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Abstract

The class of positive definite and positive semidefiniteiogstis one of the most frequently encountered matrix ctasse
both in theory and practice. In statistics, these matricepear mostly with symmetry. However, in complementarity
problems generally symmetry in not necessarily an accogipgrfeature. Linear complementarity problems defined by
positive semidefinite matrices have some interesting ptiegesuch as the solution sets are convex and can be pratesse
by Lemke’s algorithm as well as Graves’ principal pivotinigaithm. It is known that the principal pivotal transforms
(PPTs) (defined in the context of linear complementaritybfam) of positive semidefinite matrices are all positive
semidefinite. In this article, we introduce the concept afegalized PPTs and show that the generalized PPTs of a
positive semidefinite matrix are also positive semidefid@iee of the important characterizations Bfmatrices (that is,
the matrices with all principle minors positive) is that therresponding linear complementarity problems have uaiqu
solutions. In this article, we introduce a linear transfation and characterize positive definite matrices as therices
with corresponding semidefinite linear complementaritybyem having unique solutions. Furthermore, we presentesom
simplification procedure in solving a particular type of sdefinite linear complementarity problems involving pivsit
definite matrices.

Key words: Complementarity problems, Positive semidefinite matripemcipal pivotal transforms.

1. Introduction or semidefinite matrices is not an accompanying fea-
ture always. In linear complementarity problem (LCP)
A matrix A € R™ " is said to be positive definite positive definiteness and positive semidefiniteness of
(positive semidefinite) if the quadratic foraf Az is matrices is defined without symmetry. Many charac-
positive (nonnegative) for every nonzeros R”. The terizations of symmetric positive definite and semidefi-
class of positive definite matrices is one of the most fre- hite matrices are known. However, no direct results are
quently encountered matrix classes both in theory and known to be available on the characterization of pos-
practice. The variance-covariance matrices encounteredtive definite and semidefinite matrices without going
in Statistics are mostlgymmetricpositive definite and ~ INto Symmetrization.
seldom positive semidefinite. However, unlike in many

. N . . A number of matrix classes have been evolved while
statistical applications, symmetry of the positive dedinit

studying LCP. The class aP-matrices (that is, real
Email: P. Bhimashankaram [bhimasankaram pochir@isb.edu], Square matrices with all principal minors positive) is
T Parthasarathy [pachal4@yahoo.com], A. L. N. characterized in terms of LCP. This characterization

Murthy [simhaaln@rediffmail.com], G.S.R. Murthy says that a matrixl is a P-matrix if, and only if, LCP
[murthygsr@gmail.com)]. (g, A) has a unique solution for every [13]. In the
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context of LCPs with positive semidefinite matrices, it liminaries. In Section 3 we present the results related to
is known that solution sets of such problems are con- LCP and some properties of positive semidefinite ma-
vex; and the problems can be processed by Lemke’'strices. In Section 4 we present the results on positive
algorithm as well as Graves’ principal pivoting algo- definite matrices and the SDLCP with respect to the
rithm (see [2]). Furthermore, the principal pivotal trans- linear transformatiom X A*.

forms (PPTs) of a matrix defined in LCP are positive

semidefinite provided the matrix is so. PPTs are de-
fined only with respect to the nonsingular principal sub-

matrices. In this article we introduce the concept of

generalized PPTs using the Moore-Penrose inverse [11
12] and show that even the generalized PPTs of posi-
tive semidefinite matrices are positive semidefinite. As

2. Notation and Preliminaries

Given a matrixA € R"™*™ andq € R" the Lin-
'ear Complementarity Problem (LCR), A) is to find a
vectorz € R" such that

a corollary to this result we deduce that the generalized Az+q>0, z>0and 2(Az+4q)=0. (1)
Schur complement of a positive semidefinite matrix is
also positive semidefinite. The reader may refer [2, 9] for a detailed account of LCP

An interesting result of this article is that we obtain and its applications. We shall use the notati(g, A)
a characterization of positive definite matrices that is t0 denote the set of solutions {g, A). A number of
similar to the one folP-matrices. This characterization ~Mmatrix classes have been evolved while studying LCP.
says that a matrix4 is positive definite if, and only ~ We shallrecall the definitions of some classes relevant to
if, the solution to semidefinite linear complementarity this article. The class a@-matrices consists of all those
problemSDLCP(Q, AX A') has unique solution for ~ MmatricesA for which S(q, A) is nonempty for every.
everyQ. The semidefinite linear Comp|ementarity prob- Unless stated otherwise all the matrices in this paper are
lem (SDLCP) was introduced by Kojima, Shindoh and to be treated as real square matrices and all vectors as
Hara as a unified model of various problems. LCP is a real vectors. A matrix4 is said to be positive definite
special case of SDLCP and many system and control (Positive semidefinite) if the quadratic foraf Az is
theory problems as well as combinatorial optimization Positive (nonnegative) for every nonzero vectorof
problems can be formulated as SDLCP (see [2, 4, 3, 8]). @ppropriate order. The class B+matrices includes all
Gowda and Song [6] extended a number of LCP matrices whose principal minors are _aII posmve. It is a
concepts such aRo-property,Q-property, P-property well known fa_\ct Fhat th_e positive def|n|t_e_ matrlce_zs are in
and so on to SDLCP and studied their properties. In P an_d the principal minors of any positive semidefinite
particular, they consider the Lyaponov transformation Matrix are all nonnegative. _
LA(X) = AX + X A* and show that for this transfor- The principal pivotal t_ransform. (P.PT) of any r_natrlx
mation, theP-property and the-property are equiv- AWIth respect to anonsmgL_lIar principal submattix,
alent to A being positive stable (that is, the real parts Of 4 is defined as the matrid/ where
of eigen values ofd are positive). Later Gowda and A7, = (Aaa) ",
Parthasgrathy [5] gave a char(_’;\cterlzatlon of posmve sta- Mg = —Mon Ana,
ble matrices and deduced Stein’s theorem using comple—M? A M
mentarity formulations. In this article we consider the ~~*¢ qaTmaw
linear transformatiorl. 4 (X) = AX A* and show that Maa = Asa — MaaAaa-
positive definiteness ol is equivalent to several prop- Here« stands for an index set andfor its comple-
erties of the SDLCP with respect to this linear transfor- ment. It may be verified that the PPT bf with respect
mation. In this context we also present some related re-to « is A itself. For the notation see [2]. PPTs play an
sults pertaining to the SDLCP with the proposed trans- important role in LCP and have very interesting prop-
formation. In addition, we present a closed form solu- erties. Many properties are closed under PPTs. For ex-
tion to the SDLCP with respect to the transformation ample, if A is a P-matrix, then all its PPTs are also
AX A" where A is any2 x 2 positive definite matrix.  P-matrices. This result holds good for positive definite,
For the general case on the order4fwe provide a  positive semidefinite an@-matrices as well. For more
simplification procedure. elaborate discussion and results on PPTs refer to [2, 9].
The organization of this paper is as follows. In Sec- It must be noted that PPTs are defined only with respect
tion 2 we introduce the notation and the necessary pre-to the nonsingular principal submatrices of the given
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matrix. In this article we define PPTs even with respect
to any singular principal submatrix using its Moore-
Penrose generalized inverse which is defined as follows.
Definition 1. A matrix B is called the Moore-Penrose
inverse of a matrixA provided the following four con-
ditions are satisfied:

(i) ABA = A
(ii) BAB = B
(iii) (AB)" = AB
(iv) (BA)' = BA.

The Moore-Penrose inverse dfis denoted byA™.
Moore-Penrose inverse exists and is unique. Further-
more, the Moore-Penrose inverse of Moore-Penrose in-
verse is the original matrix, that i$AT)*™ = A (see
[11]). In Section 3 we will show that Moore-Penrose
inverse of any positive semidefinite matrix is also pos-
itive semidefinite.

We now present the semidefinite linear complemen-

tarity problem (SDLCP). LetS™ denote the class of
real symmetric matrices of order For any matrixX,
not necessarily symmetric, we use the notation>-
0 (X = 0) to indicate thatX is positive definite (pos-
itive semidefinite). Given any linear transformatién
from S™ to S™ and aQ € S, the SDLCP is to find an
X € 8™ such that

Y=L(X)+Q=0, X=0,andXY =0. (2)

We shall denote this problem bgDLCP(Q,L).
In the above equationX is called a solution of
SDLCP(Q,L). In connection with the SDLCP we
need the following preliminaries.

Let A, B € R™™" be any arbitrary matrices. Then

(1) trace ofA is defined as the sum of its diagonal
entries and is denoted kiy(A);

(2) tr(AB) = tr(BA);

(3) Ais said to be orthogonal il A* = A*A = I, the
identity matrix;

(4) if A is symmetric matrix, then there exists an or-
thogonal matrixP such thatP AP? is a diagonal
matrix with real entries;

(5) if AandB commute (thatisAB=BA), then there
exists an orthogonal matrik such that? AP* and
PBP? are real diagonal matrices;

(6) if Ais positive definite (positive semidefinite), then
tr(A) >0, (tr(A) > 0);

(7) if A is symmetric positive semidefinite, then
tr(A) = 0if, and only if, A = 0;

(8) if A and B are symmetric positive semidefinite,
thentr(AB) = 0 if, and only if, AB = BA = 0.
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3. LCP And Positive Semidefinite Matrices

In this section we introduce the concept of general-
ized PPTs and show that if a matrix is positive semidef-
inite, then so are its generalized PPTs. In addition, we
present some characterizations of positive semidefinite
matrices, not necessarily symmetric, and study other
properties of these matrices.

In the previous section we defined the PPTs of a given
matrix. In order to define the PPT of a matrix with re-
spect to a principal submatrix, the principal submatrix
must be nonsingular. Given a LCP, we can transform
this problem into another LCP in which the data ma-
trix is the PPT of the original matrix. The transformed
LCP is equivalent to the original one in the sense that
there is a one to one correspondence between the so-
lutions of the new and original LCPs. However, in the
case of singular principal submatrices, the concept of
PPTs does not exist. It may be worth defining the PPTs
with reference to the singular principal submatrices us-
ing their generalized inverses. Here we use the Moore-
Penrose inverse to define the PPTs as this leads us to
some kind of equivalence of the LCPs under some spe-
cial conditions (see Theorem 3). Let us first define the
generalized PPT of a matrix with respect to any of its
singular principal submatrices.

Definition 2. Let A € R™*™ and letA,, be a prin-
cipal submatrix of4, not necessarily nonsingular. The
generalized PPT (GPPT) of with respect toA,, is
defined by

Moo = (Aaa)Jra

Muosg = —MyoAaa,

Maoa = AgaMaq,

Maa = Aaa — MaaAaa-

Since (Ano) " is unique, the GPPT is uniquely de-
fined, and whem4,,, is nonsingular GPPT coincides
with the usual PPT.

Earlier it was mentioned that PPT of PPT of a matrix
with respect to the same index set is the matrix itself.
But this is not the case with the GPPTs. The following
theorem presents the conditions under which the GPPT
of GPPT of matrix with respect to the same index set
is the original matrix.

Theorem 3.Let A € R"*"™ and letM be its GPPT

with respect to some index set Let B be the GPPT

of M with respect ton. The necessary and sufficient

conditions forB to be equal tad are given by

(?) columnspan ofd,; is contained in the column span
of Ay, and
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(i7) row span ofAg, is contained in the row span of
Ana-

Proof. We have
Using the fact( At )™ = A, it may be verified that

|

It is easy to check that fad ., AL, A4 to be equal to
Ana a necessary and sufficient condition is tht;
is contained in the column span df,,. Similarly, the
necessary and sufficient condition fdg, AT A, to
be equal tod 5, is that the row span ol 5, is contained
in the row span ofd,,,. O
Corollary 4. Let A € R"*™ and letM be its GPPT
with respect to some index set Let B be the GPPT
of M and letC be the GPPT ofB with respect too.
ThenC = M.

Proof. ConsiderB given in the proof of the theorem.
Itis clear thatd,, AT A, is contained in the column
span ofA,, and Aszn AL, Ane is contained in the row
span ofA,,. It follows thatC' = M. O

The conditions(i) and (i¢) of Theorem 3 auto-
matically hold good whem is a symmetric positive
semidefinite matrix. This amounts to Albert’s theorem
[1] (also see Theorem 8.8.3, pp.321 of [11]).

We shall now look at some results on positive
semidefinite matrices. The following result is needed
in the sequel.

Theorem 5.If A is positive semidefinite, then itis range
symmetric, that is, its column span and the row span
are the same.

Proof. Suffices to show that for all € R", Az =0
implies Az = 0. Letz € R" be such thatdz = 0.
Then

Al—a _Al_oc AO@

M= {AmAza Ana — Aun At Ava

A(YOl

Aaa Al_a Aa&
A&a A;’y_a Aaa '

A&&

3)

Since A is positive semidefinited + A! is symmetric

positive semidefinite and hencé + At = C!C for

some matrixC. From (3) it follows thatr!C*Cz = 0

which impliesCz = 0. This in turn impliesC!Cz = 0

or (A+ A)z = 0. Thus, we havel’z = —Az = 0. O
Our next result is a characterization of positive

semidefinite matrices.

Theorem 6.Let A € R™ ™ with rankr. Then A is

positive semidefinite if, and only if, it can be expressed

as A = BTB! whereB is an x r semiorthogonal

' (A+ ANz =0
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matrix (that is,B!B = I) andT is ar x r nonsingular
positive semidefinite matrix.

Proof. ‘If part’ is obvious. We shall prove the only if
part. Letr be the rank ofA and letB be ann x r
matrix whose columns form an orthonormal basis (i.e.,
BtB = I) for the column span oft. This means there
exists anr x n matrix C' such thatA = BC. From
Theorem 5, there also exists anx n matrix D such
that A* = BD. Hence, we haveBC' = D!B?. Since
B is of full column rank, we can writ€ = GD!B*
for somer x n matrix G. Let T = GD*. ThenA =
BC = BT B!. Note thatr = rank(A) < rank(l"). Since

T is anr x r matrix, it must be nonsingular. Thus,
A = BT B! whereB!B = I andT is nonsingular. To
complete the proof, we need to show tfats positive
semidefinite. But this immediately follows from the fact
thatT = B'AB and the hypothesis that is positive
semidefinite. |

Earlier we have mentioned that PPTs of positive
semidefinite matrices are also positive semidefinite.
We shall prove that this is true even with the GPPTs.
First, we shall prove that the Moore-Penrose inverse of
a positive semidefinite matrix is positive semidefinite.

Theorem 7.Let A € R™*". The following hold:

(1) if Ais positive semidefinite with rank then there
exist ann x r matrix B and anr x r nonsingular
matrix T such thatB'B = I, A = BT B' andA" =
BT 'Bt,

(#4) Ais positive semidefinite if, and only ifA™ is so,

(#i) if A is positive semidefinite, thed and AT com-
mute, that isAAT = AT A.

Proof.

(i): The existence ofB and T satisfying the condi-

tions was already established in Theorem 6. It can be

checked thatBT~'B? is indeed equal tad*. Thus,

At = BT !B,

(ii): Follows from the fact thaf” is positive semidefi-
nite if, and only if, 7~ is so.

(#i7): This is a direct consequence @ and(i7). O
We will now show that GPPT of any positive semidef-

inite matrix is also positive semidefinite.

Theorem 8.Let A € R™" be a positive semidefinite

matrix and leta be an arbitrary index set. Then the

GPPTM of A with respect ta4,,, is positive semidef-

inite.

Proof. Let z be an arbitrary column vector iR"™ and

letw = Az. Premultiplying both sides af = Az with
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_At
[—A ﬁg{o‘ IO} and rearranging the terms it can be
shown thgtCY

0 AL Aga Wa | _ Wa
7ot [2] = [ 5] @

t
Now premultiplying both sides of (4) wit&ii Izuf‘ } and

(0%

simplifying we get

(wt,, zE)M [wa

[e3%

— it t A+
. ] = 2z Wa + Wo AL, Aca Za
(e}

—2t Ao (I — AL Ana)za. (B)

Now,
¢ t oAt toat
waA;raAaaza = (20400 T ZaAao?)A;raAaaza

=2t AL AT Ajaza

[e3% (676 (676

—i—zéAt AT Avaza

(676 ac

=2t Al s 4+ 2L AL AT Anaza

« oo (e} (6707 oo
= ziA,mza + zéAZ&AIaAaaza
Notice that the last equation holds becad§g A} Ano =
At as row span and column spanf,, are the same

as A, is positive semidefinite.
Now right hand side of (5) can be written as
t

ZgWa + nywa - zéAg&za + ZEAL&AIa
—2t Ao (I — AL Ana) 20
=2'Az — 2L (AL, + Asa) (I — AL Ave)2a

=2'A2>0

AOl(!Z(Y

(6)
(Notice that sinced is positive semidefinited? , +
Asa = D(Apa + AL,) = RA,, for someD and R
as rank ofA,, is equal to that ofd? ).
Thus

t
[wa} M [wa] — A2 V2 € R™

Za

(e

andw, = Apaza + Aasza > 0.

(7)
Now, let v be an arbitrary vector inR". Since
[Ana (I — At Ane)] is of full row rank
(this is becauseA! (I — A, Awe) = 0 and
rank (Aao) + rank( — At A.. )=|al), there exist a
v,g € Rl°l such that

Ug — Avaltia = Aaav + (I — AL Ana)g.

(8)
Takingz, = v, z5 = ug and rewriting (8), we get
U = Aaaza + AQ&Z& + (I - AIaAaa)g

=wa + [ — Al—aAaa)g- 9

P. Bhimashankaram et al. — Complementarity Problems AndiRo®efinite Matrices

Now,

t
sl I ]
Za Za
_|wa+ (= A;raAaa)g ! %
= .
u {wa + (- AgaAaa)g}
Za

Za [e%

t
— [w“} M [Z’O‘] > 0 from (7).

As u is any arbitrary vector, it follows that/ is positive
semidefinite. a

A number of papers have been written on Schur com-
plements and their applications, particularly in the con-
text of positive semidefinite matrices. For statistical ap-
plications and bibliography on Schur complements and
its generalizations see [10, 14].
Corollary 9. Let A € R"™" be positive semidefinite
and let« be an arbitrary index set. The generalized
Schur complement oft with respect tad,,, is positive
semidefinite.

4. SDLCP and Positive Definite Matrices

In this section we study some properties of SDLCP
with respect to a special linear mdgX) = AX A",
Using this we present a characterization of positive def-
inite matrices. We show that solving SDLCP with this
special linear map in whicH is positive definite is re-
duced to solving a quadratic equation in matrices with
a constraint. Under some special cases the quadratic
equation reduces to linear equation.

Let L : S" — S™ be a linear map and lep €
S". Consider the problel§DLCP(Q, L). Gowda and
Song [6] introduced the following concepts in SDLCP
which are along the lines of similar concepts in LCP.
Definition 10. The map L is said to be Ry if
SDLCP(0,L) has a unique solutionf. is said to
be a @-map if the SDLCP(Q,L) has a solution
for every@ € S§"; L is said to have GUS property
if SDLCP(Q,L) has a unique solution for every
Qe S
Definition 11. L is said to haveP-property if the fol-
lowing implication holds for everX € S™:

X andL(X) commute XL(X) < 0= X = 0.

L is said to haveP; -property if the following implica-
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tion holds for everyX € §™:
XL(X)=0=X=0.

Notice that Py -property impliesP-property. In the
sequel we need the following result which can be de-
duced as a special case from Karamardian'’s result [7].
Theorem 12.1f L € Ry and SDLCP(Q, L) has a
unigue solution for some positive definite mattjx e
S™, thenL is a@Q-map.

Let A € R™*™. We shall now study the various prop-
erties of the linear transformatiab, : S* — S™ de-
fined by

La(X)=AXA'" XeS8™ (10)
Throughout this section we shall use the notation
for the linear transformation defined in (10) induced
by the matrixA. We shall call this transformation as
multiplicative transformation .

First we shall present two propositions which show
how SDLCPs withZ 4, can be simplified.

Proposition 13. Let A € R™ "™ and consider the
SDLCP(Q,Lys), Q € S"™. This problem can be re-
duced to another equivaleStD LC'P(D, L)) where
D is a diagonal matrix and/ = PAP! for some
orthogonal matrixP.

Proof. SinceQ is a real symmetric matrix, its eigen val-
ues are real and there exists an orthogonal mé&tskch
that D = PQP! is a diagonal matrix. By premultiply-
ing and post multiplying the equatidn = AX At 4+ Q
with P and P! respectively, we get

PYP! = PAP'PXP'PA'P! + PQP"! or
W =MZM'+ D, (11)

where M = PAP!, W = PYP! andZ = PXP!.
Clearly, WZ = ZW = 0 if, and only if, XY =
Y X = 0. Thus, theSDLCP(Q, AX A") is equivalent
to SDLCP(D, MXM?") in which D is diagonal and
M = PAP? for some orthogonal matri®. |
Proposition 14. Let A € S™ and consider the
SDLCP(Q,Lys), Q € S". This problem can be re-
duced to an equivaletf DLC'P(H, L) in which M
is a real diagonal matrix.
Proof. Follows from the fact that, sincé is symmetric,
there exists an orthogonal matik such thatP AP? is
diagonal. ]
The following proposition states that if 4 has P-
property orQ-property, themd must necessarily be non-
singular.
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Proposition 15.Let A € R™*™ and considef 4. If L4

has eitherP-property orQ-property, themd is nonsin-
gular.

Proof. Assumel 4 has P-property. Supposél is sin-

gular. Then there is an nonzermo € R™ such that
Az = 0. Let X = zz'. ThenX # 0 andAX = 0.

HenceXLA(X) = La(X)X = 0. This violates the
P-property. It follows that4 is nonsingular.

Next assume thaf 4 has Q-property. LetX be a
solution of SDLCP(—1I, L,). Then it follows that
AXA* =Y + I = 0 for someY = 0. This in turn
implies AX A* = 0 and henced is nonsingular. O

Gowda and Song [6] presented a number of equiva-
lent conditions with respect to the Lyapunov transfor-
mation given byL(X) = AX + X A. In the following
theorem we present a number of equivalent conditions
with respect tal 4. Earlier it was mentioned that LCP
provides a complete characterizationBfmatrices. It
says that a matri¥l is a P-matrix if, and only if, LCP
(¢, A) has a unique solution for every The theorem
below presents a similar characterization of positive def-
inite matrices. It says that a matrikis positive definite
if, and only if, SDLCP(Q, L4) has a unique solution
for every@. We need the following lemma in the sequel.
Lemma 16.Supposed is a symmetric positive semidef-
inite matrix. Then for any positive semidefinite matrix
B thetr(BA) is nonnegative.

Proof. Since A is symmetric positive semidefinite,

there exists a matri¥/ such thatA = UU*. We have

tr(BA) = tr(BUU") = tr(U'BU). SinceB is posi-

tive semidefinite, so i6/* BU and hencer(U'BU) is

nonnegative. Thugy(BA) is nonnegative. ad

Theorem 17.Let A € R™*". The following conditions

are equivalent:

(7) A is either positive definite or negative definite.

(i7) Forevery@ € S™, SDLCP(Q, L4) has at most
one solution.

(4i3) L4 has GUS property.

(iv) L4 hasP-property.

(v) Lais Rp.

(vi) XAX =0 impliesX = 0.

Proof.

To show that(i) implies (i¢) we may assume that

A is positive definite. We can make this assumption

without loss of generality af 4(X) = L_4(X) VX.

Let @ € 8™. SupposeX and Z are two solutions of

SDLCP(Q, La). We will show thatX = Z. We have

Y =AXA'"+Q, X =0,V =0, XY =YX =0,
(12)
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and

W=AZA'"+Q, Z=0, W =0, WZ=2ZW =0.
(13)

Subtracting (12) from (13), we get
WY =A(Z-X)A (14)

Postmultiplying (14) with(Z — X)) and(Z + X) sep-
arately and using (12) and (13) we get

WX -YZ=A(Z-X)AZ-X)  (15)
and
WX -YZ=AZ - X)A"Z + X). (16)
Adding (15) and (16) we get
—YZ=AZ-X)AZ. (17)

Premultiplying (17) with(Z — X') and usingXY =0
we get

—-2YZ7Z =(Z - X)A(Z - X)A'Z. (18)
Postmultiplying (18) withA, we get
—ZYZA=(Z - X)A(Z — X)A'ZA. (19)

Observe thatZY Z and A*Z A are symmetric positive
semidefinite matrices, alitland(Z — X )A(Z — X) are
positive and positive semidefinite matrices respectively.
Applying Lemma 16, we find thatr(—ZY ZA) < 0
and tr((Z — X)A(Z — X)A'ZA) > 0. Hence
tr(ZY ZA) = 0. This in turn impliestr(ZY Z(A +
A")) = 0 and hence&ZY Z(A + A') = 0. This implies
ZYZ =0 as A, and hencé A + A'), is positive defi-
nite. AsY is symmetric positive semidefinite, it follows
thatY Z = 0. Similarly, we can show thalt’ X = 0.
From (15) we conclude that(Z — X)AY(Z — X) = 0.
As A is positive definite it follows thaZ — X = 0 and
henceZ = X. Thus,SDLCP(Q, La) has at most
one solution.

Since0 is a solution of bothSDLCP(0, L4) and
SDLCP(I, La), from Theorem 12 it follows thais)
implies (i1).

The implication of(iv) from (ii¢) holds for any gen-
eral linear map (see [6]). Implication ¢f) from (iv)
is also obvious.

Next, assume, if possible, th&bi) does not hold.
Then there must exist a nonzero vecioe R™ such
thatz’ Az = 0. Let X = za?. ClearlyX = 0, AX A =
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0 and XAXA! = 0. Note thatX # 0 asz # 0.
Thus X is a nontrivial solution ofSDLCP(0,L4).
This contradicts the hypothesis thaf is Ry. It follows
that (v) implies (vi).

To complete the proof of the theorem we will show
that(vi) implies (7). Assume thatvi) holds and thatd
is not negative definite. We will show thdtis positive
definite. Assume thatl is not positive definite. Asl is
not negative definite, there must exist vectorandy
in R" such thatr! Az < 0 andy® Ay > 0. This in turn
implies that a convex combinatianof x andy satisfies
2t Az = 0. Clearly,z # 0. Letting X = 22!, we obtain
XAX =0andX # 0. It follows that(vi) implies (7).
O

When A is a positive definite matrix, the rank of any
solution X of SDLCP(Q, L4) must be equal to the
number of negative eigen values@f This is elaborated
in our next result.
Theorem 18.Let A € R™ " be a positive definite
matrix and letX be a solution ofSDLCP(Q, La).
Then rank ofX is equal to the number of negative eigen
values of@. Furthermore, the rank of is equal to
the number of positive eigen values Qf whereY =
AX A+ Q.
Proof. In view of Proposition 13, we may assume, with-

A4 00
out loss of generality, thap = 0 —As 0| where
0 00

A andA, are positive diagonal matrices. Assume that
Ay is ans x s matrix. Note thats is the number of
negative eigen values dp. Let X € S™ be a solu-
tion of SDLCP(Q,L4). LetY = AX A + Q. As-
sume that rank ofX is r. We can find am x r ma-
trix U such thatX = UU!. SinceXYX = 0 and
sinceU is ann x r matrix with rankr, it follows that
UtAUUTA'U + U'QU = 0. Since A is positive def-
inite andU is of rankr, it follows that Ut AUUt AU
is positive definite and henceU!QU is positive defi-
nite. This impliesUl AUy — Uf AU, is positive def-
inite and hencd/:A,U, is positive definite. Sincé/,
is ans x r matrix, it follows thats > r. On the other
hand, to see that < r, let A, be the submatrix of
A such thatA,UU"' A} is the principal submatrix of
Y = AUU'A! + @ corresponding te-A, of Q. Since
Y is positive semidefinite, so is its principal submatrix
AUUTAL — Ag. As A, is positive diagonal matrix, it
follows thatA,UU* A} is positive definite. This in turn
implies rank ofA;,UU* AL (= s) is less than or equal to
rank of UU* (= r). Therefore, rank o is equal to the
number of negative eigen values @f
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LetT = —A~1Q(A~1)!. Observe thafX is a solu- Hence

tion of SDLCP(Q, L4) if, and only if, Y is a solution

of SDLCP(T, L 4-1). Note that the number of nega- _AAlUl ¢ b1

tive eigen values ot is equal to the number of positive AU = 2Uz | (UTATU)™ (20)

eigen values of). From what we have shown above, it 0

follows that rank oft” is equal to the number of positive Avr A A

eigen values of. PartitioningA = A11 A12 A13 whereA;; andA
In the rest of this paper we shall present some simpli- 94 = A21 A22 A23 1 2

31 32 33

fication procedure for solving SDLCP with, where

A is positive definite. When the order of the matrix

is 2 x 2, we have a closed form solution, and in the
general case we reduce the problem to that of solving
some quadratic equation. We need the following alge-

are of orders x k andr x r respectively, we can deduce
the following from (20):

Us = —A3_31 (Agz + A31T)U27 (21)

braic facts in the sequel.

Fact 1. If A is positive definite and/ is a full column
rank matrix such thatlU is defined, the/* AU is
positive definite.

Fact 2. If B is positive semidefinite and — B is pos-
itive definite, thenA is positive definite.

Fact 3. Let B andC be matrices of ordemn x n such
thatB'B = C*C. ThenB = PC for some orthogo-
nal matrix P.

ConsiderSDLCP(Q, La4). In view of Proposition 13,

we can assume, without loss of generality, that=
Ay 00

0 —As 0| whereA; andA, are positive diagonal
0 00

matrices. Letk be the order ofA; andr be the order

of A,. We have already noted that rank &fis r. Let

X = UU? be rank factorization of{ for somen x r

matrixU of rankr. PartitionU as(U}, Ui, UL)* where

U, is of orderr x r. SinceA is positive definite and is

of full column rank,Ut AU is positive definite (Fact 1)

andUtAUU? AU is symmetric positive definite. Now,

U'AUU'A'U =U'AX A'U
=-U'QU

= ULA Uy — UL AU, is positive definite.

From Fact 2 it follows thatU; is nonsingular and
henceU; = TU, for someT of order k x r.
Thus Ut AUUTA'U = Ui(Ay — T'ALT)U; where
Ay, — T'ALT is symmetric positive definite.

So, from Fact 3, it follows tha*A'U = P(Ap —
TtAlT)%Ug for some orthogonal matri®.
SinceXAX A + XQ = 0, we have

U'AUU'A'U = -U'Q or

AU

AUy
0

AUU'A'U = —QU =

Uy = —(Moy T + Mas) " Ag(Ay — T'ALT) "2 P,
(22)
and

M1 T + Mz +TA "My T+ TA; Moy = 0, (23)

where M is the PPT ofA with respect toAss.

Once (23) is solved fdf subject to the condition that
A, — TPAT is positive definite, then we can directly
compute X without actually computing?. We shall
now examine some special cases in whirls assumed
to be nonsingular.

Ay 0
Case 1.Q = { 0 —A,

In this case we can deduce that'A,;U; =
~UIA U (U'A'U)~! and using trace arguments, we
can deduce thal; = 0. Further,UyU} = Ayt Ap Ab,.

:| andAlg =0.

0 0] . S
Therefore, X = [O A2_21A2A§2} is a solution in this
case.
_ (A0 _
Case 2.Q = { 0 _AJ and Ay, = 0.

In this case, we can show that
Uy = A7} Ag(Ay — T'ALT) 3 PP,

where P is an orthogonal matrix and' is the unique
solution of

ATTANT +TA; Agy = —AT Apa.

In this case, we can compu®é usingU; = TU, (and
without actually computing®).

When A is of order2 x 2 andQ = {
solution toSDLCP(Q, L4) is given by

. (162 [92 9]
©a1102 + a12a210 +agn | 0 1]

1 0

O_J,the
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where [6] M. S. Gowda and Y. Song, Semidefinite linear
5 complementarity problems and a theorem of Lyapunov,
0 — —(an +ax) +V/(an +an)? — 4a12a21. Research Report, Department of Mathematics and
2a91 Statistics, University of Maryland, Baltimore County,

Baltimore, Maryland, USA, March 1999.
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