff matrix ceptable to selfish nodes (e.g. a node’s memory is filled
in way such that any prisoner has an incentive to defect. with objects that it rarely requests), the authors of [10]
MOA models the opposite situation where the game de- propose equilibrium placement strategies where no one
signer tries to fill the payoff matrix such that each orga- is penalized.
nization’s (weakly) dominant strategy is to cooperate,
i.e. to disclose its list of clients and follow the trusted
entity. The game designer has to compute a Nash equi-

librium (a stable _matching) that optimizes the social  \\e investigate the computational complexityadA
welfare (total profi). in Section 2.. In particular, we show that the problem is

stronglyNP-hard if the number of organizations if not

The maximum weight mgtchngf 'S somgﬂmes UN" fixed. Itis weaklyNP-hard for two organizations. A pos-
stable because the organizations are selfish. Then, one

has to consider a different optimunts,, , which is Sible proo_f of s_,tro_nQ\lP—hardness for a fixed numberof_
the maximum weight Nash equilibrium (no organiza- organizations is discussed a_nd some pseudo-poly_nomlal
tion can increase its profit by using its own maximum and po!yno_rmal ﬁase_share g_l\rqen a? well. We provide an
weight matching instead of the solution returned by the approdX|mat|(Enh§1 gorit r? \;v't per ormatr}ce _gusara?tee
trusted entity). Interestingly, a theoretical measure of gb 33 almaﬁ N9 prrlpo 0 |.napﬁrOX|hma lon mf ecb!?n
this loss of profit due to the selfishness of the organiza- _. € also show In this section that the price of stability

tions exists. Known as thaice of stability(PoS) [19,2], Of MOA iS . Sectlo_n 4 d_eals W|th_connect|ons betw_een
o : . MOA and the multicriteria matching problem. Section
it is defined as the (worst case) ratio between the most

socially valuable state and the value of the best Nash 5'. 'S quOtEd to generahzatmns m?A and also gener-
N 8 . alizations of the results of this article. We conclude in
equilibrium. FOrmMmoA, PoS= w(M ;0 4)/w(M*).

Section 6..

1.4. Contribution

MOA is related to cooperative game theory [13]. A
central issue in this field is to allocate the value of a
coalition to its members. Shapley and Shubik associate
to any two-sided assignment marke?, S, A) a coop-
erative game with transferable utility (the assignment
game) and show that its core is nonempty and has a
lattice structure [20].

2. Complexity results

We prove thatMoA is stronglyNP-hard in the gen-
eral case. We also show that the restrictiomafa to 2
organizations is weakliNP-hard. Next we show pseu-
dopolynomial and polynomial cases.

MOA is close in spirit to other works which study, at
an algorithmic level, how to make organizations coop- 2.1. Computationally hard cases
erate. In [15,6], the authors study a scheduling problem
involving several organizations. Each of them has a set Let p; andp, be two numbers such that> p, >
of jobs to be completed as early as possible and its ownp, > 0 andp, + p, = 1. Given a positive profitP
set of processors. A selfish schedule is such that theand an instance ofoA, the decision version asks
processors only execute jobs of their owner. The au- whether the instance admits a matchihg such that
thors propose algorithms which return schedules with Vic(1,....qp wi(M) > w(M;) andw(M) > P.
good makespans and in which the organizations coop-
erate without being penalized. In [11,10], the authors Theorem 1. The decision version afioA is strongly
study the selfish distributed replication problem. This NP-complete for every valugs and p.
problem involves several nodes of a network whose task
is to fetch electronic contents (objects) located at dis- Proof. Let p, and p, be two numbers such that >
tant servers. Instead of taking an object from its server p, > p, > 0 andp, + p, = 1. Given a positive profit
at each request, the nodes can save time by making aP and an instance afloA, the decision version asks
local copy. An intermediate strategy is to get an object whether the instance admits a matchihfy such that

from another node which is closer than the server. The Ve, g3 wi(M) > w(M;) andw(M) > P.

.
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Fig. 1. Bipartite graph obtained by the transformation of

an instancel = {a1,...,as} of the 3PARTITION problem
whereW = %Z?zl a;j. There is an edge with weight;
betweerbs ; ands.,, for all pairs(z,y) € {1,2} x{1,2,3}.
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1,...,m andw,,+1(M) = 0. We claim thatl’ admits
a feasible assignmer/ such thatw(M) > 2mW if
and only if I admits a partition inton subsetsA;, A,,
-y Ay such thaty® 4 a; = W and|A;| = 3 for
allie {1,...,m}.

Let A= (A, A,,..., A,,) be a YES solution to the
instancel of 3-PARTITION. We build a corresponding
matching M, solution to the instancé’ of MOA as
follows: M = 0 at the beginning and for each tripie,
Ay, Az of A;,we add edgeB;erl@, Si,l]! [bm+1,y, Si,g]
and (b, 1., si.3) to M. We also add edgl;, s, 1.
to M forallie {1,...,m}.

We remark thatl/ is a feasible assignment. Indeed,
organizationO; (i = 1,...,m) has 4 shared edges in
M, that is [bz, Serl,i] with Welght w, [berl,z, Si,l]
with weight a,, [bp+1,y,:,2] With weight a, and
[bm+17z, Si,3] with Weightaz.

SinceA is a YES solution td, we know that, +a,+

= W. Hencew;(M) = (ps + py)W = w;(M) for

These edges are shaded in the picture except those withtweigh C,LZ S -

ai.

Given a boundV, a setA = {a,...,asn} of 3m
positive integers such th@ffl a; = mW andVi =
1,...,3m, % < a; < X, the 3-PARTITION problem is
to decide whetheH can be partitioned inten subsets
Ay, Ao, ..., A,, such that the sum of the numbers in
each subset is equal (thds, 4, a; = W and|4;| =
3 foralli € {1,...,m}). The 3PARTITION problem
is stronglyNP-complete (problem [SP15] in [7]).

Given an instancd of the 3PARTITION problem,
we build a corresponding instanéeof MOA as follows
(see Figure 1 for an illustration):

e we are giverm + 1 organization®,, ...
g=m+1

e O,,+1 has3m buyers andn sellers respectively de-
noted byb,, 11,1 t0 byy1,3m @aNdsy41,1 10 Spg1,m

e fori =1,...,m: O; has 3 sellers denoted by ;,
si,2, Si,3 and one buyeb;

e The edge set is given blfb;, s; 1], [bs, Sm+1.i]

,Om+1, i.e.

i=1,....,m} U {[bmi1,5i1], [bmt1.5, Si.2),
[bm-ﬁ-l,ja Si73] 11, € {1, Ceey m} X {1, Ceey 3m}}

o fori = 1, oo, M w([bz, Si,l]) = w([bz, Sm+171‘])
=W

o fori,je{l,...,m} x{1,...,3m}:
w([bm11,5,81,1]) = W([bm1,55 8i,2])
= W([bmt1,5,8:,3]) = a;

o P=2Wm
We havew;(M) = (ps + po))W = W for i =

t=1,...,m. We also havauv,, 1 (M) > w41 (M)
since all the weights are nonnegative amgH(M) =
0. Thus, M is a YES solution to instanc# of the
decision version oMOA because the total profit made

by the organizations i8mWV.

Conversely, let\/ be a YES solution to the instance
I’ of the decision version ofi0A with P = 2mV.
By definition we havew(M) > 2mW, w;(M) > W
for i = 1,...,m and w41 (M) > 0. Observe that
M O {[bi,sia] | i = 1,...,m} = 0. Indeed, ifk
edges in{[b;,s;1] | i = 1,...,m} belong toM then
the total profit would be strictly less thaxmW since
w(M) < kW + (m — k)W + Z?;nl a; — kmin{a; :
i=1,...,3m} < (2m— £)W < 2mW. Furthermore,
M must be perfect since otherwise(M) < 2mW.
Indeed, the maximum weight matching has a weight
2mW and it is obtained only if all the edgéls, s,,+1.4]
(with ¢ € {1,...,m}) are selected and if all the ver-
ticesb,,11,; (with 5 € {1,...,3m}) are saturated by
the matching.

We build a partitiond = (4;, As, ..., A,,), solution
to the instancd of 3-PARTITION corresponding taV/
as follows: fori = 1 to m, put in A; the weight of
the (shared) edges incident 91, s; 2 ands; 3. One
can observe thatl is a feasible 3-partition of. Take
an organizatiorQ; (: = 1,...,m), 4 shared edges are
incident to its nodes if/. The one incident td; has
weight . The total weight of the three others must be
at leasti sincewi(M) = (ps + pp)W. Hence, each
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bl,n+l S+l

514

3.1 b:z._;‘

Os

S2.n41

Fig. 2. The construction of’.

A; is assigned values whose sum is at leddt but if
this sum exceed®/ for at least one organization, we
would haveZ?Z1 a; > Wm which is a contradiction.
As a consequence, eadh is assigned values whose
sum is exactlyiv. O

Theorem 2. The decision version ofMOA is NP-
complete, for every values andpy, even if there ar@
organizations and the underlying graph is of maximum
degree2.

Proof. Let p, andp, be two reals such that > p, >
pp, > 0 andps + p, = 1. The reduction is done from
PARTITION: given a sefay, ..., a,} Of n integers such
that"" , a; = 2W, decide whether there exists C
{1,...,n} such that}’, ;a; = W. PARTITION is
known to beNP-complete (problem [SP12] in [7]).
From an instancd of PARTITION, we build I’, an
instance ofvoA, in the following way:
e we are given 2 organizatior3; andO,
e O; hasn + 1 sellers andh + 1 buyers respectively
denoted by, ; andb; ; fori=1,...,n+1
e O; has alsm+1 buyers andv+1 sellers respectively
denoted by ; ands,; fori=1,...,.n+1
e The edge set of the underlying graph is given by
{51,041, b2.n41]} U {[b2,n+1, 82,n41]}
U {[s2,n+1, 01,n+1)} U {[b1,i5 51,4], [1.4, D2,
[bl,ia 82,1‘] 1= 1, e ,n}
The weights are defined by:
[ w([bu, Sl,i]) = 6@1' andw([bgyi, Sl,i])
g ’LU([SQJ', blz]) = 3@1' fori = 1, o,
o w([b2nt1,s2,n41]) = 6W andw([s1,n41,b2nt1]) =
w([blmﬂ, 827n+1]) =3W +1
The underlying graph is made of a collectionof 1
disjoint paths of length 3. Figure 2 gives an illustration
of this construction.
OrganizationD; can make a prof'rtul(M) = (ps +
o) Yoy 6a; = 12W if it works alone. The local profit
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of organizationOs is wa (M) = (ps + pp)6W = 6.
Thus, globally, the weight of this matching iSWV.

We claim that!’ admits a feasible assignmeff
such thatw(M) > 18W + 2 if and only if I admits a
setJ C{l,...,n}with3". ;a; =W.

Let J be asubsetofl,...,n}suchthad_, ,a; =
W (and theangJ a; = W). We build the assignment

M as follows:
M = {[b2,j,s1,5], [52,5,b1,5] : 7 € JHU{[brj,51,5]
J & JYU{s1,n41,b2n41)s 10415 S2,n41] }

Clearly, the cost ofi/ is given byw (M) = 18W +2.
Now, let us verify that)/ is a feasible solution. The
local profit of organizatio; is (ps + pp) ij 6a; +
(Ps+p) Dy 3ai+ (Ps+pp) BW +1) = 12W+1 >
w1 (]\Z/) whereas the profit of organizatian, becomes
(ps +pb) Zjej 3aj + (ps +pb)(3W+ 1) =6W+12>
w9 (M) R

Conversely, leff be a feasible assignment such that
w(M) > 18W+2. The following property can be easily
proved.

Property 1. Any optimal solution of10A can be sup-
posed to be maximal with respect to inclusion. Further-
more any feasible solution ofoA can be completed so
that it can be supposed to be maximal with respect to
inclusion.

Now, remark that)d necessarily contains the edges
[$1,n+1,b2,n+1] @Nd [b1 nt1, S2.n+1] SiNCE ON the one
hand, the weight of any maximal matching on the graph
induced by all vertices excepb1 i1, S2.n+1,b1,n+1,

ba n+1} IS 12W, and on the other hand
w([ba.ny1,52.n11]) = 6W. Thus, M must contain
some edge$bs ;, s1,;] Or [b1,;, 52 ;] in order to com-
pensate the loss of the ed® ,,+1, s2,n+1]. Let J =

{j <n:[baj, 1] € M}. By property 1,M is com-
pletely described bM = {[bgd‘, Sl,j], [bl,j, Sg,j] 1 j €
JYU{[b1j,81,5] 05 ¢ JYU{[s1,n41, b2,n41], [b1,n41,
82,n+1]}-

The profit of organizatio®; is (ps+ps) ZJ.GJ 3a;+
(ps +pp)(BW + 1) = 3% ;. ;a; + 3W + 1. Since
that profit is at leastwy (M) = 6W, we deduce that
Y e a; = W — 3. Finally, >, ; a; must be an inte-
ger, soy_ .. ya; > W. On the other hand, the profit of
organizatiorO; is given by(ps +ps) > ¢ y 6a;+ (ps +
Po) D ses3a; + (s +po) BW +1) = 637 a; —
327.6] a; + 3W + 1. This quantity must be at least
wi (M) =6%7_) a;. Since}_ ., a; is an integer, we
obtain} .. ;a; < W. In conclusion_. ;a; = W



116 Laurent Gourves et al. — Cooperation in multiorganizatimatching

which means thafas, ..., a,} can be partitioned into
two sets of weightV. O

vertices and edges with weight 0 such that any match-
ing of G can be completed into a perfect matching6f

NN with the same value. Formally, we add a copyQf;, 5,
Is MOA stronglyNP-complete for two organizations?  ith S| new B-vertices andB new S-vertices. Each
We were not able to answer this question but we can re- new B-vertex (resp.,S-vertex) is completely linked

late it to another one stated more than 25 years ago andy, ihe S-vertices (resp.B-vertices) ofG. Then, each
which is still open: Is thexact weighted perfect match-  ¢pareq edge = [u,v] € E is replaced by a bath of
ing problem in bipartite graphs stronglyP-complete? angth 3 [u, u,], [ue, ve], [ve, v] Whereu,, v, are new
Given a graph whose edges have an integer weight, artices. Note that eithefu, ue], [ve, v]} of {[ue, ve]}
and given a valuél’, the problem KACTPM is to de-  is included in a perfect matching . Consider the
cide whether the graph contains a perfect matching weight functionw’ defined asu’(e) = (R + 1)%w(e)
of total weight_ exactlylv [3,8,12,14]. Papadimitriou if e is internal to organizatio®; andw’(e) = (R +
and Yannakakis [14] prove thab@&CTPM is (weakly) — 1y2,,(¢) if ¢ is internal to organizatio,. Moreover,
NP-complete in bipartite graphs. Barahona and Pulley- s , _ [u,v] € E is a shared edge then' ([u, u.]) =
blank [3] propose a pseudopolynomial algorithm in the (R + 1)p;w([u o) if ue SNOo; andwl([u’ue]) _
case of planar graphs and Karzanov [8] gives a poly- (R + 1)pyw([u, v]) otherwise (i.ew € BN O;). We
nomial algorithm when the graph is either complete or 5,54 setw’ ([v,ve]) = psw([u,v]) if w € SN Oy and

complete bipartite and the weights are restricted to O or w'([v,ve]) = pyw([u, v]) otherwise. The weight of each
1. Mulmuley, Vazirani and Vazirani [12] show thakE remaining edge ofy’ is 0. It is clear that’ is built

ACTPM has a randomized pseudo-polynomial-time al- \yithin polynomial time andw’ remains polynomially

gorithm. However, the deterministic complexity of this 5 nded. Let’ = (@', w').

problem remains unsettled, even for bipartite graphs

For any matching\/, we denote by, (resp.,M>)

(Papadimitriou and Yannakakis conjectured that it is ia restriction of\/ to organizatiorO; (resp.,0s) and

stronglyNP-complete [14]).

EXACTPM is an auto-reducible problem, that is, find-

ing a perfect matching of weight” is polynomially

equivalent to deciding whether such a matching exists.
Here, we prove that there is a Turing reduction from

MOA when there are 2 organizations txATPM.
Thus, we conclude that floA with 2 organizations is
stronglyNP-complete then EACTPM is also strongly

NP-complete in bipartite graphs. Notice that this result
also holds when there is a constant number of organi-

zations.

Proposition 1. If EXACTPM is solvable in polynomial

time in bipartite graphs when weights are polynomially

bounded, themoa with two organizations and weights
polynomially bounded is polynomial for every valpes
and py.

Proof. Let py,,ps be two rational numbers such that

1>ps>py, >0andps +p, =1, and letl = (G, w)
be an instance ofioA with two organizations where
G = (V,E). W.l.o.g.w(e), psw(e) andpyw(e) are inte-
gers for every edge € E (otherwise, multiplying each
weight by the denominator ¢f, if p;, # 0, we obtain an
equivalent instance). Moreover for alle E, w(e) <
P(]V|) for some polynomiaP. Let R be the weight of a
maximum weight matching af. Consider the bipartite
graphG’ = (V', E’) built from G by adding dummy

by Mghnareqa the set of shared edges df. Denote by
W1 (resp.,Ws) the contribution of the shared edges of
M to the profit of organizatio; (resp.,02). We have
w(Mshared) =W+ W, Sinceps + Dy = 1.

We claim thatw(M) = w(Mi) + w(Mshared) +
w(Ms) if and only if there exists a perfect matchinglof
with weightW = (R+1)3w(M1) + (R+1)*w(Mz) +
(R+1)W; + Ws. Moreover,M is a feasible solution to
MOA if and only if w(M;) +W; > w;(M) fori = 1,2.

One direction is trivial. So, lef\/’ be a matching
of I’ with valuew'(M') = W = (R+1)2A + (R +
1)2B+(R+1)C + D. By the choice of?, we must get
w(M{) = A, w(M}) = B andw(M},,,..) = C+ D,
whereC' (resp.,D) is the contribution of/], . ., to
the profit of organizatior®, (resp.,02). The profit of
organizationO; (resp.0s) according toM’ is A + C
(resp.B + D).

In conclusion by applying at mo&t* times the poly-
nomial algorithm for XACTPM, we find an optimal
solution ofMOA. By an exhaustive search, we try all val-
ues ofA, B, C, D at most equal t&? such thatd + C >

Proposition 2. MOA with a constant number of orga-
nizations can be solved in pseudopolynomial time when
the underlying graph has a maximum degree of 2.

Proof. Here, we deal with 2 organizations, but the re-
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Let I be an instance afloA ; defined uporG. Let

zations. The proof is based on Proposition 1, and uses 7 be an optimal matching built as follows. Start with

the pseudopolynomiality result of [3] forX&cTPM
in planar graphs. However, the construction®f is

slightly different because when one adds a copy of

the feasible matching/ and increase its size with aug-
menting alternating paths while it is possible.
Let M7 be the matching produced at stgp We

K‘S‘ \p| the resulting graph may be not planar. So, let suppose that steps are needed to obtald. Hence,

= (G, w) be an instance afloA with 2 organizations
WhereG = (V, E) is a bipartite graph of maximum
degree 2. W.l.o.g., assume th@tis 2-regular, that is
a collection of disjoint even cycles (by adding dummy
vertices and edges of weight 0). Then, for each cytle
of G, we add a copy”’ of C and we link each vertex
of C to its copy inC". Finally, as it is done in Propo-
sition 1, each shared edge= [u, v] of a cycleC in G
is replaced by a path of length[8, u.], [ue, ve], [Ve, V]
whereu,, v, are new vertices. The weights are defined
similarly to the ones given in Proposition 1. Figure 3
gives an illustration of this construction.

Obviously,G’ is planar. Moreover, any matchingy
can be converted into a perfect matchingf of G’.
Thus, by applying the argument given in Proposition 1,
the result follows.

O

2.2. Polynomial cases

MOA is trivially polynomial when there is a unique
organization or when the underlying graph is of max-

MO = M andM?* = M. We mainly prove
wi (M) > wy (M), Vie {1,....q} 1)
forall j € {0,...,t—1}. This inequality states that the

use of an augmenting alternating path cannot deteriorate

the profit of any organization.
Givenv € V and a matchingy, let c(v, M) be the
contributionof v to the profit of its organization id/:

ps If v € S and an edge oM
is incident tov

py if v € B and an edge of
M is incident tov

0 otherwise

c(v, M) =

Let V' be the vertices of’, the augmenting alternating
path such that\//+1 = (M7 \ #') U (7' \ M7). We
deduce that

wi (M7 —w; (M) = Z (C(U,M'j+1) - c(U,N[j))
veV’
@
foralli € {1,...,q}. One can observe thatv, M7) =

imum degree 1. Furthermore an exhaustive search canC(v Mi*1) if v € V' andv is not an extremal node of

efficiently solve the problem if the underlying graph
G = (V,E) containsO(log |E|) shared edges. Let
MOA( 1 be the subcase whetg([i, j]) € {0,1} for all
(1,7) € B x S. We prove that an optimum t@oA ;

is a maximum cardinality assignment of the underlying

graph though a maximum cardinality assignment is not

necessarily a solution ofioAg ;.

Theorem 3. MOA ; is polynomial.

Proof. Let M be an assignment on an unweighted bi-
partite graphG = (B, S; E). Recall that a path i

is alternatingwith respect toM if it alternates edges
of M and edges o \ M. Furthermore, an alternat-
ing pathw is augmentingf no edge of M is incident

’. Indeed, a buyel € V/ matched with a selley € V'
in J\Zfﬂ' is still matched V7! but with another seller.
Similarly, a sellers € V' matched with a buyer € V'
in M7 is still matched ind/7+! but with another buyer.
If ve SNV’ (resp.v € BNV’) andv is an extremal
node ofz’ thenec(v, M7) = 0 and ¢(v, M711) = p,
(resp.c(v, M) = 0 ande(v, Mit1) = p,). Hence,

e(v, MIHY) — e(v, M7) 2 0 (3)
for all v € V becausep, > p, > 0. Using (2)
and (3) we obtainw; (M’*1) — w;(M7) > 0 for all

i € {1,...,q}. M is a feasible assignment because
’LUZ(Mt) > wi(Mtil) > ... 2> wl(MO) = ’LU(Ml) for
all i € {1,...,q} (we recall thatM is the maximum

to its endpoints. The word “augmenting” means that weight matching ofG reduced to its internal edges,

(M \ m) U (m\ M) is a matching of sizéM|+ 1. M
is of maximum size o7 if G does not admit any aug-
menting alternating path with respectis (by contra-

and M, is the restriction ofM to G;). In addition,
w(M) = w(M*) because the algorithm stops when no
augmenting alternating path exists. In conclusioén,

diction, if this was not the case, we could increase the is optimal because(M™*) > w(Mj;o 4)-

size of M).

O
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s

Fig. 3. Construction of3’ and perfect matching/’ from G and matching\/.

3. Approximation

Recall thatp; and p, are any values such that
0 <p <ps <1andps+p, = 1. We start by the

following property.

Property 2. w;(M*) > pyw(M;), and this bound is
asymptotically tight.

Proof. Let C; be the set of edges af/* which have
at least one endpoint belonging to organizatianWe
have w(C;) > w(M;), otherwise we could obtain a
matching of weight larger tham(M*) by replacing

the edges of’; by the ones of\/;. The profit ofO; is

M’

wi(M*) > ppw(C;), and thusw; (M*) > p, w(M;).

Let ¢ be a small positive number. Let us now show
that the above bound is tight, by considering the fol-
lowing instance: there are two organizati@gnsandO-
such that there are iv; two nodesb; ands; linked
by an edge of weight — ¢, and there is inO, one
nodes; linked tob; by an edge of weight. We have:

w(My) = 1—&, M* = {[by, s2]}, and 250 = o,

which tends towardg, whene tends toward$.
O

Let us consider algorithm RPROX given below.
Theorem 4. APPROX is a p,-approximate algorithm
for MOA, and this bound is asymptotically tight.
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Algorithm 1: Algorithm APPROX

e Construct the grapty’ = (V', E’) from
G = (V,E) as follows:V' =V, and E’
except that the weights of the edges are modified:
for each edgéu, v] such that. belongs to
organizationD; andv belongs to organizatio@;,
w'([u, v]) = w([u,v]) if v andv belong to the
same organization & j), and otherwise
w'([u, v]) = pp w([u, v]).

e Return a maximum weight matching 6f.

Proof. Let p,, p, be two numbers such that> p, >
pp > 0 andps + p, = 1. Let M be a matching re-
turned by algorithm &PRoxon graphG. We first show
that the profit of each organizatia@»; in M is at least
w(M;). ThusM is a solution ofMOA.

Let M) pe the set of edges dff such that both
endpoints belong t@);, and letM***() be the set of
edges of M such that exactly one endpoint belongs
to O;. Since M is a maximum weight matching of
el w/(Mint(i)) + w/(Mezt(i)) > w/(Mi) _ w(Mi),
otherwise we could have a matching with a larger
weight by replacing the edges ¢f7"() U Mewt(®))
in M by the edges of\f;. Thus the profit of0; is at
|eastw(Mint(i)) 4 pbw(Memt(i)) _ wl(Mint(i)) +
w (MDY > w(M;) = w;(M).

Let us now show that APROXis p,-approximate. The
edges of’ are the same as the onesfexcept that the
weight of some of them has been multipliedhy< 1.
Thus M, which is a maximum weight matching 6,
has a weightv(M) > pp w(M*) > pyw(M;o4)-

Let us show that this bound is asymptotically tight
by considering the following instance. Here, we assume
py > 0. Recall thatp, < 1/2 sincel > ps > p, > 0.
Lete > 0 such that: < 1/p, — 1. There are two or-
ganizations, organizatiof;, which owns two vertices
by and sp, also linked by an edge of weight 1, and
organizationO,, which owns two vertice$, and ss,
linked by an edge of weight 1. There are two shared
edges, betweely ands,, and betweem, ands;: both
edges have Weighzi; — e. Algorithm ApPROXreturns
the matchingM ={[b1, s1], [b2, s2]} with weight2 in
G’ because the weight of[b1, s2], [b2, s1]} in G’ is
2(1 — ppe) < 2. The optimal solution would have been
Mi04 = {[b1,s2],[b2,s1]}. The ratio between the
weights of these two solutions ig(j}go)A)— 2/%2_28,
which tends towards, whene tends towards 0.
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Theorem 4 implies that the price of stability ®foA
defined as the maximum, over all the instances, of
w(Mzo4)/w(M*) is at leastp,. In fact, we are able

to prove that PoS py.

Proposition 3. The price of stability ig,.

Proof. It follows from Theorem 4 that
w(MZ,,.)/w(M*) > p, since APPROX returns a
matching M such thatw(Mjy;54) > w(M) >
ppw(M™).

Let us now show that this bound is tight. There are
two organizations: organizatio@;, which owns two
verticesb; and sy, linked by an edge of weighiti;,
and organizatioi®,, which owns one vertexs, linked
to b; by a link of weightW,. Suppose thatV; = ¢
such that0 < ¢ < 1 andW, = 1 whenp, = 0.
The ratio 7‘”5%\%:;) = ¢, tends toward® = p;, when
¢ tends toward$). Suppose thatV; = 1 and W, =
1/py — e such thatd < e < 1/py, — 1 whenp, > 0.

The ratio “ﬁ%f)f) = 1_p;pb, tends towardg, whene
O

tends toward$.

We can prove that Theorem 4 is best possible if
P=£NP, i.e. we cannot obtain @, + ¢)-approximation
for all € > 0. Actually, we prove a slightly stronger
result wheren denotes the number of vertices.

Theorem 5. For any polynomialP, it is NP-hard to
obtain a(p, + m)-approximation fomoA where
at least three organizations are involved.

Proof. We describe a gap reduction. We start with an
instance OfPARTITION given by a set ofn integers
{a1,...,a,} such thaty"!" , a; = 2W. For any real
t > 1, we construct an instandg of MOA as follows:
we are given 3 organizationt3;, O, andOs.

01 hasn + 1 buyers andh + 1 sellers respectively
denoted by, ; ands; ; fori=1,...,n+ 1.

O, has 2 buyers denoted by 1, b2 ,+1 andn + 1
sellers denoted by, ; fori=1,...,n+ 1.

O3 has one selless ;.

e The edge set of the underlying graph{{s; ;, b1 i,
[bl,ia 8271'] 1= 1, . ,TL} U {[817n+1, b2_]1]}U

{61,041, S2,n+1)s [52,n41, 02,n41], [b2,n+1, $3,1] }

The weights are given by:

w([sl,i, bl,i]) = w([bl,i, 82,1‘]) = a; fori = 1, e, N
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o w([s1,nt1,02,1]) = pW, w([b1ng1,52,n41]) =
psW, w([£2,n+17b2,n+1]) = tpbW + 2psW1 and
w([b27n+1, 5371]) =tW.

An illustration of this construction is given in Figure 4.
If t = ©(2F(VD) where|V| = 3n +6 is the order of
the underlying graph, then it is not difficult to see that
the above construction is given within polynomial time.
The profits the organizations can make on their own

are respectivelyo, (M) = (ps +po) S, a; = 2W,

wa (M) = (ps + po) (tsW + 2ps W) = tp,W + 2p, W

andws (M) = 0.

We prove that there are only two distinct values

for the optimal value ofvoA, that areOPT(l;) =
tpeW +3ps W 42W or OPT (1)) = tW +2ps W +2W,
and OPT(I;) = tW + 2p,W + 2W if and only if
{ai,...,a,} admits a partition.

Observe thatW + 2p W + 2W > tp, W + 3p, W +
2W if and only if t > 1 sincep, = 1 — ps andp; > 0.
Let M* . be an optimal solution oftoA (with value

cont

OPT(I;)). Let us consider two cases:

Case [s2,n+1,b2,n+1] € M7, An optimal solution
can be described b{fs; ;,b1 ] :i=1,...,n}U
{[$1,n+1,b2.1], [S2,n+1, b2.nt1]}- Actually, [s1 n+1, b2,1]
€ M, ., becauseM} . is maximal by Prop-
erty 1 (cf page 115). Moreover, the weight of
any maximal matching on the graph induced by
{51,4,b14,82, 19 =1,...,n} has the same valudv'.

In this case, we geD PT'(1;) = tp, W + 3p, W + 2.

Casels2nt1,b2,n+1] & My, EAQES{[b1 141, S2,n41],
[b2,n+1, $3,1], [S1,n+1,b2,1]} belong toM ., by Prop-
erty 1. The contribution of these 3 edges to the profit
of Oy is psw([b1,n+1, S2,n+1]) + Pow([b2,n+1, 53,1]) +
Pow([s1,n41,b2,1]) = tpeW+p W < tpyW+2p W =
w([s2,n+1,b2,n+1]) SiNCE ps > 0. Hence, a subset
of shared edges betwe&n and O, must belong to
Mgont' Let J* = {.] S n: [bl-,j’SQ-,j] € M;ont}
be this subset. Then)M ., is entirely described
by {[b1,n+1,52,n+1], [b2,n+1,53,1], [S1,n41,02,1]} U
{[b1,j, 82,51 1 5 € T YU {[s1,5,b15,] 15 ¢ "}

To be feasible, M, must satisfyw, (M7,.,) >

con —

U}(Ml), i-e-zjg‘]* aj'i‘pb ZjEJ* aj'i‘(ps"f'pb)psW Z
> iy a; from which we deducéV > 3~ _,. a; be-
causep, = 1 — ps anplpS > 0. M* must also sat-
ISfy wQ(M;ont) 2 ’U}(Mg), Ie Ps Zjej* a; + (ps +
po)psW + tppeW > tppyW + 2psW, which is equiva-
lentto} . ;. a; > W. Then, we obtairp_,_ ;. a; =
> ¢y a; = W. On the one hand PT'(I;) = tW +
2p;W + 2W and on the other hanfh;, ..., a,} has a
partition given byJ*.
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Conversely, if{ay, ..., a,} admits a partition then it
is not difficult to prove thaO PT (1) = tW + 2p, WV +
2W.

Now, assume that there is & + —pivry)-
approximation ofMoA given within polynomial time
for somec > 0. Considert, = 5c2P(VD and let
apz(I;,) denote the value of the approximate solution
on instancely, .

e {ai,...,a,} does not admit a partition. One has
OPT(I,) = 52 VD p,W + 3p,W +2W and then
apx(Iy,) < 52 VDp, W + 3p W + 2.
{ai,...,a,} admits a partition. We hax@ PT'(I;,) =
5c2PWVDW + 2p W + 2W. Since apz(I;,) >

(pb + —rtvry ) OPT (1) by hypothesis ang, < 1,
we deduceapz(l;,) > 5W + 52FVhp,Ww >
5c2PUVD py W 4 3p W + 2W.

In conclusion,apx allows us to distinguish within
polynomial time whethef{ay,...,a,} has a partition
or not, which is impossible iP£ANP. O

4. MOA and multicriteria matching problems

This section deals with the design of exact or ap-
proximate algorithms fomoA with two organizations
(¢ = 2). We relate hera1oA to multicriteria matching
problems, and we present a conditionnal result as we did
in Proposition 1 (where we have linked the complexity
of MOA with two organizations and weights polynomi-
ally bounded to the complexity of &ACTPM).

We relateMoA to the k-criteria matching problem
where each edge is evaluated withost functions (also
called criteria) f1, ..., fx. In this case, the cost of a
matching for the criteriunf; is the sum of the values of
the criteriumf; for every edge in the matching. The goal
is then to find the sef of the solutions such thate S if
there is no solution better tharon all the criteria simul-
taneously. An approximate solution is a matching which
is on all the criteria1 — ¢)-approximate of a solution
s € §.In[16], Papadimitriou and Yannakakis show that
the k—criteria matching problem admits a fully polyno-
mial RNC scheme. In [18] Przybylski, Gandibleux and
Ehrgott propose an efficient exact method wites 2
and the graph is bipartite (this problem is also called
biobjectiveor bicriteria assignment problem). More re-
cently Berger, Bonifaci, Grandoni and Schafer [4] pro-
posed a PTAS for a budgeted version of the matching
problem which is equivalent to the biobjective matching
problem. We now show how to turn an instancevafa
with two organizations into an instance of the biobjec-
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Fig. 4. The instancd; resulting from the above reduction

tive assignment problem. Next we exploit the results 11" (B)

given in [4] and [18].

An instance of the biobjective assignment problem
is composed of a simple graghi = (V, E) and two
functionsf : £ — R, ands : £ — R,. Then a
matchingM has two valueg' (M) = > __,, f(e) and
s(M) = >_.ca s(e). Given an instance afloA with

maximize s(M)
such that: MeM
f(M) =B

Let A" (resp. . A”) be a PTAS forIl'(B) (resp.
I1”(B)). In the sequel A'(B,e¢) and A”(B,¢) de-
note the execution ofA’ and .A” for a given budget
B and a fixed parameter € (0,1), respectively. In

two organizations, one builds a corresponding instance particular, A’(B, ¢) returns a matching// such that
of the biobjective assignment problem as follows. The s(M) > B and f(M) > (1 — ) f(M*) where M*

graph (vertex and edge sets) remains unchanged. Letdenotes an optimum solution tol'(B).

us definef ands for an edge: = [u,v]. If u,v € Oy
then f(e) = w(e) ands(e) = 0. If u,v € O3 then
s(e) = w(e) and f(e) = 0. If w € BN O; andv €
SN Oz then f(e) = ppw(e) and s(e) = psw(e). If
u € SN0y andv € BN Oy thenf(e) = psw(e) and
s(e) = ppw(e). Therefore, we havey; (M) = f(M)
andwy (M) = s(M)forall M € M. Itis notdifficult to

Similarly,
A" (B, ) returns a matching/ such thatf(M) > B
ands(M) > (1 —¢e)f(M**) where M** denotes an
optimum solution td1”(B).

In the sequel(G,w) denotes the instance afoA
while (G, f, s) denotes the corresponding instance of
max-max budgeted matching

Algorithm 2 takes as input and an instance afioA

see that the exact algorithm of Przybylski, Gandibleux and returns a1 — ¢)-approximate solution oMoOA
and M. Ehrgott [18] can be used to solve instances of for this instance. It consists in iteratively computing a

MOA with two organizations.

Bergeret al. [4] study the following problem
I1(B) maximize f(M)
such that: M e M
s(M)<B

where B is a given non negative budget aid is the
set of all feasible matchings. The problem is called
max-min budgeted matchiniget M * be an optimum to
II(B). Bergeret al. present a PTAS, i.e. they are able
to compute in polynomial time a feasible solutidi
such thats(M) < B and f(M) > (1 —¢)f(M*) for
alle € (0,1).

Let us define two versions of thmax-max budgeted
matching

I'(B) maximize f(M)
suchthatt M e M
s(M) > B

(1—e)-approximate solution for the correspondimgx-
max budgeted matching problemith a budget slowly
decreasing until a solution ofoA is found.

Theorem 6. There is a PTAS fomoA with two orga-
nizations ¢ = 2) if there is a PTAS for the max-max
budgeted matching problem.

Proof. Let us consider Algorithm 2. As usual we sup-
pose thato(M) < 2P for some polynomiaP. Here

n is the number of vertices and is any feasible match-
ing. We deduce thaR + 1 < P(n). Then Algorithm 2

is polynomial becausel’ and.A” are polynomial and
A’ is executedR + 1 times.

Case A: If wi(Mj;0,) < wi(M)/(1 — ¢) holds
for i = 1,2 then M is a (1 — ¢)-approximation of
M4 becausew(M) = wy (M) 4 wy (M) > (1 —
€) (wl(M?Cmé) +wa(Mio4)) = (1 - )w(Mjso4)-
In addition, M is by definition a feasible solution to
MOA.

Case B: If wi(Mj;04) < wi(M)/(1 —¢) and
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Algorithm 2:

Input: (G, w) instance ofvoA, (G, f, s) the
corresponding instance afax-max
budgeted matchingnde € (0,1)

Output: a feasiblg1 — ¢)-approximate solutiod/

ComputeM* and M on (G, w);

M := M;

ExecuteA” (w; (M), ) and denote by\/” the

resulting matching;

if (wi(M") > w; (M), i = 1,2) A (w(M") >

w(M)) then
| M« M
end
log(wz(M))—log(w(M* .
R::[ Blies O) log(u( >>],

for r=0to R do
Executed’ (max{(1 — &) w(M*), wa (M)}, )
and denote by/" the resulting matching;
w(M)) then

| M M7
end

end
ReturnM;

wa(M3io4) > w2 (M)/(1 — €) then we are going to
show thatM" is a (1 — ¢)-approximation of My, 4.
Let M be an optimal solution tdI” (w;(M)). Since
A"is (1 — ¢)-approximate and\/;,, , is a feasible
solution toIT” (wy (M)),

wa(M") > (1 —e)wy(M) > (1 —e)wa(Myro4) (4)
holds. We know that
wy (M") > wy (M) (5)

holds becaus#/” is a feasible solution tol" (w: (M)).
Inequality(4) andwa (M}, 4) > w2 (M) /(1 —¢) give

’LUQ(M”) > 'LUQ(M) (6)

We deduce from inequalities (5) and (6) that”
is a feasible solution tomoA. Inequality (5) and

wi(Mj04) <wi(M)/(1—¢) lead to
wi(M") = (1 = e)wi (Mjro.4)- (7)

Therefore inequalities (4) and (7) give M") > (1 —
e)w(Myo4)-

Case C: Suppose that

wi(Mj0.4) > wi(M)/(1 - ¢) (8)
holds. In the loop of Algorithm 24’ is executed with
a budget which ranges frofi — ¢)%w(M*) = w(M*)
to max{wa(M), (1 —e)Fw(M*)}. We know that(1 —
e)Bw(M*) < wy(M) because

R := [(log(ws(M)) — log(w(M*)))/log(1 — )].

Since wy(M) < wa(Mjo,) < w(Mios) <

w(M™*), there exists* € [0, R] such that
max{ws (M), (1 — )" w(M*)} <ws(Mjs04)
<(1—e)" "rw(M*). (9)

Let M be an optimum solution to
I (max{ws (M), (1 — )" w(M*)}). We know that
M"" is a (1 — ¢)-approximation ofM. By definition,
wi (M™) > (1 = e)w (M) andwo(M™) > (1 —
)" w(M*) hold. Using inequality (9) we know that
(1 —&)wa(Miro4) < (1 —¢)" w(M*). We deduce

wa(M™) > (1= )" w(M*) > (1~ )wa(Ms0,4).
(10)
SinceMj, 4 is a feasible solution to
II' ( max{wa (M), (1 — &) w(M*)}), wi (M) >
w1 (Mj04) and

wi (M) > (1 = e)un (M) > (1 = e)wi (Mjr0.4)
(11)
Using (10) and (11) we getw(M"™ ) > (1 —
e)w(Mjs04)- Using (8) and (11) we get

w (M™) > wy (M).
Sirjcewg(MT*) > max{wy (M), (1—¢)" w(M*)} >
wo(M), M™" is a feasiblg1 — ¢)-approximate solution
to MOA. (|

Unfortunately, we were not able to buid’ and.A".
However Berger [5] provides a weaker result : a mod-
ification of Bergeret al’s result yields a polynomial
time algorithm which outputs a matchiny satisfy-
ing s(M) > (1—¢€)B and f(M) > (1 —¢)f(M*)
where M* denotes an optimum solution &' (B) and
g,e€(0,1).

5. Generalizations

5.1. Relaxation of the selfishness of the organizations

Suppose that each organizatiopaccepts a proposed
global matching if its own profit is at least(M;)/x
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wherex > 1 is fixed. This means that each organization
accepts to divide by: the profit it would have without
sharing its file with the other organizations. The prob-
lem, denoted bywoA(z) is then to find a maximum
weight matching) such thatw; (M) > w(M;)/x for
alli € {1,...,q}. Let M, denote such a maxi-
mum weight matching.

If x = 1, an organization does not accept to reduce
its profit, and this problem is the one stated in the intro-
duction. Ifx > 1/py, the organizations accept to divide
their profits byl /p;,. Property 2 page 118 shows that in
a maximum weight matching/*, the profit of organi-
zation O; is at leastp, w(M;). Thus M, ) = M*.
Our aim is now to solvewoa(z) for 1 < z < 1/py.
With a slight modification of the proof of Theorem 1,
we can show that this problem is stron@WP-hard for
each valuer smaller thanl/p,. One can also extend
APPROXt0 a slightly modified algorithrh APPROX)
and prove that it iS(z p,)-approximate algorithm for
MOA(z) and this bound is tight. In addition, the price
of stability isz p, for this generalization.

5.2. General graphs

One can extendioOA to general graphs whep, =
py = 1/2. In this case, the distinction between buyers
and sellers is lost. For example, the problem has the fol-
lowing application: Numerous web sites offer to con-
duct home exchanges during holidays. The concept is
simple, instead of booking expensive hotel rooms, pairs
of families agree to swap their houses for a vacation.
We model the situation with a gragh= (V, E') whose

vertices are candidates for house exchange. The ver-

tex set is partitioned intg sets/organizations; ... O,.
Vertices within an organization are its clients. Every
edge[a,b] € E has a weightv([a, b]) representing the
satisfaction of candidates and b if they swap. Pairs
are formed by the organizations which only care about
the satisfaction of their clients. In case of a mixed-
organizations exchande, b], it is assumed that the sat-
isfaction of both participants i ([a, b])/2. The prob-
lem is to maximize the collective satisfaction while no
organization is penalized.

Theorems 3 to 5 and Proposition 3 (whexgeis re-
placed byl /2) hold for general graphs since the proofs
do not use the fact that is bipartite.

2 The weight of shared edges is multiplied by, instead
of py.
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6. Conclusion

We studied cooperation, at an algorithmic level, be-
tween organizations. We showed that the price of sta-
bility is p,, and we studied the complexity ofoA. We
presented polynomial cases, and showed that the prob-
lem is NP-hard in the general case. We also gave an ap-
proximation algorithm, matching the inapproximation
bound when there are at least 3 organizations. There
remain some open problems: is it possible to have an
algorithm with a better approximation ratio when there
are two organizations? Is this problem strongly NP-
hard in this case (we notice that this problem is related
to the open Exact Perfect Matching problem)? When
we consider that each organization accepts a solution if
it does not reduce its profit by a factor larger tharis
it possible to get an algorithm with an approximation
ratio better thanc p, (with 1 < = < 1/py)? An inter-
esting direction would also be to study fairness issues
in this problem. For example, among all the solutions
of the same quality, return the one which maximizes
the minimumw;(Mont) — M;, that is the minimum
increase of profit of the organizations.
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