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Abstract

This paper presents a generalization of the coupled-task sche-duling problem introduced by Shapiro [12], where
considered tasks are subject to incompatibility constraints depicted by an undirected graph. The motivation of this
problem comes from data acquisition and processing in a mono-processor torpedo used for underwater exploration. As
we add the compatibility graph, we focus on complexity of theproblem, and more precisely on the boundary between
P and NP-completeness when some other input parameters are restricted (e.g. the ratio between the durations of
the two sub-tasks composing a task): we adapt the global visualization of the complexity of scheduling problems with
coupled-task given by Orman and Potts [11] to our model, determine new complexity results, and thus propose a new
visualization including incompatibility constraints. Inthe end, we give a new polynomial-time approximation algorithm
result which completes previous works.

Key words: complexity, approximation algorithm, scheduling, coupled-tasks

1. Introduction

1.1. Motivation

This paper deals with the problem of data acquisi-
tion subject to incompatibility constraints in a subma-
rine torpedo. Many scheduling issues arise in several
situations, e.g. in a radar pulsing context [1,13], a radar
system [9,10], or a particular application [4]. In our con-
text, the torpedo is used to execute several submarine
topographic surveys, including topological or temper-
ature measurements. Its aim is to collect data and to
process them on a mono-processor within a minimum
timeframe. A collection of sensors acquires data for the
torpedo. Each data consists in an acquisition task which
is divided into two sub-tasks: a sensor first emits a wave
which propagates in the water, then he gets a corre-
sponding echo. Scheduling issues appear when several
sensors using different frequencies can work in paral-
lel, while acquisitions using the same frequency have
to be delayed in order to avoid interferences. It is nec-
essary for robotic engineers to have a good theoretical
knowledge of this kind of problem. Thus, the aim of
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this work is to study many sub-configurations and de-
termine complexity and approximation results on them.

1.2. Modelling and related work

Coupled-tasks [12] are a natural way to model data
acquisition by our torpedo: each acquisition task can
be viewed as a coupled-taskAi composed by two sub-
tasks, respectively dedicated for wave transmission and
echo reception.We noteai andbi the processing time of
each sub-task. Between these two sub-tasks there is an
incompressible and inextensible idle timeLi which rep-
resents the spread of the echo in the water. Due to hard-
ware constraints, we do not work in a preemptive mode:
once started, a sub-task cannot be stopped and then con-
tinued later. A valid schedule implies here that for any
task started att, the first sub-task is fully executed be-
tweent andt+ ai, and the second betweent+ ai+Li

andt + ai + Li + bi. We noteA = {A1, . . . , An} the
collection of coupled-tasks to be scheduled. Incompat-
ibility constraints also exist between tasks due to wave
interferences. We say two tasksAi andAj are compat-
ible if and only if they use different wave frequencies;
thus any sub-task ofAi may be executed during the
idle time ofAj , as in Figure 1. We introduce a graph
Gc = (A, Ec) to model such this compatibility, where
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edges fromEc link any pair of compatible coupled-
tasks.

A1A2 A3

a1 b1a2 b2 a3 b3

L1
L2 L3

Compatibility graph

Fig. 1. Example of compatibility constraint with
A1 = (a1 = b1 = 1, L1 = 3), A2 = (a2 = b2 = 1, L2 = 2),
A3=(a3=b3=1, L3=2)

The aim is to produce a shortest schedule, i.e. to min-
imize the completion timeCmax of the latest executed
task, while respecting the incompatibility constraints
between tasks. As this main problem is decomposable,
we use the Graham’s notation schemeα|β|γ [8] (re-
spectively the machine environment, job characteristic
and objective function) to characterize the sub-problems
we study. We define theTORPEDO main problem as
1|ai, Li, bi, Gc|Cmax, when there is not condition on
the values ofai,Li,bi for any taskAi.

In existing works, complexity of scheduling problems
with coupled-tasks and no incompatibility constraint
has been investigated [2,3,11]. Authors focus here their
studies on precedence constraint between the acquisi-
tion tasks, which is different from the work presented in
this paper: we study here a generalization which consists
in introducing a compatibility graphGc between tasks,
and measuring the impact of the existence ofGc on the
actual complexity and approximation results. In partic-
ular we focus on the boundary between polynomial and
NP-complete problems when we plan hypothesis on
the values ofai, bi and/orLi, and on the establishment
of approximated solutions for difficult instances. In [11],
authors give a global visualization of scheduling prob-
lems complexity with coupled-tasks through three trel-
lis presented in Figure 2. Our approach is to achieve the
same type of study in presence of a compatibility graph
Gc. By comparing results of [11] with those obtained
by relaxing the incompatibility constraint, we can mea-
sure impact of this constraint on this kind of problem.
Remark 1 Note that, due to symmetrical features, sub-
problems which consider restrictive hypothesis on the
first sub-tasksai only have the same complexity than
sub-problems which consider the same hypothesis on
the second sub-tasksbi only, and reciprocally.

For example in Figure 2, problems1|ai = Li, bi|Cmax

and 1|ai, Li = bi|Cmax have the same complexity:
indeed any algorithm which would compute an opti-
mal solution for one would also produce an optimal
solution for the other, simply by "reverting" each task

Ai, computing an optimal solution, and then revert-
ing again the obtained schedule. This fact is formally
announced and proved in [11]. This reasoning can be
extended when configurations suppose several hypothe-
sis conjointly on sub-tasksai andbi. We give a similar
proof with incompatibility constraints in Lemma 5.

1.3. Our contribution and Organization

1.3.1. Our contribution
We will sharpen the demarcation line between the

polynomial andNP-hard case of the coupled-tasks
scheduling problem in presence of compatibility graph
Gc. Moreover, we design an efficient polynomial-time
approximation algorithm based on maximum matching
algorithm. We will also prove that a polynomial-time
algorithm exists for some particular cases.

1.3.2. Organization of the paper
This paper is organized as follows:

• In the next section, we present someNP-complete
and polynomial results for different sub-problems of
TORPEDO. This leads us to present global visualiza-
tion inspired by the one presented in Figure 2 which
takes into account the presence of compatibility graph
Gc between tasks, and highlights its importance on
problem complexity (see Table 2 and Figure 7);

• In the last section we give a polynomial-time approxi-
mation algorithm for the first studied problem, taking
into account the values of some instance parameters.

2. Complexity results in presence of a compatibility
graph

2.1. Introduction

In this section, we present several complexity results
on differentTORPEDO sub-problems. In order to per-
form a full study, we reuse problems identified on Fig-
ure 2. Taking into account incompatibility constraint
makes problems more difficult than they were, thus
problems which wereNP-complete without incompat-
ibility constraint remain triviallyNP-complete when
such constraint are introduced. Considering hierarchy
of our problems, we will focus our study on prob-
lems which are at the limit of polynomiality andNP-
completeness or still open, and identified as problems
Π1,Π2,Π3 andΠ4 according to the diagram of Figure 2.
For a better visibility, we will use the problem notation
Π′

i as a reference of problemΠi on which compatibility
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Fig. 2. Global visualization of the complexity of scheduling problems with coupled-tasks described by three distinct trellises
in [11]. Triplet (ai, Li, bi) describes the type of problem studied, where each variableai, bi andLi can take any value or be
equal to a given constant. Finally, there is an arc from a specific problem to a more general problem, and an edge between two
symmetrical problems.
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graph is added. Results of this section are divided into
four main parts, each part being devoted to the complex-
ity study of a given sub-problem: first, we will prove
theNP-completeness of two scheduling problems:
• Π′

1 : 1|ai=bi=p, Li=L,Gc|Cmax

• Π′
2 : 1|ai=a, Li=L, bi=b,Gc|Cmax

Then we show the polynomiality of following problems:
• Π′

3 : 1|ai = Li = p, bi, Gc|Cmax

• Π′
4 : 1|ai, Li = bi = p,Gc|Cmax

We will prove in particular that theNP-completeness
of Π′

1 implies theNP-completeness ofΠ′
2. For these

problems, we will set some parameters in order to
measure the influence ofGc on the evolution of the
complexity.

In the rest of this paper, given a valid scheduleσ and
a taskAi, we noteσ(Ai) the starting time of the task
Ai, i.e. sub-tasksai (respectivelybi) are fully executed
betweenσ(Ai) andσ(Ai) + ai (respectively between
σ(Ai) + ai + Li andσ(Ai) + ai + Li + bi).

2.2. Study of Problem Π′
1

In sub-problem Π′
1 = 1|ai = bi = p, Li =

L,Gc|Cmax, each sub-task requires the same execution
timep ∈ IN∗, while the idle timeLi is identical for each
task and fixed to a constantL. According to Orman
and Potts, problemΠ1 = 1|ai=bi=p, Li=L|Cmax is
polynomial. We are going to study the complexity of
Π′

1 by varying the value of parameterL according to
the value ofp. We study three disjoint cases, respec-
tively 0 < L < p, p ≤ L < 2p and2p ≤ L. We prove
that the first two cases are polynomial (Lemmas 1 and
2), the third beingNP-complete (Lemma 3):
Lemma 1 When 0 < L < p, Π′

1 is solvable in
polynomial-time.
Proof. When0< L< p, it is easy to see that no task
can overlap with the execution of another task. An op-
timal schedule consists in executing tasks sequentially
without delay side by side. This algorithm admits a lin-
ear time complexity and produces a schedule of length
Cmax = |A| × (2p+ L).
Lemma 2 When p ≤ L < 2p, Π′

1 is solvable in
polynomial-time.
Proof.

Whenp ≤ L < 2p, at most one sub-task with pro-
cessing timep may be scheduled during the idle time
L of another task. Thus, any scheduling ofΠ′

1 can
be associated with a matching onGc: tasks associated
with the vertices covered by the matching edges are

executed in pairs, creating "blocks" with an inactivity
time of (2L − 2p). For two tasksAi andAj we have
σ(Aj) = σ(Ai) + ai.

After ordering the tasks corresponding to the match-
ing, we execute the remaining tasks sequentially. The
length of the schedule will therefore depend on the size
of the matching, and thus finding a matching with max-
imum cardinality inGc provides an optimal schedule.
Finding a maximum matching in a general graph has
complexityO(n3) using Gabow’s algorithm [6], and
therefore the casep ≤ L < 2p is polynomial.

WhenL ≥ 2p, we can now overlap the execution
of more than two acquisition tasks, which leads us to
search for cliques in the compatibility graph in order to
reduce the inactivity time on the processor. We show this
results in theNP-completeness ofΠ′

1: we restrict our
study ofΠ′

1 to the sub-case whereLi = 2p for any task.
We propose lemma 3 and prove theNP-completeness
of Π′

1 when Li = 2p; then the generalization when
Li ≥ 2p is immediate.
Lemma 3 Deciding if an instance of Π′

1 where
Li = 2p for any task has a schedule of length

β=

n
∑

i=1

(ai+bi)=2np is aNP-complete problem.

Proof. Obviously,Π′
1 is in NP . We prove theNP-

completeness ofΠ′
1 thanks to a polynomial time reduc-

tion from TRIANGLE PARTITION [7] whose purpose is
to determinate if the vertices of a graph can be covered
by disjoint triangles:

Let I∗ be an instance ofTRIANGLE PARTITION, i.e.
a graphG = (V,E) with |V | = 3q, q ∈ IN∗. FromI∗

we construct in polynomial-time an instanceI of Π′
1

with a compatibility graphGc = (A, Ec) as follows:
• ∀i ∈ V , an acquisition taskAi is introduced inA,

composed by two sub-tasksai and bi of executed
lengthai= bi=p and by an inactivity time between
them of lengthLi = 2p.

• For each edgee = {i, j} ∈ E, an edgeec =
{Ai, Aj} is added inEc. we have a non-exclusive
relationship between the two tasksAi andAj .

Figure 3 illustrates such a transformation, which is
clearly computable in polynomial time.

A1 ai bi

A2
A3

1

2
3

G Gc

pp L = 2p

∀i, Ai:

TRIANGLE PARTITION Π′

1

Fig. 3. Example of the polynomial-time transformation
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Let us prove that the existence of a perfectTRIANGLE

PARTITION on vertices of graphG implies the existence
of an optimal schedule without idle time (thenCmax =
n× 2p) , and reciprocally:

⇒ Suppose that there exists aTRIANGLE PARTITION on
vertices ofG. Then, let us show that there is a sched-
ule without idle time of length2np (being the sum of
processing times). To do this, it is sufficient to form
blocks of exactly3 acquisition tasksAi in Gc accord-
ing to theTRIANGLE PARTITION produced onG.
Figure 4 presents an example of such block formed
with three tasks. The execution of these blocks forms
a schedule without idle time. If all tasks can be in-
cluded into such a block, then we obtain a schedule
of length2np.

4

a1 a2 a3 b1 b2 b3

A1

A2 A3

L

L

L

Fig. 4. Illustration of a block of three acquisition tasks,
σ(a3) = C(a2) = C(a1) + a2 whereC(ai) designates the
completion of the sub-taskai.

⇐ Conversely, if there is a schedule of length2np on
instanceI, then let us show that vertices ofG can be
covered by exactlyq triangles.

It is obvious that ifCmax = 2np, then there is no
idle time on the processor. This means that every idle
slot of lengthLi = 2p is bound to be filled. However,
we need three acquisition tasks carried into each other
in order to obtain a block of three tasks without idle
time. So, with exactlyq blocks, we obtain a schedule
without inactivity time. Since three acquisition tasks
carried into each other are necessarily compatible in
Gc, there exists aTRIANGLE PARTITION on vertices
of Gc, and thus on vertices ofG by construction.

Thus, we haveTRIANGLE PARTITION ∝ 1 Π′
1. We

know that TRIANGLE PARTITION is NP-complete
[7], So we can conclude that the problemΠ′

1 is NP-
complete.

From the proof ofNP-completeness ofΠ′
1, we note

that forL = kp with k ≥ 2 andk ∈ IN, the existence
of a schedule without idle slot is equivalent to finding
a partition of the vertices ofGc by disjoint cliques of
size(k + 1) (which is equivalent to theNP-complete
problem PARTITION INTO SUBGRAPHS ISOMORPHIC

1 We use a Polynomial-time reduction fromTRIANGLE PAR-
TITION to Π′

1.

TO H , whereH is a clique of size(k + 1)). The ap-
proximation study of problemΠ′

1 is presented on the
last section of this paper.

2.3. Study of problem Π′
2

From the results obtained by Orman and Potts [11]
(see Figure 2), we know that finding the complexity of
Π2 is still an open problem. We focus here on problem
Π′

2 : 1|ai = a, Li = L, bi = b,Gc|Cmax, with a, b, L ∈
IN∗. By observing the values of parametersai andbi, we
state the following observation:Π′

2 is a generalization
of Π′

1. Indeed, instances ofΠ1 are particular cases of
Π′

2 whena = b = p. This lead us to propose Theorem
1:
Theorem 1 Decision problemΠ′

2 is NP-complete by
generalization.

We have shown that the problemΠ′
2 : 1|ai= a, bi=

b, Li = L,Gc|Cmax wasNP-complete in the general
case, a deeper complexity study has been performed in
[14] when values ofa andb are linked to each others.

2.4. Study of problem Π′
3

This problem consists of schedulingn acquisition
tasks having the same modelai = Li = p, bi. The first
sub-task and idle time are set at the same constantp,
p ∈ IN∗, while the second sub-task can take any value.

The set of these acquisition tasks contains two sub-
sets: the first subset denotedK is composed by all the
acquisition tasksAi such thatbi ≤ p, while the second
subset denotedS is composed by all other tasks. Note
that two tasksAi = (ai, Li, bi) andAj = (aj , Lj, bj)
in S cannot be executed one inside the other, so the edge
(Ai, Aj) would be automatically removed if it appeared
in Gc.
Theorem 2 The scheduling problemΠ′

3 : 1| ai = Li =
p, bi, Gc |Cmax is polynomial.
Proof. First, note that not only there is at most on task
in a idle time of another task, but a task in te idle time
of another task can not admit a third task in its own idle
time. The configuration proposed by problemΠ′

3 allows
only at most one sub-task to be scheduled during the
idle time of a given task. As a consequence, tasks have
to be scheduled either alone - then their idle time cannot
be reused for scheduling other sub-tasks and is simply
wasted on the processor -, or by blocks of exactly two
tasks.

By weighting each edge of the graph with the se-
quential time of the overlap of the two tasks linked by
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the edge, our problem has an optimal solution if we can
find a matching that minimizes not only the number of
isolated vertices but also the sum of the weights of the
matching edges.

For these purposes, we will use a known complexity
result onTHE MINIMUM WEIGHT PERFECT MATCHING

PROBLEM, which consists in finding a perfect matching
in a weighted graph where the sum of perfect matching
edges is minimized. This matching can be computed
within polynomial time [5].

From any instance ofΠ′
3, we propose the following

polynomial-time construction:
Let I1 be an instance of our problem with a com-

patibility graphGc = (Vc, Ec), and I2 an instance
of the minimum weight perfect matching problem in
graph constructed fromI1. Let G′

c = (V ′
c , E

′
c) and

G′′
c = (V ′′

c , E′′
c ) be two copies of compatibility graph

Gc. The vertex corresponding toAi is denotedA′
i in

G′
c andA′′

i in G′′
c . From G′

c andG′′
c we construct a

graphHc = (V ′
c ∪ V ′′

c , E′
c ∪ E′′

c ∪ E′′′
c ) with E′′′

c =
{

{A′
i, A

′′
i }|Ai ∈ Vc

}

. We define the following weights
on the edges ofHc:
• Each edge{A′

i, A
′
j} (resp.{A′′

i , A
′′
j }), wherebi>p or

bj>p, is weighted by3p+max{bi,bj}
2 . This value rep-

resents half of the execution time used in the schedul-
ing by the two coupled-tasks, where the second task
belongs toS.

• Each edge{A′
i, A

′
j} (resp.{A′′

i , A
′′
j }), wherebi ≤

p and bj ≤ p, is weighted by3p+min{bi,bj}
2 . This

value represents half of the execution time used in
the scheduling by the two coupled-tasks that belong
to K. The second executed task will be the one with
the smallestbi.

• Each edge{A′
i, A

′′
i } is weighted by2p+bi. This value

represents the execution time used in the schedule by
an isolated task.
Figure 5 illustrates such a construction where

w(A′
i, A

′
j) denotes the weight of the edge(A′

i, A
′
j).

The equivalence betweenΠ′
3 and MINIMUM WEIGHT

PERFECT MATCHINGis given by Lemma 4: and recip-
rocally.
Lemma 4 For a minimum weight perfect matching of
C, a schedule of minimum processing timesC exists
and reciprocally (see Figure 6).
Proof. Indeed, the weight of each edgee = {A′

i, A
′
j} ∈

{V ′
c , V

′
c} (resp. e = {A′′

i , A
′′
j } ∈ {V ′′

c , V ′′
c }), with

i 6= j, corresponds to half the length of the schedul-
ing on the processor for the acquisition tasksA′

i and
A′

j (A′′
i andA′′

j ) if they overlap. This overlap can be

represented by a block. The weight of each edgee =
{A′

i, A
′′
i } ∈ {V ′

c , V
′′
c } is the length of the scheduling

on the processor for a simple acquisition task.
Note thatHc contains by construction an even num-

ber of vertices. Moreover, while each vertex ofG′
c is

connected to an equivalent vertex inG′′
c , then a perfect

matching onHc is always available. This means that
there exists a schedule such that each task is executed
exactly once. Note that the matching inG′

c is not nec-
essarily identical to the one inG′′

c , but they still have
the same weight. So, we can take the same matching in
G′

c andG′′
c without loss of generality. The makespan

obtained is equal to sum of the processing times of the
obtained blocks and those of isolated tasks. And since
each isolated task (respectively block) has an execution
time equal to the weight of the equivalent edge (respec-
tively the two equivalent edges onG′

c andG′′
c ) in the

perfect matching, we have the sum of edges weights of
the matching which is equal to the blocks sum of the
scheduling obtained. Thus, for a minimum weight per-
fect matchingC, there exists a schedule of minimum
lengthC and reciprocally.

This shows the relationship between a solution to
the problemΠ′

3 and a minimum weight perfect match-
ing in Hc. This relationship is illustrated on Figure 6.
While Edmonds algorithm gives a minimum weight per-
fect matching inO(n2m) [5], then problemΠ′

3 can be
solved in polynomial time.

Thus, the optimal polynomial-time algorithm to solve
Π′

3 : 1| ai = Li = p, bi, Gc |Cmax, is decomposed into
three steps:
(1) First we create the graphHc from Gc,
(2) then we compute a perfect matching onHc with

Edmond’s algorithm;
(3) and to finish we produce the optimal schedule on

the processor from the resulting matching.
We detail steps2 and 3 through Algorithm 1, which
returns a solution within complexity time ofO(n2m).

2.5. Study of problem Π′
4

ProblemΠ′
4 : 1| ai, Li = bi = p,Gc|Cmax is com-

posed byn acquisition tasks with the following hypoth-
esis: each sub-taskai has a random duration, while all
sub-tasks and idle timesLi have the same execution
time p. :

Orman and Potts [11] gave us a theorem saying that
a scheduling problem with acquisition tasks, where the
objective is makespan, has the same complexity than
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Fig. 5. Example of the polynomial-time transformation.

A′

1

A′

2

A′

3

A′′

1

A′′

2

A′′

3

b1b2 b3

Hc

a1a2 a3

p 2p

2p2p

3p

3p

3p

p−3
p−3

0 Cmax = 10p

w(A′
1, A

′
2) = w(A′′

1 , A
′′
2 ) =

3p+2p
2w(A′

3, A
′′
3) = 2p+ 3p

Fig. 6. Correspondence between a perfect matching and an optimal schedule.

its symmetrical problem (this is not true for approx-
imation). In Figure 2, there is a symmetry between
1|ai=Li=p, bi|Cmax and1|ai, Li=bi=p|Cmax (Re-
mind also Remark 1). We give the following Lemma
for symmetric complexity equivalence by relaxing the
incompatibility constraint:

Lemma 5 Two problems which are symmetrical for the
complexity, stay symmetric by relaxing the incompati-
bility constraint.

Proof. The proof is the same as Orman et Potts; we con-
sider any feasible scheduleS with makespanCmax(S)
in which taski completes at timeCi for i = 1, ..., n.
For the reverse problem, the schedule in which taski
starts at timeCmax(S)−Ci for i = 1, , .., n is also fea-
sible and has makespanCmax(S). Similarly, any sched-

ule for the reverse problem converts into a schedule for
the original problem with the same makespan. By re-
laxing the incompatibility constraint, the proof stay the
same. If the length change between the two solutions,
that means our solution is not optimal. Thus, the two
problems are equivalent.

Using Lemma 5, we propose the following corollary
of Theorem 2:

Corollary 1 ProblemΠ′
4 admits a polynomial-time al-

gorithm.

Proof. ProblemΠ′
4 is symmetrical toΠ′

3 thanks to
Lemma 5, and we know from Theorem 2 that problem
Π′

3 is polynomial, then alsoΠ′
4. The scheduling is opti-

mal with Algorithm 1 by exchangingbi andai values.
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Fig. 7. Global visualization of the impact of the incompatibility constraints on scheduling problems complexity with acqui-
sition tasks on a single processor. The black dotted and red dotted lines represent the boundary between polynomiality and
NP-completeness respectively without and with the incompatibility constraint.
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Algorithm 1: An optimal scheduling in polynomial
time

input : A = {A1, A2, . . . , An}, Hc, Gc

output: Copt
max

begin
• Search inHc a perfect matchingM
minimizing the weight of the matching edges
• For each edgee = (A′

i, A
′
j) ∈ Hc (resp.

e = (A′′
i , A

′′
j ) ∈ Hc) of the matchingM , such

thatA′
i andA′

j (resp.A′′
i andA′′

j ) belong to
the same graphG′

c (resp.G′′
c ), the acquisition

tasksAi andAj associated to the graphGc are
scheduled into each other according to the
edge weight.;
Two cases are possible, ifp ≥ bi ≥ bj then
σ(Aj) = σ(Ai) + ai, and if bi ≥ p then
σ(Ai) = σ(Aj) + ai.
• For each edgee = (A′

i, A
′′
i ) ∈ Hc of the

matchingM , such thatA′
i ∈ G′

c andA′′
i ∈ G′′

c ,
the acquisition taskAi associated to the graph
Gc is executed after the scheduling.

2.6. Summary of complexity results

We have proven theNP-completeness ofΠ′
1 and

Π′
2, and the polynomiality ofΠ′

3 andΠ′
4. As we in-

dicated in the introduction of this paper, all problems
which were alreadyNP-complete without incompati-
bility constraints (see Figure 2) remainNP-complete
whenGc is introduced. For problems which were poly-
nomial without a compatibility graph, the introduction
of Gc varies the complexity forΠ′

1 andΠ′
2 while Π′

3

and Π′
4 stay polynomial. This leads us to conclude

that the introduction of compatibility graph is an im-
portant but not deterministic factor in the complexity
of coupled-task scheduling problems. Figure 7 summa-
rizes the complexity results presented in this paper by
reusing the global visualization introduced by Orman
and Potts.

In the following section, we continue our analysis by
proposing a polynomial-time approximation algorithm
for NP-complete problemΠ′

1.

3. Approximation algorithm for problem Π′
1

This section is devoted to the study of a polyno-
mial approximation algorithm forNP-complete prob-
lem Π′

1 : 1|ai = bi = p, Li = L,Gc|Cmax. Note that
problemΠ′

2 has been studied in two respective papers

0

ppp p ppp
LL

γ=(n−2m)(2p+L) γ+2mp

(n−2m) times 2m times

. . .. . .

Fig. 8. Illustration of the second lower bound

[15,14].
We are interested in the approximation ofNP-

complete problemΠ′
1. Recall that we work withn ac-

quisition tasks, and whenL ≥ 2p the adding of the in-
compatibility constraint leads to theNP-completeness
of the problem. In order to achieve a schedule closest
to the optimal, our research of an heuristic with non-
trivial performance guarantee will focus on a study on
the compatibility graphGc. We will give two lower
bounds, and an upper bound obtained by a maximal
cliques cover ofGc vertices. In the following, let us call
Copt

max (resp.Ch
max) the length of an optimal schedule

(resp. a schedule from our heuristic) forΠ′
1.

Lemma 6 By considering a maximum matching
M of size m in Gc, our lower bound will be
Copt

max ≥ max{2np, (n− 2m)(L+ 2p) + 2m}.
Proof.

The optimal scheduling is obtained when there is no
inactivity time:

Copt
max ≥ Sequential Time=

n
∑

i=1

(ai + bi) = 2np (1)

For the second lower bound, by considering a maxi-
mum matchingM of sizem in the compatibility graph,
the number of isolated vertices equals(n− 2m). In the
worst case, the optimal scheduling length needs to be
superior to the scheduling length obtained by isolated
vertices, which form an independent set. Furthermore,
we know that a task cannot be executed entirely into an-
other, thus we can add at least2m times the execution
timep of a sub-task to the scheduling length (see Figure
8). Thus, we obtain a second lower bound according to
a maximum matchingM of sizem:

Copt
max ≥ (n− 2m)(L+ 2p) + 2mp (2)

Therefore, according to the parameters values in our
study, our lower bound will be the maximum between
the two lower bounds (1) and (2):

Copt
max ≥ max{2np, (n− 2m)(L+ 2p) + 2mp} (3)

Lemma 7 The heuristic, based on the research of a
partition of Gc by K maximal cliques of size less than
L/p, gives an upper bound equal toK(L + p) + np.
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Proof. The general idea consists in researching maxi-
mal cliques of size less thanL/p in Gc in order to fill
a maximum of slots created by the acquisition tasks.
Each maximal clique is associated to the execution of
a block of acquisition tasks as previously, but this time
the block will not be without inactivity time. In order
to compute the achieved scheduling lengthCh

max, we
sum the number of obtained blocks, which create each
of them a slot of lengthL. We add the number of tasks
to execute which represents the sequential time of all
sub-tasksbi to execute (See Figure 9).

A1

A2 A3
a1 a2 a3 b1 b2 b3

p 3pL = 3p

0 (p+L)+3p

Fig. 9. Possible scheduling for a block

The obtained makespan with a vertex cover inGc by
K maximal cliques gives the following upper bound:
supấLŽÂl’rieure suivante :

Ch
max ≤ K(L + p) +

n
∑

i=1

bi = K(L + p) + np (4)

The relative performanceρ using this heuristic is
given by Theorem 3: heuristique.
Theorem 3 This heuristic, based on the maximal
cliques covering, gives a relative performance equal to
ρ ≤ 4p+L

4p .
Proof. By using the obtained bounds (equations (3) and
(4)), we obtain the following relative performance: per-
formance relative suivante:

ρ ≤
Ch

max

Copt
max

≤
K(L + p) + np

2np
(5)

This ratio is a general result for our problem, but
we can search another approach using the second lower
bound with the matching. We can analyze the value
of the relative performance ratio when the heuristic,
used to approximate the problem, consists in finding a
maximum matchingM of sizem. In this case,K =
(n − m) because the matching createsm blocks of
size (L + 3p) and the isolated tasks form(n − 2m)
blocks of size(L+2p). By substitutingK in the obtained
bound in equation (4), we find a new upper bound:

Ch
max ≤ (n−m)(L+ p) + np (6)

From the study of themax function in the
lower bound (given by equation (2)), we can ana-
lyze the behavior of the relative performance. Since

Copt
max ≥ max{2np, (n − 2m)(L + 2p) + 2mp}, fol-

lowing cases should be considered2 :
• Form ∈ [0, Ln

2(p+L) [, C
opt
max ≥ (n− 2m)(L + 2p) +

2mp
• Form ∈ [ Ln

2(p+L) ,
n
2 ], C

opt
max ≥ 2np

According tom values, we obtain a new upper bound
for our heuristic and a new lower bound for an opti-
mal schedule (see Figure 10). Whenm = Ln

2(p+L) , we
see in Figure 10 that the optimal ratio is obtained. The
following equations give us the researched value:

ρ≤
Ch

max

Copt
max

≤
(n− Ln

2(p+L) )(p+ L) + np

2np

ρ=

(2(p+L)−L)
2(p+L) (p+ L) + p

2p

ρ=
2p+ L

2

2p
=

4p+ L

4p
(7)

Note that form = 0, ρ = 1 (obviously, since the
compatibility graph is a set of independent tasks). More-

over, form =
n

2
, ρ = 3p+L

4p .

m

1

0 n

2

δ

Ln

2(p+L)

δ = 4p+L

4p

ρ 3p+L

4p

Fig. 10. Behavior of the relative performanceρ according to
the value ofm.

This ends the problemΠ′
1 analysis. On negative side,

we have shown that the problem isNP-complete. On
positive side, we gave an approximation algorithm with
relative performance bounded byρ ≤ 4p+L

4p , whereL
andp are problem parameters. The fact that the value
of relative performanceρ, associated to the algorithm,
depends on parametersL andp, leads to continue our
work in research of approximation algorithms with a
constant performance guarantee.

The approximation study ofΠ′
2 had been done in [14].

For this problem, we study the limit between polyno-
miality andNP-completeness according to the values
of parameterL when it depends ona andb.

2 We search the value ofm in order to obtainCopt
max ≥

(n− 2m)(L+ 2p) + 2mp or Copt
max ≥ 2np.
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Table 1

Problem Complexity Ratio. Ref.

Π′

1 : (ai=bi=p,Li=L),Gc NP-complete 4p+L

4p
This paper

(ai=Li=bi), Gc NP-complete 3
2

[15]

Π′

2 : (ai=a,Li=L, bi=b),Gc NP-complete No bound This paper

(ai=a,Li=L=a+b, bi=b),Gc NP-complete
[

3
2
, 5
4

]

[14]

Π′

3 : (ai=Li=p, bi), Gc Polynomial 1 This paper

Π′

4 : (ai, Li=bi=p),Gc Polynomial 1 This paper

Summary of results

4. Conclusion

We have studied throughout this paper the schedul-
ing problem on single processor with coupled-tasks
in presence of arbitrary compatibility graphGc. The
different sub-problems encountered arise because we
vary basic parameters(ai, Li, bi) of coupled-tasks in
the same manner as do Orman and Potts in their paper
on the study of coupled-tasks without incompatibility
constraint. The goal sought throughout our paper was
to determine the impact of incompatibility constraint on
these problems, and to analyze critical cases located at
the limit between polynomiality andNP-completeness
according to parameters value.

We have presented twoNP-completeness proofs for
problemsΠ′

1 andΠ′
2, and two polynomial proofs for

problemsΠ′
3 andΠ′

4. Figure 7 summarizes the com-
plexity results presented in this paper. The first obser-
vation is that the introduction of incompatibility con-
straints has a significant impact on the complexity of
some problems: e.g. problemΠ1 which was solvable
in polynomial time becomesNP-complete in the pres-
ence of compatibility graph (problemΠ′

1), leading to
theNP-completeness ofΠ′

2 while Π2 was still open.
From these results, we deduce theNP-completeness of
all more general problems. In a second point, we have
proposed a polynomial-time algorithm for problemsΠ′

3

andΠ′
4, and show the polynomiality of more specific

problems.
In a second part we have presented a polynomial ap-

proximation algorithm forΠ′
1 with a performance ratio

4p+L
4p , wherep andL are fundamental parameters of

the problem. This heuristic completes previous approx-
imation results investigated in previous works, summa-
rized in Table 2.

It is interesting to observe that problems complexity
depends largely on the link between parameterLi and

one of the other two:ai or bi. If Li is equal toai or bi,
the only way to schedule tasks is either to overlap them
two by two, or to execute them consecutively. This con-
figuration leads us to search a maximum matching or a
perfect in compatibility graph. WhenLi is independent
of the other two parameters, the possible schedules of
tasks lead to seek chains, or cliques inGc, and most of
these problems are known to beNP-complete.

A general observation that we can do on the ap-
proximation of studied problems is the following: intro-
duction of incompatibility constraint is fundamentally
changing traditional approach to this kind of problem,
and lead to study graph problems known to be hard
to approximate. As obtained approximation bounds de-
pend onLi most of the time, perspectives of this work
consist in determining existence or not of constant factor
approximation algorithms forNP-complete problems.
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