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Abstract

The class of positive definite and positive semidefinite matrices is one of the most frequently encountered matrix classes
both in theory and practice. In statistics, these matrices appear mostly with symmetry. However, in complementarity
problems generally symmetry in not necessarily an accompanying feature. Linear complementarity problems defined by
positive semidefinite matrices have some interesting properties such as the solution sets are convex and can be processed
by Lemke’s algorithm as well as Graves’ principal pivoting algorithm. It is known that the principal pivotal transforms
(PPTs) (defined in the context of linear complementarity problem) of positive semidefinite matrices are all positive
semidefinite. In this article, we introduce the concept of generalized PPTs and show that the generalized PPTs of a
positive semidefinite matrix are also positive semidefinite. One of the important characterizations ofP -matrices (that is,
the matrices with all principle minors positive) is that thecorresponding linear complementarity problems have unique
solutions. In this article, we introduce a linear transformation and characterize positive definite matrices as the matrices
with corresponding semidefinite linear complementarity problem having unique solutions. Furthermore, we present some
simplification procedure in solving a particular type of semidefinite linear complementarity problems involving positive
definite matrices.
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1. Introduction

A matrix A ∈ Rn×n is said to be positive definite
(positive semidefinite) if the quadratic formxtAx is
positive (nonnegative) for every nonzerox ∈ Rn. The
class of positive definite matrices is one of the most fre-
quently encountered matrix classes both in theory and
practice. The variance-covariance matrices encountered
in Statistics are mostlysymmetricpositive definite and
seldom positive semidefinite. However, unlike in many
statistical applications, symmetry of the positive definite
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or semidefinite matrices is not an accompanying fea-
ture always. In linear complementarity problem (LCP)
positive definiteness and positive semidefiniteness of
matrices is defined without symmetry. Many charac-
terizations of symmetric positive definite and semidefi-
nite matrices are known. However, no direct results are
known to be available on the characterization of pos-
itive definite and semidefinite matrices without going
into symmetrization.

A number of matrix classes have been evolved while
studying LCP. The class ofP -matrices (that is, real
square matrices with all principal minors positive) is
characterized in terms of LCP. This characterization
says that a matrixA is aP -matrix if, and only if, LCP
(q, A) has a unique solution for everyq [13]. In the
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context of LCPs with positive semidefinite matrices, it
is known that solution sets of such problems are con-
vex; and the problems can be processed by Lemke’s
algorithm as well as Graves’ principal pivoting algo-
rithm (see [2]). Furthermore, the principal pivotal trans-
forms (PPTs) of a matrix defined in LCP are positive
semidefinite provided the matrix is so. PPTs are de-
fined only with respect to the nonsingular principal sub-
matrices. In this article we introduce the concept of
generalized PPTs using the Moore-Penrose inverse [11,
12] and show that even the generalized PPTs of posi-
tive semidefinite matrices are positive semidefinite. As
a corollary to this result we deduce that the generalized
Schur complement of a positive semidefinite matrix is
also positive semidefinite.

An interesting result of this article is that we obtain
a characterization of positive definite matrices that is
similar to the one forP -matrices. This characterization
says that a matrixA is positive definite if, and only
if, the solution to semidefinite linear complementarity
problemSDLCP (Q,AXAt) has unique solution for
everyQ. The semidefinite linear complementarity prob-
lem (SDLCP) was introduced by Kojima, Shindoh and
Hara as a unified model of various problems. LCP is a
special case of SDLCP and many system and control
theory problems as well as combinatorial optimization
problems can be formulated as SDLCP (see [2, 4, 3, 8]).

Gowda and Song [6] extended a number of LCP
concepts such asR0-property,Q-property,P -property
and so on to SDLCP and studied their properties. In
particular, they consider the Lyaponov transformation
LA(X) = AX +XAt and show that for this transfor-
mation, theP -property and theQ-property are equiv-
alent toA being positive stable (that is, the real parts
of eigen values ofA are positive). Later Gowda and
Parthasarathy [5] gave a characterization of positive sta-
ble matrices and deduced Stein’s theorem using comple-
mentarity formulations. In this article we consider the
linear transformationLA(X) = AXAt and show that
positive definiteness ofA is equivalent to several prop-
erties of the SDLCP with respect to this linear transfor-
mation. In this context we also present some related re-
sults pertaining to the SDLCP with the proposed trans-
formation. In addition, we present a closed form solu-
tion to the SDLCP with respect to the transformation
AXAt whereA is any2 × 2 positive definite matrix.
For the general case on the order ofA, we provide a
simplification procedure.

The organization of this paper is as follows. In Sec-
tion 2 we introduce the notation and the necessary pre-

liminaries. In Section 3 we present the results related to
LCP and some properties of positive semidefinite ma-
trices. In Section 4 we present the results on positive
definite matrices and the SDLCP with respect to the
linear transformationAXAt.

2. Notation and Preliminaries

Given a matrixA ∈ Rn×n and q ∈ Rn the Lin-
ear Complementarity Problem (LCP)(q, A) is to find a
vectorz ∈ Rn such that

Az + q ≥ 0, z ≥ 0 and zt(Az + q) = 0. (1)

The reader may refer [2, 9] for a detailed account of LCP
and its applications. We shall use the notationS(q, A)
to denote the set of solutions to(q, A). A number of
matrix classes have been evolved while studying LCP.
We shall recall the definitions of some classes relevant to
this article. The class ofQ-matrices consists of all those
matricesA for whichS(q, A) is nonempty for everyq.
Unless stated otherwise all the matrices in this paper are
to be treated as real square matrices and all vectors as
real vectors. A matrixA is said to be positive definite
(positive semidefinite) if the quadratic formxtAx is
positive (nonnegative) for every nonzero vectorx of
appropriate order. The class ofP -matrices includes all
matrices whose principal minors are all positive. It is a
well known fact that the positive definite matrices are in
P and the principal minors of any positive semidefinite
matrix are all nonnegative.

The principal pivotal transform (PPT) of any matrix
Awith respect to a nonsingular principal submatrixAαα

of A is defined as the matrixM where

Mαα = (Aαα)
−1,

Mαᾱ = −MααAαᾱ,

Mᾱα = AᾱαMαα,

Mᾱᾱ = Aᾱᾱ −MᾱαAαᾱ.

Hereα stands for an index set and̄α for its comple-
ment. It may be verified that the PPT ofM with respect
to α is A itself. For the notation see [2]. PPTs play an
important role in LCP and have very interesting prop-
erties. Many properties are closed under PPTs. For ex-
ample, ifA is a P -matrix, then all its PPTs are also
P -matrices. This result holds good for positive definite,
positive semidefinite andQ-matrices as well. For more
elaborate discussion and results on PPTs refer to [2, 9].
It must be noted that PPTs are defined only with respect
to the nonsingular principal submatrices of the given
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matrix. In this article we define PPTs even with respect
to any singular principal submatrix using its Moore-
Penrose generalized inverse which is defined as follows.
Definition 1. A matrix B is called the Moore-Penrose
inverse of a matrixA provided the following four con-
ditions are satisfied:

(i) ABA = A

(ii) BAB = B

(iii) (AB)t = AB

(iv) (BA)t = BA.

The Moore-Penrose inverse ofA is denoted byA+.
Moore-Penrose inverse exists and is unique. Further-
more, the Moore-Penrose inverse of Moore-Penrose in-
verse is the original matrix, that is,(A+)+ = A (see
[11]). In Section 3 we will show that Moore-Penrose
inverse of any positive semidefinite matrix is also pos-
itive semidefinite.

We now present the semidefinite linear complemen-
tarity problem (SDLCP). LetSn denote the class of
real symmetric matrices of ordern. For any matrixX ,
not necessarily symmetric, we use the notationX ≻
0 (X � 0) to indicate thatX is positive definite (pos-
itive semidefinite). Given any linear transformationL
from Sn to Sn and aQ ∈ Sn, the SDLCP is to find an
X ∈ Sn such that

Y = L(X) +Q � 0, X � 0, andXY = 0. (2)

We shall denote this problem bySDLCP (Q,L).
In the above equation,X is called a solution of
SDLCP (Q,L). In connection with the SDLCP we
need the following preliminaries.

Let A, B ∈ Rn×n be any arbitrary matrices. Then
(1) trace ofA is defined as the sum of its diagonal

entries and is denoted bytr(A);
(2) tr(AB) = tr(BA);
(3) A is said to be orthogonal ifAAt = AtA = I, the

identity matrix;
(4) if A is symmetric matrix, then there exists an or-

thogonal matrixP such thatPAP t is a diagonal
matrix with real entries;

(5) if A andB commute (that is,AB=BA), then there
exists an orthogonal matrixP such thatPAP t and
PBP t are real diagonal matrices;

(6) if A is positive definite (positive semidefinite), then
tr(A) > 0, (tr(A) ≥ 0);

(7) if A is symmetric positive semidefinite, then
tr(A) = 0 if, and only if,A = 0;

(8) if A andB are symmetric positive semidefinite,
thentr(AB) = 0 if, and only if,AB = BA = 0.

3. LCP And Positive Semidefinite Matrices

In this section we introduce the concept of general-
ized PPTs and show that if a matrix is positive semidef-
inite, then so are its generalized PPTs. In addition, we
present some characterizations of positive semidefinite
matrices, not necessarily symmetric, and study other
properties of these matrices.

In the previous section we defined the PPTs of a given
matrix. In order to define the PPT of a matrix with re-
spect to a principal submatrix, the principal submatrix
must be nonsingular. Given a LCP, we can transform
this problem into another LCP in which the data ma-
trix is the PPT of the original matrix. The transformed
LCP is equivalent to the original one in the sense that
there is a one to one correspondence between the so-
lutions of the new and original LCPs. However, in the
case of singular principal submatrices, the concept of
PPTs does not exist. It may be worth defining the PPTs
with reference to the singular principal submatrices us-
ing their generalized inverses. Here we use the Moore-
Penrose inverse to define the PPTs as this leads us to
some kind of equivalence of the LCPs under some spe-
cial conditions (see Theorem 3). Let us first define the
generalized PPT of a matrix with respect to any of its
singular principal submatrices.
Definition 2. Let A ∈ Rn×n and letAαα be a prin-
cipal submatrix ofA, not necessarily nonsingular. The
generalized PPT (GPPT) ofA with respect toAαα is
defined by

Mαα = (Aαα)
+,

Mαᾱ = −MααAαᾱ,

Mᾱα = AᾱαMαα,

Mᾱᾱ = Aᾱᾱ −MᾱαAαᾱ.

Since(Aαα)
+ is unique, the GPPT is uniquely de-

fined, and whenAαα is nonsingular GPPT coincides
with the usual PPT.

Earlier it was mentioned that PPT of PPT of a matrix
with respect to the same index set is the matrix itself.
But this is not the case with the GPPTs. The following
theorem presents the conditions under which the GPPT
of GPPT of matrix with respect to the same index set
is the original matrix.
Theorem 3. Let A ∈ Rn×n and letM be its GPPT
with respect to some index setα. Let B be the GPPT
of M with respect toα. The necessary and sufficient
conditions forB to be equal toA are given by
(i) column span ofAαᾱ is contained in the column span

of Aαα, and
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(ii) row span ofAᾱα is contained in the row span of
Aαα.

Proof. We have

M =

[

A+
αα −A+

ααAαᾱ

AᾱαA
+
αα Aᾱᾱ −AᾱαA

+
ααAαᾱ

]

.

Using the fact(A+
αα)

+ = Aαα it may be verified that

B =

[

Aαα AααA
+
ααAαᾱ

AᾱαA
+
ααAαα Aᾱᾱ

]

.

It is easy to check that forAααA
+
ααAαᾱ to be equal to

Aαᾱ a necessary and sufficient condition is thatAαᾱ

is contained in the column span ofAαα. Similarly, the
necessary and sufficient condition forAᾱαA

+
ααAαα to

be equal toAᾱα is that the row span ofAᾱα is contained
in the row span ofAαα. ✷

Corollary 4. Let A ∈ Rn×n and letM be its GPPT
with respect to some index setα. Let B be the GPPT
of M and letC be the GPPT ofB with respect toα.
ThenC = M .
Proof. ConsiderB given in the proof of the theorem.
It is clear thatAααA

+
ααAαᾱ is contained in the column

span ofAαα andAᾱαA
+
ααAαα is contained in the row

span ofAαα. It follows thatC = M . ✷

The conditions(i) and (ii) of Theorem 3 auto-
matically hold good whenA is a symmetric positive
semidefinite matrix. This amounts to Albert’s theorem
[1] (also see Theorem 8.8.3, pp.321 of [11]).

We shall now look at some results on positive
semidefinite matrices. The following result is needed
in the sequel.
Theorem 5.If A is positive semidefinite, then it is range
symmetric, that is, its column span and the row span
are the same.
Proof. Suffices to show that for allx ∈ Rn, Ax = 0
impliesAtx = 0. Let x ∈ Rn be such thatAx = 0.
Then

xt(A+At)x = 0 (3)

SinceA is positive semidefinite,A + At is symmetric
positive semidefinite and henceA + At = CtC for
some matrixC. From (3) it follows thatxtCtCx = 0
which impliesCx = 0. This in turn impliesCtCx = 0
or (A+At)x = 0. Thus, we haveAtx = −Ax = 0. ✷

Our next result is a characterization of positive
semidefinite matrices.
Theorem 6. Let A ∈ Rn×n with rank r. ThenA is
positive semidefinite if, and only if, it can be expressed
as A = BTBt whereB is a n × r semiorthogonal

matrix (that is,BtB = I) andT is ar× r nonsingular
positive semidefinite matrix.

Proof. ‘If part’ is obvious. We shall prove the only if
part. Let r be the rank ofA and letB be ann × r

matrix whose columns form an orthonormal basis (i.e.,
BtB = I) for the column span ofA. This means there
exists anr × n matrix C such thatA = BC. From
Theorem 5, there also exists anr × n matrix D such
that At = BD. Hence, we haveBC = DtBt. Since
B is of full column rank, we can writeC = GDtBt

for somer × n matrix G. Let T = GDt. ThenA =
BC = BTBt. Note thatr = rank(A) ≤ rank(T ). Since
T is an r × r matrix, it must be nonsingular. Thus,
A = BTBt whereBtB = I andT is nonsingular. To
complete the proof, we need to show thatT is positive
semidefinite. But this immediately follows from the fact
thatT = BtAB and the hypothesis thatA is positive
semidefinite. ✷

Earlier we have mentioned that PPTs of positive
semidefinite matrices are also positive semidefinite.
We shall prove that this is true even with the GPPTs.
First, we shall prove that the Moore-Penrose inverse of
a positive semidefinite matrix is positive semidefinite.

Theorem 7.Let A ∈ Rn×n. The following hold:

(i) if A is positive semidefinite with rankr, then there
exist ann × r matrix B and anr × r nonsingular
matrixT such thatBtB = I, A = BTBt andA+ =
BT−1Bt,

(ii) A is positive semidefinite if, and only if,A+ is so,
(iii) if A is positive semidefinite, thenA andA+ com-

mute, that isAA+ = A+A.

Proof.
(i): The existence ofB and T satisfying the condi-
tions was already established in Theorem 6. It can be
checked thatBT−1Bt is indeed equal toA+. Thus,
A+ = BT−1Bt.

(ii): Follows from the fact thatT is positive semidefi-
nite if, and only if,T−1 is so.

(iii): This is a direct consequence of(i) and(ii). ✷

We will now show that GPPT of any positive semidef-
inite matrix is also positive semidefinite.

Theorem 8.Let A ∈ Rn×n be a positive semidefinite
matrix and letα be an arbitrary index set. Then the
GPPTM of A with respect toAαα is positive semidef-
inite.

Proof. Let z be an arbitrary column vector inRn and
let w = Az. Premultiplying both sides ofw = Az with
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[

−A+
αα 0

−AᾱαA
+
αα Iᾱᾱ

]

and rearranging the terms it can be

shown that
[

0 A+
ααAαα

I −Aᾱα(I −A+
ααAαα)

] [

wᾱ

zα

]

= M

[

wα

zᾱ

]

(4)

Now premultiplying both sides of (4) with

[

wα

zᾱ

]t

and

simplifying we get

(wt

α, z
t

ᾱ)M

[

wα

zᾱ

]

= ztᾱwᾱ + wt

αA
+
ααAααzα

−ztᾱAᾱα(I −A+
ααAαα)zα. (5)

Now,

wt

αA
+
ααAααzα = (ztαA

t

αα + ztᾱA
t

αᾱ)A
+
ααAααzα

= ztαA
t

ααA
+
ααAααzα

+ztᾱA
t

αᾱA
+
ααAααzα

= ztαA
t

ααzα + ztᾱA
t

αᾱA
+
ααAααzα

= ztαAααzα + ztᾱA
t

αᾱA
+
ααAααzα

Notice that the last equation holds becauseAt
ααA

+
ααAαα =

At
αα as row span and column span ofAαα are the same

asAαα is positive semidefinite.
Now right hand side of (5) can be written as

ztᾱwᾱ + ztαwα − ztᾱA
t

αᾱzα + ztᾱA
t

αᾱA
+
ααAααzα

−ztᾱAᾱα(I −A+
ααAαα)zα

= ztAz − ztᾱ(A
t

αᾱ +Aᾱα)(I −A+
ααAαα)zα

= ztAz ≥ 0 (6)

(Notice that sinceA is positive semidefinite,At
αᾱ +

Aᾱα = D(Aαα + At
αα) = RAαα for someD andR

as rank ofAαα is equal to that ofAt
αα).

Thus
[

wα

zᾱ

]t

M

[

wα

zᾱ

]

= ztAz ∀z ∈ Rn

andwα = Aααzα +Aαᾱzᾱ ≥ 0. (7)

Now, let u be an arbitrary vector inRn. Since
[Aαα : (I − A+

ααAαα)] is of full row rank
(this is becauseAt

αα(I − A+
ααAαα) = 0 and

rank (Aαα) + rank(I − A+
ααAαα )=|α|), there exist a

v, g ∈ R|α| such that

uα −Aαᾱuᾱ = Aααv + (I −A+
ααAαα)g. (8)

Takingzα = v, zᾱ = uᾱ and rewriting (8), we get

uα = Aααzα + Aαᾱzᾱ + (I −A+
ααAαα)g

= wα + (I −A+
ααAαα)g. (9)

Now,

utMu=

[

uα

zᾱ

]t

M

[

uα

zᾱ

]

=

[

wα + (I −A+
ααAαα)g

zᾱ

]t

×

M

[

wα + (I −A+
ααAαα)g

zᾱ

]

=

[

wα

zᾱ

]t

M

[

wα

zᾱ

]

≥ 0 from (7).

Asu is any arbitrary vector, it follows thatM is positive
semidefinite. ✷

A number of papers have been written on Schur com-
plements and their applications, particularly in the con-
text of positive semidefinite matrices. For statistical ap-
plications and bibliography on Schur complements and
its generalizations see [10, 14].
Corollary 9. Let A ∈ Rn×n be positive semidefinite
and letα be an arbitrary index set. The generalized
Schur complement ofA with respect toAαα is positive
semidefinite.

4. SDLCP and Positive Definite Matrices

In this section we study some properties of SDLCP
with respect to a special linear mapL(X) = AXAt.
Using this we present a characterization of positive def-
inite matrices. We show that solving SDLCP with this
special linear map in whichA is positive definite is re-
duced to solving a quadratic equation in matrices with
a constraint. Under some special cases the quadratic
equation reduces to linear equation.

Let L : Sn → Sn be a linear map and letQ ∈
Sn. Consider the problemSDLCP (Q,L). Gowda and
Song [6] introduced the following concepts in SDLCP
which are along the lines of similar concepts in LCP.
Definition 10. The map L is said to beR0 if
SDLCP (0, L) has a unique solution;L is said to
be a Q-map if the SDLCP (Q,L) has a solution
for everyQ ∈ Sn; L is said to have GUS property
if SDLCP (Q,L) has a unique solution for every
Q ∈ Sn.
Definition 11. L is said to haveP -property if the fol-
lowing implication holds for everyX ∈ Sn:

X andL(X) commute,XL(X) � 0 ⇒ X = 0.

L is said to haveP1-property if the following implica-
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tion holds for everyX ∈ Sn:

XL(X) � 0 ⇒ X = 0.

Notice thatP1-property impliesP -property. In the
sequel we need the following result which can be de-
duced as a special case from Karamardian’s result [7].
Theorem 12. If L ∈ R0 and SDLCP (Q,L) has a
unique solution for some positive definite matrixQ ∈
Sn, thenL is aQ-map.

LetA ∈ Rn×n. We shall now study the various prop-
erties of the linear transformationLA : Sn → Sn de-
fined by

LA(X) = AXAt, X ∈ Sn. (10)

Throughout this section we shall use the notationLA

for the linear transformation defined in (10) induced
by the matrixA. We shall call this transformation as
multiplicative transformation .

First we shall present two propositions which show
how SDLCPs withLA can be simplified.
Proposition 13. Let A ∈ Rn×n and consider the
SDLCP (Q,LA), Q ∈ Sn. This problem can be re-
duced to another equivalentSDLCP (D,LM ) where
D is a diagonal matrix andM = PAP t for some
orthogonal matrixP .
Proof. SinceQ is a real symmetric matrix, its eigen val-
ues are real and there exists an orthogonal matrixP such
thatD = PQP t is a diagonal matrix. By premultiply-
ing and post multiplying the equationY = AXAt +Q

with P andP t respectively, we get

PY P t = PAP tPXP tPAtP t + PQP t or

W = MZM t +D, (11)

whereM = PAP t, W = PY P t andZ = PXP t.
Clearly, WZ = ZW = 0 if, and only if, XY =
Y X = 0. Thus, theSDLCP (Q,AXAt) is equivalent
to SDLCP (D,MXM t) in which D is diagonal and
M = PAP t for some orthogonal matrixP . ✷

Proposition 14. Let A ∈ Sn and consider the
SDLCP (Q,LA), Q ∈ Sn. This problem can be re-
duced to an equivalentSDLCP (H,LM ) in whichM

is a real diagonal matrix.
Proof. Follows from the fact that, sinceA is symmetric,
there exists an orthogonal matrixP such thatPAP t is
diagonal. ✷

The following proposition states that ifLA hasP -
property orQ-property, thenAmust necessarily be non-
singular.

Proposition 15.LetA ∈ Rn×n and considerLA. If LA

has eitherP -property orQ-property, thenA is nonsin-
gular.
Proof. AssumeLA hasP -property. SupposeA is sin-
gular. Then there is an nonzerox ∈ Rn such that
Ax = 0. Let X = xxt. ThenX 6= 0 andAX = 0.
HenceXLA(X) = LA(X)X = 0. This violates the
P -property. It follows thatA is nonsingular.

Next assume thatLA hasQ-property. LetX be a
solution of SDLCP (−I, LA). Then it follows that
AXAt = Y + I ≻ 0 for someY � 0. This in turn
impliesAXAt ≻ 0 and henceA is nonsingular. ✷

Gowda and Song [6] presented a number of equiva-
lent conditions with respect to the Lyapunov transfor-
mation given byL(X) = AX +XAt. In the following
theorem we present a number of equivalent conditions
with respect toLA. Earlier it was mentioned that LCP
provides a complete characterization ofP -matrices. It
says that a matrixA is aP -matrix if, and only if, LCP
(q, A) has a unique solution for everyq. The theorem
below presents a similar characterization of positive def-
inite matrices. It says that a matrixA is positive definite
if, and only if,SDLCP (Q, LA) has a unique solution
for everyQ. We need the following lemma in the sequel.
Lemma 16.SupposeA is a symmetric positive semidef-
inite matrix. Then for any positive semidefinite matrix
B the tr(BA) is nonnegative.
Proof. Since A is symmetric positive semidefinite,
there exists a matrixU such thatA = UU t. We have
tr(BA) = tr(BUU t) = tr(U tBU). SinceB is posi-
tive semidefinite, so isU tBU and hencetr(U tBU) is
nonnegative. Thus,tr(BA) is nonnegative. ✷

Theorem 17.LetA ∈ Rn×n. The following conditions
are equivalent:
(i) A is either positive definite or negative definite.
(ii) For everyQ ∈ Sn, SDLCP (Q, LA) has at most

one solution.
(iii) LA has GUS property.
(iv) LA hasP -property.
(v) LA is R0.
(vi) XAX = 0 impliesX = 0.
Proof.
To show that(i) implies (ii) we may assume that
A is positive definite. We can make this assumption
without loss of generality asLA(X) = L−A(X) ∀X .
Let Q ∈ Sn. SupposeX andZ are two solutions of
SDLCP (Q, LA). We will show thatX = Z. We have

Y = AXAt +Q, X � 0, Y � 0, XY = Y X = 0,
(12)
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and

W = AZAt +Q, Z � 0, W � 0, WZ = ZW = 0.
(13)

Subtracting (12) from (13), we get

W − Y = A(Z −X)At (14)

Postmultiplying (14) with(Z −X) and(Z +X) sep-
arately and using (12) and (13) we get

−WX − Y Z = A(Z −X)At(Z −X) (15)

and

WX − Y Z = A(Z −X)At(Z +X). (16)

Adding (15) and (16) we get

−Y Z = A(Z −X)AtZ. (17)

Premultiplying (17) with(Z −X) and usingXY = 0
we get

−ZY Z = (Z −X)A(Z −X)AtZ. (18)

Postmultiplying (18) withA, we get

−ZY ZA = (Z −X)A(Z −X)AtZA. (19)

Observe thatZY Z andAtZA are symmetric positive
semidefinite matrices, andA and(Z−X)A(Z−X) are
positive and positive semidefinite matrices respectively.
Applying Lemma 16, we find thattr(−ZY ZA) ≤ 0
and tr((Z − X)A(Z − X)AtZA) ≥ 0. Hence
tr(ZY ZA) = 0. This in turn impliestr(ZY Z(A +
At)) = 0 and henceZY Z(A + At) = 0. This implies
ZY Z = 0 asA, and hence(A + At), is positive defi-
nite. AsY is symmetric positive semidefinite, it follows
that Y Z = 0. Similarly, we can show thatWX = 0.
From (15) we conclude thatA(Z−X)At(Z−X) = 0.
As A is positive definite it follows thatZ −X = 0 and
henceZ = X. Thus,SDLCP (Q, LA) has at most
one solution.

Since0 is a solution of bothSDLCP (0, LA) and
SDLCP (I, LA), from Theorem 12 it follows that(ii)
implies (iii).

The implication of(iv) from (iii) holds for any gen-
eral linear map (see [6]). Implication of(v) from (iv)
is also obvious.

Next, assume, if possible, that(vi) does not hold.
Then there must exist a nonzero vectorx ∈ Rn such
thatxtAx = 0. LetX = xxt. ClearlyX � 0, AXAt �

0 and XAXAt = 0. Note thatX 6= 0 as x 6= 0.
Thus X is a nontrivial solution ofSDLCP (0, LA).
This contradicts the hypothesis thatLA isR0. It follows
that (v) implies (vi).

To complete the proof of the theorem we will show
that(vi) implies(i). Assume that(vi) holds and thatA
is not negative definite. We will show thatA is positive
definite. Assume thatA is not positive definite. AsA is
not negative definite, there must exist vectorsx andy
in Rn such thatxtAx < 0 andytAy > 0. This in turn
implies that a convex combinationz of x andy satisfies
ztAz = 0. Clearly,z 6= 0. LettingX = zzt, we obtain
XAX = 0 andX 6= 0. It follows that(vi) implies(i).
✷

WhenA is a positive definite matrix, the rank of any
solutionX of SDLCP (Q, LA) must be equal to the
number of negative eigen values ofQ. This is elaborated
in our next result.
Theorem 18. Let A ∈ Rn×n be a positive definite
matrix and letX be a solution ofSDLCP (Q, LA).
Then rank ofX is equal to the number of negative eigen
values ofQ. Furthermore, the rank ofY is equal to
the number of positive eigen values ofQ whereY =
AXAt +Q.
Proof. In view of Proposition 13, we may assume, with-

out loss of generality, thatQ =





∆1 0 0
0 −∆2 0
0 0 0



 where

∆1 and∆2 are positive diagonal matrices. Assume that
∆2 is an s × s matrix. Note thats is the number of
negative eigen values ofQ. Let X ∈ Sn be a solu-
tion of SDLCP (Q,LA). Let Y = AXAt + Q. As-
sume that rank ofX is r. We can find ann × r ma-
trix U such thatX = UU t. SinceXYX = 0 and
sinceU is ann× r matrix with rankr, it follows that
U tAUU tAtU + U tQU = 0. SinceA is positive def-
inite andU is of rankr, it follows thatU tAUU tAtU

is positive definite and hence−U tQU is positive defi-
nite. This impliesU t

2∆2U2 − U t
1∆1U1 is positive def-

inite and henceU t
2∆2U2 is positive definite. SinceU2

is ans × r matrix, it follows thats ≥ r. On the other
hand, to see thats ≤ r, let A2 be the submatrix of
A such thatA2UU tAt

2 is the principal submatrix of
Y = AUU tAt +Q corresponding to−∆2 of Q. Since
Y is positive semidefinite, so is its principal submatrix
A2UU tAt

2 −∆2. As ∆2 is positive diagonal matrix, it
follows thatA2UU tAt

2 is positive definite. This in turn
implies rank ofA2UU tAt

2(= s) is less than or equal to
rank ofUU t(= r). Therefore, rank ofX is equal to the
number of negative eigen values ofQ.
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Let T = −A−1Q(A−1)t. Observe thatX is a solu-
tion of SDLCP (Q,LA) if, and only if,Y is a solution
of SDLCP (T, LA−1). Note that the number of nega-
tive eigen values ofT is equal to the number of positive
eigen values ofQ. From what we have shown above, it
follows that rank ofY is equal to the number of positive
eigen values ofQ. ✷

In the rest of this paper we shall present some simpli-
fication procedure for solving SDLCP withLA where
A is positive definite. When the order of the matrixA
is 2 × 2, we have a closed form solution, and in the
general case we reduce the problem to that of solving
some quadratic equation. We need the following alge-
braic facts in the sequel.
Fact 1. If A is positive definite andU is a full column

rank matrix such thatAU is defined, thenU tAU is
positive definite.

Fact 2. If B is positive semidefinite andA−B is pos-
itive definite, thenA is positive definite.

Fact 3. Let B andC be matrices of orderm× n such
thatBtB = CtC. ThenB = PC for some orthogo-
nal matrixP .

ConsiderSDLCP (Q, LA). In view of Proposition 13,
we can assume, without loss of generality, thatQ =




∆1 0 0
0 −∆2 0
0 0 0



 where∆1 and∆2 are positive diagonal

matrices. Letk be the order of∆1 andr be the order
of ∆2. We have already noted that rank ofX is r. Let
X = UU t be rank factorization ofX for somen × r

matrixU of rankr. PartitionU as(U t
1, U

t
2, U

t
3)

t where
U2 is of orderr×r. SinceA is positive definite andU is
of full column rank,U tAU is positive definite (Fact 1)
andU tAUU tAtU is symmetric positive definite. Now,

U tAUU tAtU = U tAXAtU

=−U tQU

= U t

2∆2U2 − U t

1∆1U1 is positive definite.

From Fact 2 it follows thatU2 is nonsingular and
hence U1 = TU2 for some T of order k × r.
Thus U tAUU tAtU = U t

2(∆2 − T t∆1T )U2 where
∆2 − T t∆1T is symmetric positive definite.
So, from Fact 3, it follows thatU tAtU = P (∆2 −

T t∆1T )
1

2U2 for some orthogonal matrixP .
SinceXAXAt +XQ = 0, we have

U tAUU tAtU = −U tQ or

AUU tAtU = −QU =





−∆1U1

∆2U2

0



 .

Hence

AU =





−∆1U1

∆2U2

0



 (U tAtU)−1. (20)

PartitioningA =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 whereA11 andA22

are of ordersk×k andr×r respectively, we can deduce
the following from (20):

U3 = −A−1

33 (A32 +A31T )U2, (21)

U2 = −(M21T +M22)
−1∆2(∆2 − T t∆1T )

− 1

2P t,

(22)
and

M11T +M13 + T∆−1

2 M21T + T∆−1

2 M22 = 0, (23)

whereM is the PPT ofA with respect toA33.
Once (23) is solved forT subject to the condition that

∆2 − T t∆1T is positive definite, then we can directly
computeX without actually computingP . We shall
now examine some special cases in whichQ is assumed
to be nonsingular.

Case 1.Q =

[

∆1 0
0 −∆2

]

andA12 = 0.

In this case we can deduce thatU t
1A11U1 =

−U t
1∆1U1(U

tAtU)−1 and using trace arguments, we
can deduce thatU1 = 0. Further,U2U

t
2 = A−1

22 ∆2A
t
22.

Therefore,X =

[

0 0
0 A−1

22 ∆2A
t
22

]

is a solution in this

case.

Case 2.Q =

[

∆1 0
0 −∆2

]

andA21 = 0.

In this case, we can show that

U2 = A−1

22 ∆2(∆2 − T t∆1T )
− 1

2P t,

whereP is an orthogonal matrix andT is the unique
solution of

∆−1

1
A11T + T∆−1

2
A22 = −∆−1

1
A12.

In this case, we can computeX usingU1 = TU2 (and
without actually computingP ).

WhenA is of order2 × 2 andQ =

[

1 0
0 −1

]

, the

solution toSDLCP (Q, LA) is given by

X =
(1− θ2)

a11θ2 + a12a21θ + a22

[

θ2 θ

θ 1

]

,
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where

θ =
−(a11 + a22) +

√

(a11 + a22)2 − 4a12a21
2a21

.
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