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Abstract

We study a problem involving a set of organizations. Each organization has its own pool of clients who either supply
or demand one unit of an indivisible product. Knowing the profit induced by each buyer/seller pair, an organization’s
task is to conduct such transactions within its database of clients in order to maximize the amount of the transactions.
Inter-organizations transactions are allowed: in this situation, two clients from distinct organizations can trade and their
organizations share the induced profit. Since maximizing the overall profit leads to unacceptable situations where an
organization can be penalized, we study the problem of maximizing the overall profit such that no organization gets less
than it can obtain on its own. Complexity results, an approximation algorithm and a matching inapproximation bound
are given.
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1. Introduction

We are given a two-sided assignment market
(B,S,A) defined by a set of buyersB, a disjoint set of
sellersS, and a nonnegative matrixA = (aij)(i,j)∈B×S

whereaij represents a profit if the pair(i, j) ∈ B × S
trades. In this market products come in indivisible units,
and each participant either supplies or demands exactly
one unit. The units need not be alike and the same unit
may have different values for different participants.

We study a problem involving a set of organizations
{O1, . . . , Oq} which forms a partition of the market.
A buyer (resp. seller) is a client of exactly one orga-
nization. It is assumed that for every transaction(i, j),
the organizations ofi andj make an overall profitaij
which is divided between the seller’s organization and
the buyer’s organization as follows. The seller’s orga-
nization receivesps aij while the buyer’s organization
getspb aij , whereps andpb are fixed numbers between
0 and1 and such thatpb + ps = 1. Thusaij is a sort of
commission that these two organizations divide accord-
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ing to pb andps. We assume without loss of generality
that0 ≤ pb ≤ ps ≤ 1 (if the profit of the buyer is larger
than the profit of the seller, then we renamepb into ps
and the other way around). Moreover, we consider in
this paper values such thatps + pb = 1.

In this model, buyers and sellers do not make pairs
by themselves, but these pairs are formed by their orga-
nizations. Each organization acts as a selfish agent who
only knows its list of clients and only cares about its
profit. Thus, each organizationOi shall maximize the
weight of a matching on its own list of clients (this task
can be done in polynomial time for example by using
the Hungarian method [9]). However the global profit
can be better if transactions between clients of distinct
organizations are allowed. This leads to a situation of
cooperation where the agents accept to disclose their
lists of clients by reporting them to atrusted entity. This
trusted entity can conduct transactions between a buyer
and a seller from distinct organizations, and of course,
it can also do it for two clients of the same organization.
The trusted entity shall maximize the collective profits.
However, maximizing the collective profits by returning
a maximum weight matching may lead to unacceptable
situations: each organization is selfish so it does not
want to cooperate if its profit is worse than it could ob-
tain on its own. The optimization problem faced by the
trusted entity is then to maximize the collective profit
so that no organization is penalized.
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1.1. The MultiOrganization Assignment problem
MOA

The market is modelled by a weighted bipartite graph
G = (B,S;E;w) andq sets (representing the organi-
zations)O1, . . . , Oq forming a partition ofB ∪ S. Ev-
ery buyer (resp. seller) is represented by a vertex in
B (resp.S), E ⊆ B × S is the edge set representing
pairs andw : E → R+ is a nonnegative weight func-
tion. The subgraph ofG induced byOi is denoted by
Gi. We haveGi = (Bi, Si;Ei;w) whereBi = B ∩Oi

andSi = S ∩ Oi. A setM ⊆ E is anassignment(or
a matching) if and only if each vertex in(B,S;M ;w)
has degree at most one. The weight of an assignment
M (i.e. the sum of the weights of its edges) is denoted
by w(M), and the profit of organizationOi in M is
denoted bywi(M) and defined as

wi(M) =
∑

{[x,y]∈M : (x,y)∈Bi×S}

pb w([x, y])

+
∑

{[x,y]∈M : (x,y)∈B×Si}

ps w([x, y])

whereps andpb are two nonnegative rational num-
bers such thatps + pb = 1 and0 ≤ pb ≤ ps ≤ 1.

We say that an edge whose endpoints are in the same
organization (resp. in distinct organizations) isinter-
nal (resp.shared). Let G̃ be the graphG in which we
removed all the shared edges. The maximum weight
matching ofG̃ is denoted byM̃ (i.e.M̃ is the maximum
weight matching ofG reduced to its internal edges).
Let M̃i be the restriction ofM̃ to Gi. The multior-
ganization assignment problem(MOA for short) is to
find a maximum weight matchingM of G such that
wi(M) ≥ wi(M̃) for all i ∈ {1, . . . , q}. Herewi(M̃)
is what organizationOi can get on its own. TheñM is
a feasible solution to theMOA problem. As a notation,
M∗ denotes a maximum weight matching ofG whereas
M∗

MOA is an optimum forMOA.

1.2. Applications

We give here two applications whereMOA arises.

1.2.1. The “agencies problem”
Each organization has its own pool of sellers (S) and

buyers (B) who either supply or demand one unit of an
indivisible product. Consider for example that organi-
zations are real estate agencies. Each organization re-
ceives a commission on each transaction it deals, and

its goal is to maximize its profit. Therefore each organi-
zation accepts the assignment given by a trusted entity
if and only if its profit is at least equal to the profit it
would have had without sharing its file with the other
organizations. The overall aim is then to find an assign-
ment which maximizes the total amount of transactions
done, while guaranting that no organization decreases
its profit by sharing its file.

1.2.2. A scheduling example
Each organization (which can be a university, labora-

tory, etc.) owns unit tasks (given by its users), and sev-
eral (possibly different) machines. During some given
time slots, the machines are available to schedule the
tasks of the users. Each user gives her preferences for
a given machine and a given time slot. These prefer-
ences are represented by integers (aij) between 0 (a
task cannot be scheduled on this machine at this time),
and a given upper bound. The goal of each organiza-
tion is to maximize the average satisfaction of its users,
represented by the sum of the satisfactions of its users
divided by the number of users, in the returned assign-
ment. Therefore an organization will accept a multior-
ganization assignment if and only if the average satis-
faction of its users is at least as high as when the orga-
nization accepts only the tasks from its users. Here, an
unmatched user’s satisfaction is 0. This corresponds to
MOA whenS is the set of users,B the set of couples
(time slot, machine),ps = 1 andpb = 0.

1.3. Related work

The multi-organization assignment problem is a vari-
ant of the classical assignment problem (see [17] for a
recent survey). Besides its combinatorial structure,MOA

involves self-interested agents whose cooperation can
lead to significant improvements but a solution is fea-
sible only if it does not harm any local utility.

Non cooperative game theory studies situations in-
volving several players whose selfish actions affect each
other [13]. In Tucker’s prisoner’s dilemma, two play-
ers can either cooperate (C), i.e. stay loyal to the other
prisoner, or defect (D), i.e. agree to testify against the
other.

Table 1

C D
C 3, 3 0, 4
D 4, 0 1, 1

the prisoner’s dilemma
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A social optimum is reached if both playC but the
situation where both prisoners defect is the only stable
situation (a Nash equilibrium). In fact, the game de-
signer of the prisoner’s dilemma filled the payoff matrix
in way such that any prisoner has an incentive to defect.
MOA models the opposite situation where the game de-
signer tries to fill the payoff matrix such that each orga-
nization’s (weakly) dominant strategy is to cooperate,
i.e. to disclose its list of clients and follow the trusted
entity. The game designer has to compute a Nash equi-
librium (a stable matching) that optimizes the social
welfare (total profit).

The maximum weight matchingM∗ is sometimes un-
stable because the organizations are selfish. Then, one
has to consider a different optimumM∗

MOA which is
the maximum weight Nash equilibrium (no organiza-
tion can increase its profit by using its own maximum
weight matching instead of the solution returned by the
trusted entity). Interestingly, a theoretical measure of
this loss of profit due to the selfishness of the organiza-
tions exists. Known as theprice of stability(PoS) [19,2],
it is defined as the (worst case) ratio between the most
socially valuable state and the value of the best Nash
equilibrium. ForMOA, PoS= w(M∗

MOA)/w(M
∗).

MOA is related to cooperative game theory [13]. A
central issue in this field is to allocate the value of a
coalition to its members. Shapley and Shubik associate
to any two-sided assignment market(B,S,A) a coop-
erative game with transferable utility (the assignment
game) and show that its core is nonempty and has a
lattice structure [20].

MOA is close in spirit to other works which study, at
an algorithmic level, how to make organizations coop-
erate. In [15,6], the authors study a scheduling problem
involving several organizations. Each of them has a set
of jobs to be completed as early as possible and its own
set of processors. A selfish schedule is such that the
processors only execute jobs of their owner. The au-
thors propose algorithms which return schedules with
good makespans and in which the organizations coop-
erate without being penalized. In [11,10], the authors
study the selfish distributed replication problem. This
problem involves several nodes of a network whose task
is to fetch electronic contents (objects) located at dis-
tant servers. Instead of taking an object from its server
at each request, the nodes can save time by making a
local copy. An intermediate strategy is to get an object
from another node which is closer than the server. The

optimization problem is to fill the (bounded) memory
of each node in order to minimize the overall expected
response time. Since an optimum solution can be unac-
ceptable to selfish nodes (e.g. a node’s memory is filled
with objects that it rarely requests), the authors of [10]
propose equilibrium placement strategies where no one
is penalized.

1.4. Contribution

We investigate the computational complexity ofMOA

in Section 2.. In particular, we show that the problem is
stronglyNP-hard if the number of organizations if not
fixed. It is weaklyNP-hard for two organizations.A pos-
sible proof of strongNP-hardness for a fixed number of
organizations is discussed and some pseudo-polynomial
and polynomial cases are given as well. We provide an
approximation algorithm with performance guarantee
pb and a matching proof of inapproximation in Section
3.. We also show in this section that the price of stability
of MOA ispb. Section 4. deals with connections between
MOA and the multicriteria matching problem. Section
5. is devoted to generalizations ofMOA and also gener-
alizations of the results of this article. We conclude in
Section 6..

2. Complexity results

We prove thatMOA is stronglyNP-hard in the gen-
eral case. We also show that the restriction ofMOA to 2
organizations is weaklyNP-hard. Next we show pseu-
dopolynomial and polynomial cases.

2.1. Computationally hard cases

Let ps andpb be two numbers such that1 ≥ ps ≥
pb ≥ 0 and ps + pb = 1. Given a positive profitP
and an instance ofMOA, the decision version asks
whether the instance admits a matchingM such that
∀i∈{1,...,q} wi(M) ≥ w(M̃i) andw(M) ≥ P .

Theorem 1. The decision version ofMOA is strongly
NP-complete for every valuesps andpb.

Proof. Let ps and pb be two numbers such that1 ≥
ps ≥ pb ≥ 0 andps + pb = 1. Given a positive profit
P and an instance ofMOA, the decision version asks
whether the instance admits a matchingM such that
∀i∈{1,...,q} wi(M) ≥ w(M̃i) andw(M) ≥ P .
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Fig. 1. Bipartite graph obtained by the transformation of
an instanceI = {a1, . . . , a6} of the 3-PARTITION problem
whereW = 1

2

∑
6

j=1
aj . There is an edge with weightaj

betweenb3,j andsx,y for all pairs(x, y) ∈ {1, 2}×{1, 2, 3}.
These edges are shaded in the picture except those with weight
a1.

Given a boundW , a setA = {a1, . . . , a3m} of 3m
positive integers such that

∑3m
i=1 ai = mW and∀i =

1, . . . , 3m, W4 < ai <
W
2 , the 3-PARTITION problem is

to decide whetherA can be partitioned intom subsets
A1, A2, . . . , Am such that the sum of the numbers in
each subset is equal (thus

∑

aj∈Ai
aj = W and|Ai| =

3 for all i ∈ {1, . . . ,m}). The 3-PARTITION problem
is stronglyNP-complete (problem [SP15] in [7]).

Given an instanceI of the 3-PARTITION problem,
we build a corresponding instanceI ′ of MOA as follows
(see Figure 1 for an illustration):
• we are givenm+1 organizationsO1, . . . ,Om+1, i.e.
q = m+ 1
• Om+1 has3m buyers andm sellers respectively de-

noted bybm+1,1 to bm+1,3m andsm+1,1 to sm+1,m

• for i = 1, . . . ,m: Oi has 3 sellers denoted bysi,1,
si,2, si,3 and one buyerbi
• The edge set is given by{[bi, si,1], [bi, sm+1,i] :
i = 1, . . . ,m} ∪ {[bm+1,j, si,1], [bm+1,j, si,2],
[bm+1,j, si,3] : i, j ∈ {1, . . . ,m} × {1, . . . , 3m}}
• for i = 1, . . . ,m: w([bi, si,1]) = w([bi, sm+1,i])
= W
• for i, j ∈ {1, . . . ,m} × {1, . . . , 3m} :
w([bm+1,j , si,1]) = w([bm+1,j , si,2])
= w([bm+1,j , si,3]) = aj
• P = 2Wm

We havewi(M̃) = (ps + pb)W = W for i =

1, . . . ,m andwm+1(M̃) = 0. We claim thatI ′ admits
a feasible assignmentM such thatw(M) ≥ 2mW if
and only ifI admits a partition intom subsetsA1, A2,
. . . , Am such that

∑

aj∈Ai
aj = W and |Ai| = 3 for

all i ∈ {1, . . . ,m}.

Let Â = 〈A1, A2, . . . , Am〉 be a YES solution to the
instanceI of 3-PARTITION. We build a corresponding
matchingM̂ , solution to the instanceI ′ of MOA as
follows: M̂ = ∅ at the beginning and for each tripleax,
ay, az of Ai, we add edges[bm+1,x, si,1], [bm+1,y, si,2]

and [bm+1,z, si,3] to M̂ . We also add edge[bi, sm+1,i]

to M̂ for all i ∈ {1, . . . ,m}.
We remark thatM̂ is a feasible assignment. Indeed,

organizationOi (i = 1, . . . ,m) has 4 shared edges in
M̂ , that is [bi, sm+1,i] with weight W , [bm+1,x, si,1]
with weight ax, [bm+1,y, si,2] with weight ay and
[bm+1,z, si,3] with weightaz.

SinceÂ is a YES solution toI, we know thatax+ay+

az = W . Hence,wi(M̂) = (ps + pb)W = wi(M̃) for
i = 1, . . . ,m. We also havewm+1(M̂) ≥ wm+1(M̃)
since all the weights are nonnegative andwm+1(M̃) =
0. Thus, M̂ is a YES solution to instanceI ′ of the
decision version ofMOA because the total profit made
by the organizations is2mW .

Conversely, letM̂ be a YES solution to the instance
I ′ of the decision version ofMOA with P = 2mW .
By definition we havew(M̂ ) ≥ 2mW , wi(M̂) ≥ W
for i = 1, . . . ,m and wm+1(M̂) ≥ 0. Observe that
M̂ ∩ {[bi, si,1] | i = 1, . . . ,m} = ∅. Indeed, if k
edges in{[bi, si,1] | i = 1, . . . ,m} belong toM̂ then
the total profit would be strictly less than2mW since
w(M̂ ) ≤ kW + (m − k)W +

∑3m
i=1 ai − kmin{ai :

i = 1, . . . , 3m} ≤ (2m− k
4 )W < 2mW . Furthermore,

M̂ must be perfect since otherwisew(M̂ ) < 2mW .
Indeed, the maximum weight matching has a weight
2mW and it is obtained only if all the edges[bi, sm+1,i]
(with i ∈ {1, . . . ,m}) are selected and if all the ver-
tices bm+1,j (with j ∈ {1, . . . , 3m}) are saturated by
the matching.

We build a partitionÂ = 〈A1, A2, . . . , Am〉, solution
to the instanceI of 3-PARTITION corresponding toM̂
as follows: for i = 1 to m, put in Ai the weight of
the (shared) edges incident tosi,1, si,2 and si,3. One
can observe that̂A is a feasible 3-partition ofI. Take
an organizationOi (i = 1, . . . ,m), 4 shared edges are
incident to its nodes inM̂ . The one incident tobi has
weightW . The total weight of the three others must be
at leastW sincewi(M̃) = (ps + pb)W . Hence, each
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Fig. 2. The construction ofI ′.

Ai is assigned3 values whose sum is at leastW but if
this sum exceedsW for at least one organization, we
would have

∑3m
j=1 aj > Wm which is a contradiction.

As a consequence, eachAi is assigned3 values whose
sum is exactlyW .

Theorem 2. The decision version ofMOA is NP-
complete, for every valuesps andpb, even if there are2
organizations and the underlying graph is of maximum
degree2.

Proof. Let ps andpb be two reals such that1 ≥ ps ≥
pb ≥ 0 andps + pb = 1. The reduction is done from
PARTITION: given a set{a1, . . . , an} of n integers such
that

∑n
i=1 ai = 2W , decide whether there existsJ ⊂

{1, . . . , n} such that
∑

j∈J aj = W . PARTITION is
known to beNP-complete (problem [SP12] in [7]).

From an instanceI of PARTITION, we build I ′, an
instance ofMOA, in the following way:
• we are given 2 organizationsO1 andO2

• O1 hasn + 1 sellers andn + 1 buyers respectively
denoted bys1,i andb1,i for i = 1, . . . , n+ 1
• O2 has alson+1 buyers andn+1 sellers respectively

denoted byb2,i ands2,i for i = 1, . . . , n+ 1
• The edge set of the underlying graph is given by
{[s1,n+1, b2,n+1]} ∪ {[b2,n+1, s2,n+1]}
∪ {[s2,n+1, b1,n+1]} ∪ {[b1,i, s1,i], [s1,i, b2,i],
[b1,i, s2,i] : i = 1, . . . , n}

The weights are defined by:
• w([b1,i, s1,i]) = 6ai andw([b2,i, s1,i])
= w([s2,i, b1,i]) = 3ai for i = 1, . . . , n
• w([b2,n+1, s2,n+1]) = 6W andw([s1,n+1, b2,n+1]) =
w([b1,n+1, s2,n+1]) = 3W + 1

The underlying graph is made of a collection ofn+1
disjoint paths of length 3. Figure 2 gives an illustration
of this construction.

OrganizationO1 can make a profitw1(M̃) = (ps +
pb)

∑n
i=1 6ai = 12W if it works alone. The local profit

of organizationO2 is w2(M̃) = (ps + pb)6W = 6W .
Thus, globally, the weight of this matching is18W .

We claim thatI ′ admits a feasible assignment̂M
such thatw(M̂) ≥ 18W + 2 if and only if I admits a
setJ ⊆ {1, . . . , n} with

∑

j∈J aj = W .
Let J be a subset of{1, . . . , n} such that

∑

j∈J aj =
W (and then,

∑

j /∈J aj = W ). We build the assignment

M̂ as follows:
M̂ = {[b2,j, s1,j], [s2,j , b1,j] : j ∈ J} ∪ {[b1,j, s1,j ] :
j /∈ J} ∪ {[s1,n+1, b2,n+1], [b1,n+1, s2,n+1]}

Clearly, the cost ofM̂ is given byw(M̂) = 18W+2.
Now, let us verify thatM̂ is a feasible solution. The
local profit of organizationO1 is (ps+pb)

∑

j /∈J 6aj +
(ps+pb)

∑

j∈J 3aj+(ps+pb)(3W +1) = 12W+1 ≥

w1(M̃) whereas the profit of organizationO2 becomes
(ps+pb)

∑

j∈J 3aj +(ps+pb)(3W +1) = 6W +1 ≥

w2(M̃).
Conversely, letM̂ be a feasible assignment such that

w(M̂ ) ≥ 18W+2. The following property can be easily
proved.

Property 1. Any optimal solution ofMOA can be sup-
posed to be maximal with respect to inclusion. Further-
more any feasible solution ofMOA can be completed so
that it can be supposed to be maximal with respect to
inclusion.

Now, remark thatM̂ necessarily contains the edges
[s1,n+1, b2,n+1] and [b1,n+1, s2,n+1] since on the one
hand, the weight of any maximal matching on the graph
induced by all vertices except{s1,n+1, s2,n+1, b1,n+1,
b2,n+1} is 12W , and on the other hand
w([b2,n+1, s2,n+1]) = 6W . Thus, M̂ must contain
some edges[b2,j , s1,j ] or [b1,j, s2,j ] in order to com-
pensate the loss of the edge[b2,n+1, s2,n+1]. Let J =

{j ≤ n : [b2,j , s1,j] ∈ M̂}. By property 1,M̂ is com-
pletely described byM̂ = {[b2,j, s1,j], [b1,j , s2,j] : j ∈
J} ∪ {[b1,j, s1,j] : j /∈ J} ∪ {[s1,n+1, b2,n+1], [b1,n+1,
s2,n+1]}.

The profit of organizationO2 is (ps+pb)
∑

j∈J 3aj+
(ps + pb)(3W + 1) = 3

∑

j∈J aj + 3W + 1. Since

that profit is at leastw2(M̃) = 6W , we deduce that
∑

j∈J aj ≥W − 1
3 . Finally,

∑

j∈J aj must be an inte-
ger, so

∑

j∈J aj ≥W . On the other hand, the profit of
organizationO1 is given by(ps+pb)

∑

j /∈J 6aj+(ps+

pb)
∑

j∈J 3aj + (ps + pb)(3W + 1) = 6
∑n

j=1 aj −
3
∑

j∈J aj + 3W + 1. This quantity must be at least

w1(M̃) = 6
∑n

j=1 aj . Since
∑

j∈J aj is an integer, we
obtain

∑

j∈J aj ≤ W . In conclusion,
∑

j∈J aj = W
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which means that{a1, . . . , an} can be partitioned into
two sets of weightW .

Is MOA stronglyNP-complete for two organizations?
We were not able to answer this question but we can re-
late it to another one stated more than 25 years ago and
which is still open: Is theexact weighted perfect match-
ing problem in bipartite graphs stronglyNP-complete?

Given a graph whose edges have an integer weight
and given a valueW , the problem EXACTPM is to de-
cide whether the graph contains a perfect matchingM
of total weight exactlyW [3,8,12,14]. Papadimitriou
and Yannakakis [14] prove that EXACTPM is (weakly)
NP-complete in bipartite graphs. Barahona and Pulley-
blank [3] propose a pseudopolynomial algorithm in the
case of planar graphs and Karzanov [8] gives a poly-
nomial algorithm when the graph is either complete or
complete bipartite and the weights are restricted to 0 or
1. Mulmuley, Vazirani and Vazirani [12] show that EX-
ACTPM has a randomized pseudo-polynomial-time al-
gorithm. However, the deterministic complexity of this
problem remains unsettled, even for bipartite graphs
(Papadimitriou and Yannakakis conjectured that it is
stronglyNP-complete [14]).

EXACTPM is an auto-reducible problem, that is, find-
ing a perfect matching of weightW is polynomially
equivalent to deciding whether such a matching exists.

Here, we prove that there is a Turing reduction from
MOA when there are 2 organizations to EXACTPM.
Thus, we conclude that ifMOA with 2 organizations is
stronglyNP-complete then EXACTPM is also strongly
NP-complete in bipartite graphs. Notice that this result
also holds when there is a constant number of organi-
zations.

Proposition 1. If EXACTPM is solvable in polynomial
time in bipartite graphs when weights are polynomially
bounded, thenMOA with two organizations and weights
polynomially bounded is polynomial for every valuesps
andpb.

Proof. Let pb, ps be two rational numbers such that
1 ≥ ps ≥ pb ≥ 0 andps + pb = 1, and letI = (G,w)
be an instance ofMOA with two organizations where
G = (V,E). W.l.o.g.w(e), psw(e) andpbw(e) are inte-
gers for every edgee ∈ E (otherwise, multiplying each
weight by the denominator ofpb if pb 6= 0, we obtain an
equivalent instance). Moreover for alle ∈ E, w(e) ≤
P (|V |) for some polynomialP . LetR be the weight of a
maximum weight matching ofG. Consider the bipartite
graphG′ = (V ′, E′) built from G by adding dummy

vertices and edges with weight 0 such that any match-
ing ofG can be completed into a perfect matching ofG′

with the same value. Formally, we add a copy ofK|S|,|B|

with |S| new B-vertices andB new S-vertices. Each
new B-vertex (resp.,S-vertex) is completely linked
to theS-vertices (resp.,B-vertices) ofG. Then, each
shared edgee = [u, v] ∈ E is replaced by a path of
length 3 [u, ue], [ue, ve], [ve, v] whereue, ve are new
vertices. Note that either{[u, ue], [ve, v]} or {[ue, ve]}
is included in a perfect matching ofG′. Consider the
weight functionw′ defined asw′(e) = (R + 1)3w(e)
if e is internal to organizationO1 andw′(e) = (R +
1)2w(e) if e is internal to organizationO2. Moreover,
if e = [u, v] ∈ E is a shared edge thenw′([u, ue]) =
(R + 1)psw([u, v]) if u ∈ S ∩ O1 andw′([u, ue]) =
(R + 1)pbw([u, v]) otherwise (i.e.u ∈ B ∩ O1). We
also setw′([v, ve]) = psw([u, v]) if u ∈ S ∩ O2 and
w′([v, ve]) = pbw([u, v]) otherwise. The weight of each
remaining edge ofG′ is 0. It is clear thatG′ is built
within polynomial time andw′ remains polynomially
bounded. LetI ′ = (G′, w′).

For any matchingM , we denote byM1 (resp.,M2)
the restriction ofM to organizationO1 (resp.,O2) and
by Mshared the set of shared edges ofM . Denote by
W1 (resp.,W2) the contribution of the shared edges of
M to the profit of organizationO1 (resp.,O2). We have
w(Mshared) = W1 +W2 sinceps + pb = 1.

We claim thatw(M) = w(M1) + w(Mshared) +
w(M2) if and only if there exists a perfect matching ofI ′

with weightW = (R+1)3w(M1)+(R+1)2w(M2)+
(R+1)W1+W2. Moreover,M is a feasible solution to
MOA if and only if w(Mi)+Wi ≥ wi(M̃) for i = 1, 2.

One direction is trivial. So, letM ′ be a matching
of I ′ with valuew′(M ′) = W = (R + 1)3A + (R +
1)2B+(R+1)C+D. By the choice ofR, we must get
w(M ′

1) = A, w(M ′
2) = B andw(M ′

shared) = C +D,
whereC (resp.,D) is the contribution ofM ′

shared to
the profit of organizationO1 (resp.,O2). The profit of
organizationO1 (resp.O2) according toM ′ is A + C
(resp.B +D).

In conclusion by applying at mostR4 times the poly-
nomial algorithm for EXACTPM, we find an optimal
solution ofMOA. By an exhaustive search, we try all val-
ues ofA,B,C,D at most equal toR such thatA+C ≥
w1(M̃) andB +D ≥ w2(M̃).

Proposition 2. MOA with a constant number of orga-
nizations can be solved in pseudopolynomial time when
the underlying graph has a maximum degree of 2.

Proof. Here, we deal with 2 organizations, but the re-
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sult can be extended to any constant number of organi-
zations. The proof is based on Proposition 1, and uses
the pseudopolynomiality result of [3] for EXACTPM
in planar graphs. However, the construction ofG′ is
slightly different because when one adds a copy of
K|S|,|B| the resulting graph may be not planar. So, let
I = (G,w) be an instance ofMOA with 2 organizations
whereG = (V,E) is a bipartite graph of maximum
degree 2. W.l.o.g., assume thatG is 2-regular, that is
a collection of disjoint even cycles (by adding dummy
vertices and edges of weight 0). Then, for each cycleC
of G, we add a copyC′ of C and we link each vertex
of C to its copy inC′. Finally, as it is done in Propo-
sition 1, each shared edgee = [u, v] of a cycleC in G
is replaced by a path of length 3[u, ue], [ue, ve], [ve, v]
whereue, ve are new vertices. The weights are defined
similarly to the ones given in Proposition 1. Figure 3
gives an illustration of this construction.

Obviously,G′ is planar. Moreover, any matchingM
can be converted into a perfect matchingM ′ of G′.
Thus, by applying the argument given in Proposition 1,
the result follows.

2.2. Polynomial cases

MOA is trivially polynomial when there is a unique
organization or when the underlying graph is of max-
imum degree 1. Furthermore an exhaustive search can
efficiently solve the problem if the underlying graph
G = (V,E) containsO(log |E|) shared edges. Let
MOA0,1 be the subcase wherew([i, j]) ∈ {0, 1} for all
(i, j) ∈ B × S. We prove that an optimum toMOA0,1

is a maximum cardinality assignment of the underlying
graph though a maximum cardinality assignment is not
necessarily a solution ofMOA0,1.

Theorem 3. MOA0,1 is polynomial.

Proof. Let M be an assignment on an unweighted bi-
partite graphG = (B,S;E). Recall that a path inG
is alternatingwith respect toM if it alternates edges
of M and edges ofE \M . Furthermore, an alternat-
ing pathπ is augmentingif no edge ofM is incident
to its endpoints. The word “augmenting” means that
(M \ π) ∪ (π \M) is a matching of size|M |+ 1. M
is of maximum size onG if G does not admit any aug-
menting alternating path with respect toM (by contra-
diction, if this was not the case, we could increase the
size ofM ).

Let I be an instance ofMOA0,1 defined uponG. Let
M̂ be an optimal matching built as follows. Start with
the feasible matching̃M and increase its size with aug-
menting alternating paths while it is possible.

Let M̂ j be the matching produced at stepj. We
suppose thatt steps are needed to obtain̂M . Hence,
M̂0 = M̃ andM̂ t = M̂ . We mainly prove

wi(M̂
j+1) ≥ wi(M̂

j), ∀i ∈ {1, . . . , q} (1)

for all j ∈ {0, . . . , t−1}. This inequality states that the
use of an augmenting alternating path cannot deteriorate
the profit of any organization.

Givenv ∈ V and a matchingM , let c(v,M) be the
contributionof v to the profit of its organization inM :

c(v,M) =























ps if v ∈ S and an edge ofM
is incident tov

pb if v ∈ B and an edge of
M is incident tov

0 otherwise

Let V ′ be the vertices ofπ′, the augmenting alternating
path such thatM̂ j+1 = (M̂ j \ π′) ∪ (π′ \ M̂ j). We
deduce that

wi(M̂
j+1)−wi(M̂

j) =
∑

v∈V ′

(

c(v, M̂ j+1)− c(v, M̂ j)
)

(2)
for all i ∈ {1, . . . , q}. One can observe thatc(v, M̂ j) =
c(v, M̂ j+1) if v ∈ V ′ andv is not an extremal node of
π′. Indeed, a buyerb ∈ V ′ matched with a sellers ∈ V ′

in M̂ j is still matched inM̂ j+1 but with another seller.
Similarly, a sellers ∈ V ′ matched with a buyerb ∈ V ′

in M̂ j is still matched inM̂ j+1 but with another buyer.
If v ∈ S ∩ V ′ (resp.v ∈ B ∩ V ′) andv is an extremal
node ofπ′ then c(v, M̂ j) = 0 and c(v, M̂ j+1) = ps
(resp.c(v, M̂ j) = 0 andc(v, M̂ j+1) = pb). Hence,

c(v, M̂ j+1)− c(v, M̂ j) ≥ 0 (3)

for all v ∈ V becauseps ≥ pb ≥ 0. Using (2)
and (3) we obtainwi(M̂

j+1) − wi(M̂
j) ≥ 0 for all

i ∈ {1, . . . , q}. M̂ is a feasible assignment because
wi(M̂

t) ≥ wi(M̂
t−1) ≥ . . . ≥ wi(M̂

0) = w(M̃i) for
all i ∈ {1, . . . , q} (we recall thatM̃ is the maximum
weight matching ofG reduced to its internal edges,
and M̃i is the restriction ofM̃ to Gi). In addition,
w(M̂ ) = w(M∗) because the algorithm stops when no
augmenting alternating path exists. In conclusion,M̂
is optimal becausew(M∗) ≥ w(M∗

MOA).
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Fig. 3. Construction ofG′ and perfect matchingM ′ from G and matchingM .

3. Approximation

Recall that ps and pb are any values such that
0 ≤ pb ≤ ps ≤ 1 and ps + pb = 1. We start by the
following property.

Property 2. wi(M
∗) ≥ pb w(M̃i), and this bound is

asymptotically tight.

Proof. Let Ci be the set of edges ofM∗ which have
at least one endpoint belonging to organizationOi. We
havew(Ci) ≥ w(M̃i), otherwise we could obtain a
matching of weight larger thanw(M∗) by replacing
the edges ofCi by the ones ofM̃i. The profit ofOi is

wi(M
∗) ≥ pb w(Ci), and thuswi(M

∗) ≥ pb w(M̃i).
Let ε be a small positive number. Let us now show

that the above bound is tight, by considering the fol-
lowing instance: there are two organizationsO1 andO2

such that there are inO1 two nodesb1 and s1 linked
by an edge of weight1 − ε, and there is inO2 one
nodes2 linked to b1 by an edge of weight1. We have:
w(M̃1) = 1− ε, M∗ = {[b1, s2]}, andw1(M

∗)

w(M̃i)
= pb

1−ε ,

which tends towardspb whenε tends towards0.

Let us consider algorithm APPROX given below.
Theorem 4. APPROX is a pb-approximate algorithm
for MOA, and this bound is asymptotically tight.
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Algorithm 1: Algorithm APPROX

• Construct the graphG′ = (V ′, E′) from
G = (V,E) as follows:V ′ = V , andE′ = E,
except that the weights of the edges are modified:
for each edge[u, v] such thatu belongs to
organizationOi andv belongs to organizationOj ,
w′([u, v]) = w([u, v]) if u andv belong to the
same organization (i = j), and otherwise
w′([u, v]) = pb w([u, v]).
• Return a maximum weight matching ofG′.

Proof. Let ps, pb be two numbers such that1 ≥ ps ≥
pb ≥ 0 and ps + pb = 1. Let M be a matching re-
turned by algorithm APPROXon graphG. We first show
that the profit of each organizationOi in M is at least
w(M̃i). ThusM is a solution ofMOA.

Let M int(i) be the set of edges ofM such that both
endpoints belong toOi, and letM ext(i) be the set of
edges ofM such that exactly one endpoint belongs
to Oi. SinceM is a maximum weight matching of
G′, w′(M int(i)) + w′(M ext(i)) ≥ w′(M̃i) = w(M̃i),
otherwise we could have a matching with a larger
weight by replacing the edges of

(

M int(i) ∪M ext(i)
)

in M by the edges ofM̃i. Thus the profit ofOi is at
least w(M int(i)) + pb w(M

ext(i)) = w′(M int(i)) +
w′(M ext(i))) ≥ w(M̃i) = wi(M̃).

Let us now show that APPROXispb-approximate. The
edges ofG′ are the same as the ones ofG, except that the
weight of some of them has been multiplied bypb < 1.
ThusM , which is a maximum weight matching ofG′,
has a weightw(M) ≥ pb w(M

∗) ≥ pb w(M
∗
MOA).

Let us show that this bound is asymptotically tight
by considering the following instance. Here, we assume
pb > 0. Recall thatpb ≤ 1/2 since1 ≥ ps ≥ pb ≥ 0.
Let ε > 0 such thatε < 1/pb − 1. There are two or-
ganizations, organizationO1, which owns two vertices
b1 and s1, also linked by an edge of weight 1, and
organizationO2, which owns two verticesb2 and s2,
linked by an edge of weight 1. There are two shared
edges, betweenb1 ands2, and betweenb2 ands1: both
edges have weight1pb

− ε. Algorithm APPROX returns
the matchingM ={[b1, s1], [b2, s2]} with weight 2 in
G′ because the weight of{[b1, s2], [b2, s1]} in G′ is
2(1− pbε) < 2. The optimal solution would have been
M∗

MOA = {[b1, s2], [b2, s1]}. The ratio between the
weights of these two solutions is w(M)

w(M∗
MOA

)=
2

2/pb−2ε ,
which tends towardspb whenε tends towards 0.

Theorem 4 implies that the price of stability ofMOA

defined as the maximum, over all the instances, of
w(M∗

MOA)/w(M
∗) is at leastpb. In fact, we are able

to prove that PoS= pb.

Proposition 3. The price of stability ispb.

Proof. It follows from Theorem 4 that
w(M∗

cont)/w(M
∗) ≥ pb since APPROX returns a

matching M such that w(M∗
MOA) ≥ w(M) ≥

pbw(M
∗).

Let us now show that this bound is tight. There are
two organizations: organizationO1, which owns two
verticesb1 and s1, linked by an edge of weightW1,
and organizationO2, which owns one vertexs2, linked
to b1 by a link of weightW2. Suppose thatW1 = ε
such that0 < ε < 1 and W2 = 1 when pb = 0.
The ratio w(M∗

cont)
w(M∗) = ε, tends towards0 = pb when

ε tends towards0. Suppose thatW1 = 1 andW2 =
1/pb − ε such that0 < ε < 1/pb − 1 whenpb > 0.

The ratiow(M∗
cont)

w(M∗) = pb

1−ε pb
, tends towardspb whenε

tends towards0.

We can prove that Theorem 4 is best possible if
P 6=NP, i.e. we cannot obtain a(pb + ε)-approximation
for all ε > 0. Actually, we prove a slightly stronger
result wheren denotes the number of vertices.

Theorem 5. For any polynomialP , it is NP-hard to
obtain a(pb+ 1

Θ(2P(n))
)-approximation forMOA where

at least three organizations are involved.

Proof. We describe a gap reduction. We start with an
instance ofPARTITION given by a set ofn integers
{a1, . . . , an} such that

∑n
i=1 ai = 2W . For any real

t > 1, we construct an instanceIt of MOA as follows:
• we are given 3 organizationsO1, O2 andO3.
• O1 hasn + 1 buyers andn + 1 sellers respectively

denoted byb1,i ands1,i for i = 1, . . . , n+ 1.
• O2 has 2 buyers denoted byb2,1, b2,n+1 andn + 1

sellers denoted bys2,i for i = 1, . . . , n+ 1.
• O3 has one sellers3,1.
• The edge set of the underlying graph is{[s1,i, b1,i],
[b1,i, s2,i] : i = 1, . . . , n} ∪ {[s1,n+1, b2,1]}∪
{[b1,n+1, s2,n+1], [s2,n+1, b2,n+1], [b2,n+1, s3,1]}

The weights are given by:
• w([s1,i, b1,i]) = w([b1,i, s2,i]) = ai for i = 1, . . . , n.
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• w([s1,n+1, b2,1]) = psW , w([b1,n+1, s2,n+1]) =
psW , w([s2,n+1, b2,n+1]) = tpbW + 2psW , and
w([b2,n+1, s3,1]) = tW .

An illustration of this construction is given in Figure 4.
If t = O(2P (|V |)) where|V | = 3n+6 is the order of

the underlying graph, then it is not difficult to see that
the above construction is given within polynomial time.
The profits the organizations can make on their own
are respectivelyw1(M̃) = (ps + pb)

∑n
i=1 ai = 2W ,

w2(M̃) = (ps + pb)(tpbW +2psW ) = tpbW +2psW
andw3(M̃) = 0.

We prove that there are only two distinct values
for the optimal value ofMOA, that areOPT(It) =
tpbW+3psW+2W orOPT (It) = tW+2psW+2W ,
and OPT (It) = tW + 2psW + 2W if and only if
{a1, . . . , an} admits a partition.

Observe thattW +2psW +2W > tpbW +3psW +
2W if and only if t > 1 sincepb = 1− ps andps > 0.
Let M∗

cont be an optimal solution ofMOA (with value
OPT (It)). Let us consider two cases:

Case [s2,n+1, b2,n+1] ∈ M∗
cont. An optimal solution

can be described by{[s1,i, b1,i] : i = 1, . . . , n}∪
{[s1,n+1, b2,1], [s2,n+1, b2,n+1]}.Actually,[s1,n+1, b2,1]
∈ M∗

cont becauseM∗
cont is maximal by Prop-

erty 1 (cf page 115). Moreover, the weight of
any maximal matching on the graph induced by
{s1,i, b1,i, s2,i : i = 1, . . . , n} has the same value2W .
In this case, we getOPT (It) = tpbW +3psW +2W .

Case [s2,n+1, b2,n+1] /∈M∗
cont. Edges{[b1,n+1, s2,n+1],

[b2,n+1, s3,1], [s1,n+1, b2,1]} belong toM∗
cont by Prop-

erty 1. The contribution of these 3 edges to the profit
of O2 is psw([b1,n+1, s2,n+1]) + pbw([b2,n+1, s3,1]) +
pbw([s1,n+1, b2,1]) = tpbW+psW < tpbW+2psW =
w([s2,n+1, b2,n+1]) since ps > 0. Hence, a subset
of shared edges betweenO1 andO2 must belong to
M∗

cont. Let J∗ = {j ≤ n : [b1,j , s2,j] ∈ M∗
cont}

be this subset. Then,M∗
cont is entirely described

by {[b1,n+1, s2,n+1], [b2,n+1, s3,1], [s1,n+1, b2,1]} ∪
{[b1,j, s2,j] : j ∈ J∗} ∪ {[s1,j, b1,j , ] : j /∈ J∗}.

To be feasible,M∗
cont must satisfyw1(M

∗
cont) ≥

w(M̃1), i.e.
∑

j /∈J∗ aj+pb
∑

j∈J∗ aj+(ps+pb)psW ≥
∑n

j=1 aj from which we deduceW ≥
∑

j∈J∗ aj be-
causepb = 1 − ps and ps > 0. M∗ must also sat-
isfy w2(M

∗
cont) ≥ w(M̃2), i.e. ps

∑

j∈J∗ aj + (ps +
pb)psW + tpbW ≥ tpbW + 2psW , which is equiva-
lent to

∑

j∈J∗ aj ≥ W . Then, we obtain
∑

j∈J∗ aj =
∑

j /∈J∗ aj = W . On the one handOPT (It) = tW +
2psW +2W and on the other hand{a1, . . . , an} has a
partition given byJ∗.

Conversely, if{a1, . . . , an} admits a partition then it
is not difficult to prove thatOPT (It) = tW +2psW +
2W .

Now, assume that there is a(pb + 1
c2P(|V |) )-

approximation ofMOA given within polynomial time
for some c > 0. Considert0 = 5c2P (|V |) and let
apx(It0 ) denote the value of the approximate solution
on instanceIt0 .
• {a1, . . . , an} does not admit a partition. One has
OPT (It0) = 5c2P (|V |)pbW +3psW +2W and then
apx(It0 ) ≤ 5c2P (|V |)pbW + 3psW + 2W .
• {a1, . . . , an} admits a partition. We haveOPT (It0) =
5c2P (|V |)W + 2psW + 2W . Since apx(It0 ) ≥
(pb +

1
c2P (|V |) )OPT (It0) by hypothesis andps ≤ 1,

we deduceapx(It0) > 5W + 5c2P (|V |)pbW ≥
5c2P (|V |)pbW + 3psW + 2W .
In conclusion,apx allows us to distinguish within

polynomial time whether{a1, . . . , an} has a partition
or not, which is impossible ifP 6=NP.

4. MOA and multicriteria matching problems

This section deals with the design of exact or ap-
proximate algorithms forMOA with two organizations
(q = 2). We relate hereMOA to multicriteria matching
problems, and we present a conditionnal result as we did
in Proposition 1 (where we have linked the complexity
of MOA with two organizations and weights polynomi-
ally bounded to the complexity of EXACTPM).

We relateMOA to the k-criteria matching problem
where each edge is evaluated withk cost functions (also
called criteria)f1, . . . , fk. In this case, the cost of a
matching for the criteriumfi is the sum of the values of
the criteriumfi for every edge in the matching. The goal
is then to find the setS of the solutions such thats ∈ S if
there is no solution better thans on all the criteria simul-
taneously. An approximate solution is a matching which
is on all the criteria(1 − ε)-approximate of a solution
s ∈ S. In [16], Papadimitriou and Yannakakis show that
thek−criteria matching problem admits a fully polyno-
mial RNC scheme. In [18] Przybylski, Gandibleux and
Ehrgott propose an efficient exact method whenk = 2
and the graph is bipartite (this problem is also called
biobjectiveor bicriteria assignment problem). More re-
cently Berger, Bonifaci, Grandoni and Schäfer [4] pro-
posed a PTAS for a budgeted version of the matching
problem which is equivalent to the biobjective matching
problem. We now show how to turn an instance ofMOA

with two organizations into an instance of the biobjec-
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Fig. 4. The instanceIt resulting from the above reduction

tive assignment problem. Next we exploit the results
given in [4] and [18].

An instance of the biobjective assignment problem
is composed of a simple graphG = (V,E) and two
functionsf : E → R+ and s : E → R+. Then a
matchingM has two valuesf(M) =

∑

e∈M f(e) and
s(M) =

∑

e∈M s(e). Given an instance ofMOA with
two organizations, one builds a corresponding instance
of the biobjective assignment problem as follows. The
graph (vertex and edge sets) remains unchanged. Let
us definef ands for an edgee = [u, v]. If u, v ∈ O1

then f(e) = w(e) and s(e) = 0. If u, v ∈ O2 then
s(e) = w(e) andf(e) = 0. If u ∈ B ∩ O1 andv ∈
S ∩ O2 then f(e) = pbw(e) and s(e) = psw(e). If
u ∈ S ∩ O1 andv ∈ B ∩ O2 thenf(e) = psw(e) and
s(e) = pbw(e). Therefore, we havew1(M) = f(M)
andw2(M) = s(M) for allM ∈M. It is not difficult to
see that the exact algorithm of Przybylski, Gandibleux
and M. Ehrgott [18] can be used to solve instances of
MOA with two organizations.

Bergeret al. [4] study the following problem

Π(B) maximize f(M)
such that: M ∈M

s(M) ≤ B

whereB is a given non negative budget andM is the
set of all feasible matchings. The problem is called
max-min budgeted matching. LetM∗ be an optimum to
Π(B). Bergeret al. present a PTAS, i.e. they are able
to compute in polynomial time a feasible solution̂M
such thats(M̂) ≤ B andf(M̂) ≥ (1 − ε)f(M∗) for
all ε ∈ (0, 1).

Let us define two versions of themax-max budgeted
matching.

Π′(B) maximize f(M)

such that: M ∈M

s(M) ≥ B

Π′′(B) maximize s(M)

such that: M ∈M

f(M) ≥ B

Let A′ (resp. A′′) be a PTAS forΠ′(B) (resp.
Π′′(B)). In the sequel,A′(B, ε) and A′′(B, ε) de-
note the execution ofA′ andA′′ for a given budget
B and a fixed parameterε ∈ (0, 1), respectively. In
particular,A′(B, ε) returns a matchingM such that
s(M) ≥ B and f(M) ≥ (1 − ε)f(M∗) whereM∗

denotes an optimum solution toΠ′(B). Similarly,
A′′(B, ε) returns a matchingM such thatf(M) ≥ B
and s(M) ≥ (1 − ε)f(M∗∗) whereM∗∗ denotes an
optimum solution toΠ′′(B).

In the sequel,(G,w) denotes the instance ofMOA

while (G′, f, s) denotes the corresponding instance of
max-max budgeted matching.

Algorithm 2 takes as inputε and an instance ofMOA

and returns a(1 − ε)-approximate solution ofMOA

for this instance. It consists in iteratively computing a
(1−ε)-approximate solution for the correspondingmax-
max budgeted matching problemwith a budget slowly
decreasing until a solution ofMOA is found.
Theorem 6. There is a PTAS forMOA with two orga-
nizations (q = 2) if there is a PTAS for the max-max
budgeted matching problem.

Proof. Let us consider Algorithm 2. As usual we sup-
pose thatw(M) ≤ 2P (n) for some polynomialP . Here
n is the number of vertices andM is any feasible match-
ing. We deduce thatR+ 1 ≤ P (n). Then Algorithm 2
is polynomial becauseA′ andA′′ are polynomial and
A′ is executedR+ 1 times.

Case A: If wi(M
∗
MOA) ≤ wi(M̃)/(1 − ε) holds

for i = 1, 2 then M̃ is a (1 − ε)-approximation of
M∗

MOA becausew(M̃) = w1(M̃) + w2(M̃) ≥ (1 −
ε)
(

w1(M
∗
MOA) + w2(M

∗
MOA)

)

= (1− ε)w(M∗
MOA).

In addition,M̃ is by definition a feasible solution to
MOA.

Case B: If w1(M
∗
MOA) ≤ w1(M̃)/(1 − ε) and
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Algorithm 2:
Input: (G,w) instance ofMOA, (G′, f, s) the

corresponding instance ofmax-max
budgeted matchingandε ∈ (0, 1)

Output: a feasible(1− ε)-approximate solution̂M
ComputeM∗ andM̃ on (G,w);

M̂ := M̃ ;
ExecuteA′′(w1(M̃), ε) and denote byM ′′ the
resulting matching;
if
(

wi(M
′′) ≥ wi(M̃), i = 1, 2

)

∧
(

w(M ′′) >

w(M̂)
)

then
M̂ ←M ′′;

end

R :=
⌈

log(w2(M̃))−log(w(M∗))
log(1−ε)

⌉

;

for r = 0 to R do
ExecuteA′(max{(1− ε)rw(M∗), w2(M̃)}, ε)
and denote byM r the resulting matching;
if
(

wi(M
r) ≥ wi(M̃), i = 1, 2

)

∧
(

w(M r) >

w(M̂)
)

then
M̂ ←M r;

end
end
ReturnM̂ ;

w2(M
∗
MOA) > w2(M̃)/(1 − ε) then we are going to

show thatM ′′ is a (1 − ε)-approximation ofM∗
MOA.

Let M be an optimal solution toΠ′′(w1(M̃)). Since
A′′ is (1 − ε)-approximate andM∗

MOA is a feasible
solution toΠ′′(w1(M̃)),

w2(M
′′) ≥ (1− ε)w2(M) ≥ (1− ε)w2(M

∗
MOA) (4)

holds. We know that

w1(M
′′) ≥ w1(M̃) (5)

holds becauseM ′′ is a feasible solution toΠ′′(w1(M̃)).
Inequality(4) andw2(M

∗
MOA) > w2(M̃)/(1− ε) give

w2(M
′′) > w2(M̃). (6)

We deduce from inequalities (5) and (6) thatM ′′

is a feasible solution toMOA. Inequality (5) and
w1(M

∗
MOA) ≤ w1(M̃)/(1− ε) lead to

w1(M
′′) ≥ (1− ε)w1(M

∗
MOA). (7)

Therefore inequalities (4) and (7) givew(M ′′) ≥ (1−
ε)w(M∗

MOA).

Case C: Suppose that

w1(M
∗
MOA) > w1(M̃)/(1− ε) (8)

holds. In the loop of Algorithm 2,A′ is executed with
a budget which ranges from(1− ε)0w(M∗) = w(M∗)
to max{w2(M̃), (1− ε)Rw(M∗)}. We know that(1−
ε)Rw(M∗) ≤ w2(M̃) because

R := ⌈
(

log(w2(M̃))− log(w(M∗))
)

/ log(1− ε)⌉.

Since w2(M̃) ≤ w2(M
∗
MOA) ≤ w(M∗

MOA) ≤
w(M∗), there existsr∗ ∈ [0, R] such that

max{w2(M̃), (1− ε)r
∗

w(M∗)} ≤ w2(M
∗
MOA)

< (1 − ε)r
∗−1w(M∗). (9)

Let M be an optimum solution to
Π′

(

max{w2(M̃), (1 − ε)r
∗

w(M∗)}
)

. We know that
M r∗ is a (1 − ε)-approximation ofM . By definition,
w1(M

r∗) ≥ (1 − ε)w1(M) and w2(M
r∗) ≥ (1 −

ε)r
∗

w(M∗) hold. Using inequality (9) we know that
(1− ε)w2(M

∗
MOA) < (1− ε)r

∗

w(M∗). We deduce

w2(M
r∗) ≥ (1 − ε)r

∗

w(M∗) > (1− ε)w2(M
∗
MOA).

(10)
SinceM∗

MOA is a feasible solution to
Π′

(

max{w2(M̃), (1 − ε)r
∗

w(M∗)}
)

, w1(M) ≥
w1(M

∗
MOA) and

w1(M
r∗) ≥ (1− ε)w1(M) ≥ (1− ε)w1(M

∗
MOA)

(11)
Using (10) and (11) we getw(M r∗) ≥ (1 −

ε)w(M∗
MOA). Using (8) and (11) we get

w1(M
r∗) > w1(M̃).

Sincew2(M
r∗) ≥ max{w2(M̃), (1−ε)r

∗

w(M∗)} ≥
w2(M̃), M r∗ is a feasible(1−ε)-approximate solution
to MOA.

Unfortunately, we were not able to buildA′ andA′′.
However Berger [5] provides a weaker result : a mod-
ification of Bergeret al.’s result yields a polynomial
time algorithm which outputs a matchingM satisfy-
ing s(M) ≥ (1 − ε̂)B and f(M) ≥ (1 − ε)f(M∗)
whereM∗ denotes an optimum solution toΠ′(B) and
ε̂, ε ∈ (0, 1).

5. Generalizations

5.1. Relaxation of the selfishness of the organizations

Suppose that each organizationOi accepts a proposed
global matching if its own profit is at leastw(M̃i)/x
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wherex ≥ 1 is fixed. This means that each organization
accepts to divide byx the profit it would have without
sharing its file with the other organizations. The prob-
lem, denoted byMOA(x) is then to find a maximum
weight matchingM such thatwi(M) ≥ w(M̃i)/x for
all i ∈ {1, . . . , q}. Let M∗

cont(x) denote such a maxi-
mum weight matching.

If x = 1, an organization does not accept to reduce
its profit, and this problem is the one stated in the intro-
duction. Ifx ≥ 1/pb, the organizations accept to divide
their profits by1/pb. Property 2 page 118 shows that in
a maximum weight matchingM∗, the profit of organi-
zationOi is at leastpb w(M̃i). ThusM∗

cont(x) = M∗.
Our aim is now to solveMOA(x) for 1 ≤ x < 1/pb.
With a slight modification of the proof of Theorem 1,
we can show that this problem is stronglyNP-hard for
each valuex smaller than1/pb. One can also extend
APPROXto a slightly modified algorithm2 APPROX(x)
and prove that it is(x pb)-approximate algorithm for
MOA(x) and this bound is tight. In addition, the price
of stability isx pb for this generalization.

5.2. General graphs

One can extendMOA to general graphs whenps =
pb = 1/2. In this case, the distinction between buyers
and sellers is lost. For example, the problem has the fol-
lowing application: Numerous web sites offer to con-
duct home exchanges during holidays. The concept is
simple, instead of booking expensive hotel rooms, pairs
of families agree to swap their houses for a vacation.
We model the situation with a graphG = (V,E) whose
vertices are candidates for house exchange. The ver-
tex set is partitioned intoq sets/organizationsO1 . . . Oq.
Vertices within an organization are its clients. Every
edge[a, b] ∈ E has a weightw([a, b]) representing the
satisfaction of candidatesa and b if they swap. Pairs
are formed by the organizations which only care about
the satisfaction of their clients. In case of a mixed-
organizations exchange[a, b], it is assumed that the sat-
isfaction of both participants isw([a, b])/2. The prob-
lem is to maximize the collective satisfaction while no
organization is penalized.

Theorems 3 to 5 and Proposition 3 (wherepb is re-
placed by1/2) hold for general graphs since the proofs
do not use the fact thatG is bipartite.

2 The weight of shared edges is multiplied byxpb instead
of pb.

6. Conclusion

We studied cooperation, at an algorithmic level, be-
tween organizations. We showed that the price of sta-
bility is pb, and we studied the complexity ofMOA. We
presented polynomial cases, and showed that the prob-
lem is NP-hard in the general case. We also gave an ap-
proximation algorithm, matching the inapproximation
bound when there are at least 3 organizations. There
remain some open problems: is it possible to have an
algorithm with a better approximation ratio when there
are two organizations3 ? Is this problem strongly NP-
hard in this case (we notice that this problem is related
to the open Exact Perfect Matching problem)? When
we consider that each organization accepts a solution if
it does not reduce its profit by a factor larger thanx, is
it possible to get an algorithm with an approximation
ratio better thanx pb (with 1 ≤ x < 1/pb)? An inter-
esting direction would also be to study fairness issues
in this problem. For example, among all the solutions
of the same quality, return the one which maximizes
the minimumwi(Mcont) − M̃i, that is the minimum
increase of profit of the organizations.
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