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Abstract

This paper presents a generalization of the coupled-tasie-siciling problem introduced by Shapiro [12], where
considered tasks are subject to incompatibility constsaidepicted by an undirected graph. The motivation of this
problem comes from data acquisition and processing in a rpynoessor torpedo used for underwater exploration. As
we add the compatibility graph, we focus on complexity ofgtablem, and more precisely on the boundary between
P and A'P-completeness when some other input parameters are festri@.g. the ratio between the durations of
the two sub-tasks composing a task): we adapt the globahhistion of the complexity of scheduling problems with
coupled-task given by Orman and Potts [11] to our model, metee new complexity results, and thus propose a new
visualization including incompatibility constraints. the end, we give a new polynomial-time approximation atbani
result which completes previous works.
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1. Introduction this work is to study many sub-configurations and de-
termine complexity and approximation results on them.
1.1. Motivation

This paper deals with the problem of data acquisi- 1.2 Modelling and related work
tion subject to incompatibility constraints in a subma-

rine torpedo. Many scheduling issues arise in several o L
P Y g acquisition by our torpedo: each acquisition task can

situations, e.g. in a radar pulsing context [1,13], a radar )
9 arp g con [ ] be viewed as a coupled-tagk composed by two sub-
system [9,10], or a particular application [4]. In our con- . ) -
. . tasks, respectively dedicated for wave transmission and
text, the torpedo is used to execute several submarine . o
echo reception.We notg andb; the processing time of

topographic surveys, including topological or temper- .
ature measurements. Its aim is to collect data and to gach sub-task. Between these two sub-tasks there is an

process them on a Mono-processor within a minimum incompressible and |nextenS|bI¢ idle tithewhich rep-
. . . resents the spread of the echo in the water. Due to hard-
timeframe. A collection of sensors acquires data for the ; : .

- L ., ware constraints, we do not work in a preemptive mode:
torpedo. Each data consists in an acquisition task which once started. a sub-task cannot be stopoed and then con
is divided into two sub-tasks: a sensor first emits a wave tinued later A valid schedule implies Egre that for an
which propagates in the water, then he gets a corre- : P Y

sponding echo. Scheduling issues appear when severa ask started at, the first sub-task is fully executed be-
. ) . . weent and¢ + a;, and the second betweénr-a; + L;
sensors using different frequencies can work in paral-

lel, while acquisitions using the same frequency have andt + a; + Li + bi. We noted = {Ay,..., A,} the
. A ; collection of coupled-tasks to be scheduled. Incompat-
to be delayed in order to avoid interferences. It is nec-

essary for robotic engineers to have a good theoretical !b|I|ty constraints also exist between tasks due to wave

knowledge of this kind of problem. Thus, the aim of !nterferences. We say two tqsl@ and4; are compaF- )
ible if and only if they use different wave frequencies;

Email. G. Simonin [simonin@lirmm.fi], B. Dar- thus any sub-task ofl; may be executed during the
ties  [Benoit.Darties@u-bougogne.fr], R.  Giroudeau idle time of A;, as in Figure 1. We introduce a graph
[rgirou@lirmm.fr], J.-C. Konig [konig@lirmm.fr]. G. = (A, E.) to model such this compatibility, where

Coupled-tasks [12] are a natural way to model data
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edges fromE, link any pair of compatible coupled- A;, computing an optimal solution, and then revert-

tasks. ing again the obtained schedule. This fact is formally
announced and proved in [11]. This reasoning can be
Ly Lt Ls extended when configurations suppose several hypothe-
@#@% @ \al\ bg‘ag‘ \1)1 ‘ bg‘ sis conjointly on sub-tasks andb;. We give a similar

Compatibility graph

proof with incompatibility constraints in Lemma 5.

Fig. 1. Example of compatibility constraint with R N
Ar=(a1=bi=1,L1 =3), Az = (az = by = 1, Ln = 2), 1.3. Our contribution and Organization

As=(as=bs=1,L5=2) 1.3.1. Our contribution

We will sharpen the demarcation line between the
polynomial andNP-hard case of the coupled-tasks
scheduling problem in presence of compatibility graph

.. Moreover, we design an efficient polynomial-time
"approximation algorithm based on maximum matching
algorithm. We will also prove that a polynomial-time
algorithm exists for some particular cases.

The aim is to produce a shortest schedule, i.e. to min-
imize the completion timé&”,,, .. of the latest executed
task, while respecting the incompatibility constraints
between tasks. As this main problem is decomposable
we use the Graham’s notation schemigs|y [8] (re-
spectively the machine environment, job characteristic
and objective function) to characterize the sub-problems
we study. We define theORPEDO main problem as o
1|ai, Ls, bi, Ge|Cymaz, When there is not condition on ~ 1-3:2. Organization of the paper
the values ofi;,L;,b; for any task4;. This paper is organized as follows:

In existing works, complexity of scheduling problems  ® In the next section, we present sotv&>-complete
with coupled-tasks and no incompatibility constraint ~ @nd polynomial results for different sub-problems of
has been investigated [2,3,11]. Authors focus here their  TORPEDQ This leads us to present global visualiza-
studies on precedence constraint between the acquisi- tion inspired by the one presented in Figure 2 which
tion tasks, which is different from the work presented in ~ f@kes into account the presence of compatibility graph
this paper: we study here a generalization which consists G between tasks, and highlights its importance on
in introducing a compatibility grapt'. between tasks, problem complexity (see Table 2 and Figure 7);
and measuring the impact of the existencé&pfonthe ~ ® Inthelastsection we give a polynomial-time approxi-
actual complexity and approximation results. In partic- ~ Mation algorithm for the first studied problem, taking
ular we focus on the boundary between polynomial and into account the values of some instance parameters.
NP-complete problems when we plan hypothesis on
the vaIue; ofi;, b; and_/orLi, anq on tr_le establishment 2. Complexity resultsin presence of a compatibility
of approximated solutions for difficultinstances. In [11],

) . L : graph
authors give a global visualization of scheduling prob-
lems complexity with coupled-tasks through three trel- 5 1 |ntroduction
lis presented in Figure 2. Our approach is to achieve the
same type of study in presence of a compatibility graph  In this section, we present several complexity results
G.. By comparing results of [11] with those obtained on differentTORPEDO sub-problems. In order to per-
by relaxing the incompatibility constraint, we can mea- form a full study, we reuse problems identified on Fig-
sure impact of this constraint on this kind of problem. ure 2. Taking into account incompatibility constraint
Remark 1 Note that, due to symmetrical features, sub- makes problems more difficult than they were, thus
problems which consider restrictive hypothesis on the problems which werg/P-complete without incompat-
first sub-tasks:; only have the same complexity than ibility constraint remain triviallyN"P-complete when
sub-problems which consider the same hypothesis onsuch constraint are introduced. Considering hierarchy
the second sub-tasks only, and reciprocally. of our problems, we will focus our study on prob-

Forexamplein Figure 2, problemsa; = L;, b;|Cinax lems which are at the limit of polynomiality antlP-
and 1|a;, L; = b;|Crar have the same complexity: completeness or still open, and identified as problems
indeed any algorithm which would compute an opti- IIy, Ils, IT3 andIl, according to the diagram of Figure 2.
mal solution for one would also produce an optimal For a better visibility, we will use the problem notation
solution for the other, simply by "reverting” each task II/ as a reference of problef; on which compatibility
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Fig. 2. Global visualization of the complexity of scheddliproblems with coupled-tasks described by three distiratliges

in [11]. Triplet (as, L;, b;) describes the type of problem studied, where each variablg; and L; can take any value or be
equal to a given constant. Finally, there is an arc from aiipgroblem to a more general problem, and an edge between two
symmetrical problems.
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graph is added. Results of this section are divided into

four main parts, each part being devoted to the complex-

ity study of a given sub-problem: first, we will prove
the A"P-completeness of two scheduling problems:
° Hll : 1|ai:bi:p, Li:L,GC|CmaI
[ ] H/2 . 1|ai:a,Li:L,bi:b, Gc|0maz
Then we show the polynomiality of following problems:
o II5: 1la; = L; = p,bi, G¢|Crnaa
[ ] Hi} : 1|ai,L1‘ = bl =D, Gc|0maz

We will prove in particular that th&/P-completeness
of IT; implies the N"P-completeness ofl. For these
problems, we will set some parameters in order to
measure the influence @. on the evolution of the
complexity.

In the rest of this paper, given a valid schedaland
a taskA;, we notec(A;) the starting time of the task
A;, i.e. sub-tasks, (respectively;) are fully executed
betweens(A;) ando(4;) + a; (respectively between
o(A;) 4+ a; + L; ando(A;) + a; + L; + b;).

2.2. Study of Problem IT}

In sub-problem 11} = 1la; = b; = p,L; =

G. Simonin et al. — Theoretical aspects of scheduling calitdsks in the presence of compatibility graph

executed in pairs, creating "blocks" with an inactivity
time of (2L — 2p). For two tasks4, and A; we have
O'(Aj) = O'(AZ) + a;.

After ordering the tasks corresponding to the match-
ing, we execute the remaining tasks sequentially. The
length of the schedule will therefore depend on the size
of the matching, and thus finding a matching with max-
imum cardinality inG. provides an optimal schedule.
Finding a maximum matching in a general graph has
complexity O(n?) using Gabow’s algorithm [6], and
therefore the casg < L < 2p is polynomial. m

When L > 2p, we can now overlap the execution
of more than two acquisition tasks, which leads us to
search for cliques in the compatibility graph in order to
reduce the inactivity time on the processor. We show this
results in the\P-completeness dfl}: we restrict our
study ofII} to the sub-case whetg = 2p for any task.
We propose lemma 3 and prove thEP-completeness
of IIf when L; = 2p; then the generalization when
L; > 2pis immediate.

Lemma 3 Deciding if an instance of II} where
L; = 2p for any task has a schedule of length

B= Z(ai +b;) =2np is a N'P-complete problem.

L, G|Cp a2, €ach sub-task requires the same execution Proéfz.lobviously IT, is in N'P. We prove theN'P-

timep € IN*, while the idle timeL; is identical for each
task and fixed to a constart. According to Orman
and Potts, problerfil; = 1|a;=b;=p, L;=L|Cpqz IS
polynomial. We are going to study the complexity of
IT} by varying the value of parametdr according to
the value ofp. We study three disjoint cases, respec-
tively0 < L <p,p <L < 2pand2p < L. We prove
that the first two cases are polynomial (Lemmas 1 and
2), the third beingV’P-complete (Lemma 3):

Lemmal When0 < L < p, II} is solvable in
polynomial-time.

Proof. When0 < L < p, it is easy to see that no task
can overlap with the execution of another task. An op-

completeness dffj thanks to a polynomial time reduc-

tion from TRIANGLE PARTITION [7] whose purpose is

to determinate if the vertices of a graph can be covered

by disjoint triangles:

Let I'* be an instance OfRIANGLE PARTITION, i.e.

a graphG = (V, E) with |V| = 3¢,q € IN*. From I*

we construct in polynomial-time an instanéeof 11}

with a compatibility graphG. = (A, E.) as follows:

e Vi € V, an acquisition taskd; is introduced inA,
composed by two sub-tasks andb; of executed
lengtha; =b; = p and by an inactivity time between
them of lengthL; = 2p.

e For each edge = {i,j} € E, an edgee.

timal schedule consists in executing tasks sequentially {A;, A;} is added inE.. we have a non-exclusive
1y 44 ct

without delay side by side. This algorithm admits a lin-

ear time complexity and produces a schedule of length

Craz =|A X (2p+L). m

Lemma2 Whenp < L < 2p, II} is solvable in
polynomial-time.

Proof.

Whenp < L < 2p, at most one sub-task with pro-
cessing timep may be scheduled during the idle time
L of another task. Thus, any scheduling df can
be associated with a matching 6h: tasks associated

with the vertices covered by the matching edges are

relationship between the two tasks and A;.
Figure 3 illustrates such a transformation, which is
clearly computable in polynomial time.

TRIANGLE PARTITION

I
@ Vi, AI
@@
G G.

Fig. 3. Example of the polynomial-time transformation

P L=2pp

=2pp
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Let us prove that the existence of a perfeRtANGLE
PARTITION on vertices of graplr implies the existence
of an optimal schedule without idle time (théh, .. =
n x 2p) , and reciprocally:

= Suppose that there exiStgRIANGLE PARTITION ON

vertices ofG. Then, let us show that there is a sched-

ule without idle time of lengtl2np (being the sum of
processing times). To do this, it is sufficient to form
blocks of exactly acquisition tasks!; in GG, accord-
ing to the TRIANGLE PARTITION produced onG.

TOo H , whereH is a clique of sizgk + 1)). The ap-
proximation study of problendl is presented on the
last section of this paper.

2.3. Study of problem IT,

From the results obtained by Orman and Potts [11]
(see Figure 2), we know that finding the complexity of
II, is still an open problem. We focus here on problem
I : 1la; = a, Ly = L,b; = b, G¢|Crnaaz, With a,b, L €

Figure 4 presents an example of such block formed IN*. By observing the values of parametersindb;, we
with three tasks. The execution of these blocks forms state the following observatioil} is a generalization

a schedule without idle time. If all tasks can be in-

of I1;. Indeed, instances di; are particular cases of

cluded into such a block, then we obtain a schedule 11}, whena = b = p. This lead us to propose Theorem

of length2np.

Fig. 4. lllustration of a block of three acquisition tasks,
o(as) = C(a2) = C(a1) + a2 whereC(a;) designates the
completion of the sub-task;.

< Conversely, if there is a schedule of lengthp on
instancel, then let us show that vertices 6fcan be
covered by exactly triangles.
It is obvious that ifC,,,... = 2np, then there is no

idle time on the processor. This means that every idle

slot of lengthL; = 2p is bound to be filled. However,

1
Theorem 1 Decision problenil), is N’P-complete by
generalization.

We have shown that the problef,: 1]a; =a,b; =
b, L; = L, G¢|Crrar Was N'P-complete in the general
case, a deeper complexity study has been performed in
[14] when values ofi andb are linked to each others.

2.4. Study of problem IT

This problem consists of scheduling acquisition
tasks having the same modgl= L; = p, b;. The first
sub-task and idle time are set at the same congtant
p € IN*, while the second sub-task can take any value.

The set of these acquisition tasks contains two sub-
sets: the first subset denot&dis composed by all the

we need three acquisition tasks carried into each otheracquisition tasks4; such that; < p, while the second

in order to obtain a block of three tasks without idle
time. So, with exactly; blocks, we obtain a schedule
without inactivity time. Since three acquisition tasks

subset denoted is composed by all other tasks. Note
that two taSkSAi = (ai, Li, bz) and Aj = (CLj, Lj, bJ)
in S cannot be executed one inside the other, so the edge

carried into each other are necessarily compatible in (A;, A;) would be automatically removed if it appeared

G, there exists @RIANGLE PARTITION on vertices

of G, and thus on vertices @ by construction.
Thus, we haverRIANGLE PARTITION o ! IIj. We
know that TRIANGLE PARTITION is N'P-complete
[7], So we can conclude that the probldi) is N'P-
complete.m

From the proof of\A/P-completeness dif;, we note
that for L = kp with £ > 2 andk € N, the existence
of a schedule without idle slot is equivalent to finding
a partition of the vertices of7. by disjoint cliques of
size (k + 1) (which is equivalent to the/"P-complete
problem PARTITION INTO SUBGRAPHS ISOMORPHIC

! We use a Polynomial-time reduction frorRIANGLE PAR-
TITION to IIj.

in G..
Theorem 2 The scheduling problei : 1|a; = L; =
P, bi, G |Crnaz i polynomial.
Proof. First, note that not only there is at most on task
in a idle time of another task, but a task in te idle time
of another task can not admit a third task in its own idle
time. The configuration proposed by probl&allows
only at most one sub-task to be scheduled during the
idle time of a given task. As a consequence, tasks have
to be scheduled either alone - then their idle time cannot
be reused for scheduling other sub-tasks and is simply
wasted on the processor -, or by blocks of exactly two
tasks.

By weighting each edge of the graph with the se-
guential time of the overlap of the two tasks linked by
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the edge, our problem has an optimal solution if we can represented by a block. The weight of each edge

find a matching that minimizes not only the number of {A}, A7} € {V/,V/'} is the length of the scheduling

isolated vertices but also the sum of the weights of the on the processor for a simple acquisition task.

matching edges. Note thatH,. contains by construction an even num-
For these purposes, we will use a known complexity ber of vertices. Moreover, while each vertex@f is

result ONTHE MINIMUM WEIGHT PERFECT MATCHING connected to an equivalent vertex@, then a perfect

PROBLEM, which consists in finding a perfect matching matching on. is always available. This means that

in a weighted graph where the sum of perfect matching there exists a schedule such that each task is executed

edges is minimized. This matching can be computed exactly once. Note that the matching@# is not nec-

within polynomial time [5]. essarily identical to the one i@/, but they still have
From any instance offf;, we propose the following the same weight. So, we can take the same matching in
polynomial-time construction: G!. and G/ without loss of generality. The makespan

obtained is equal to sum of the processing times of the
patibility graph G. = (V. E.), and Z, an instance obtained blocks and those of isolated tasks. And since

of the minimum weight perfect matching problem in each isolated task (respectively block) has an execution

graph constructed fror;. Let . = (V/, E') and t!me equal to the V\_/eight of the equivalent edg_e (respec-
G = (V",E") be two copies of compatibility graph tively the two _equwalent edges aH/, andG”) in t_he

G.. The vertex corresponding td; is denotedA’ in perfect matching, we have the sum of edges weights of
G’ and A” in &”. From &’ and G we constract a  the matching which is equal to the blocks sum of the
grcaph . i (VC’CU V' B ¥ E' U Eé//) with B — scheduling obtained. Thus, for a minimum weight per-

{{A}, A"}|A; € V.}. We define the following weights fect matchingC, there exists a schedule of minimum
on the édge; of] - lengthC' and reciprocally.

Eachedgd A., A’} (resp{A/, A”}), whereb;, >por " . . )
* . o¢ ! 1 pﬁia;{bhgj) , P This shows the relationship between a solution to
b; > p, is weighted by 2 . This value rep- e problemil, and a minimum weight perfect match-

resents half of the execution time used in the schedul- ing in H.. This relationship is illustrated on Figure 6.
ing by the two coupled-tasks, where the second task \y e Edmonds algorithm gives a minimum weight per-

Let Z; be an instance of our problem with a com-

belongs toS. L Y fect matching inO(n?m) [5], then problenil} can be
e Each edge{4], A}} (resp.{4] ;Aj 1, \:}yhbgrebi < solved in polynomial time m
p andb; < p, is weighted by?2tmindbubil Thig Thus, the optimal polynomial-time algorithm to solve

value represents half of the execution time used in 11} : 1| a; = L; = p, b;, G |Crnaz, is decomposed into
the scheduling by the two coupled-tasks that belong three steps:
to K. The second executed task will be the one with (1) First we create the grapH, from G,

the smallesb;. (2) then we compute a perfect matching Hp with
e Eachedgg A}, A} isweighted by2p+b;. This value Edmond’s algorithm;
represents the execution time used in the schedule by (3) and to finish we produce the optimal schedule on
an isolated task. the processor from the resulting matching.
Figure 5 illustrates such a construction where We detail step® and 3 through Algorithm 1, which
w(Aj}, A}) denotes the weight of the eddel;, A’). returns a solution within complexity time &f(n?m).

The equivalence betwedi;, and MINIMUM WEIGHT
PERFECT MATCHINGIs given by Lemma 4: and recip-
rocally.

Lemma 4 For a minimum weight perfect matching of ProblemIl} : 1| a;, L; = b; = p, G¢|Cpnas IS COM-
C, a schedule of minimum processing tin@sexists posed byn acquisition tasks with the following hypoth-

2.5. Study of problem IT,

and reciprocally (see Figure 6). esis: each sub-task has a random duration, while all
Proof. Indeed, the weight of each edge= {4}, A} € sub-tasks and idle times; have the same execution
{V, VI (resp.e = {A], AT} e {V',V}), with time p. :

i # j, corresponds to half the length of the schedul- Orman and Potts [11] gave us a theorem saying that
ing on the processor for the acquisition taskis and a scheduling problem with acquisition tasks, where the

A (A7 and AY) if they overlap. This overlap can be objective is makespan, has the same complexity than



G. Simonin et al. — Algorithmic Operations Research Vol.G12) 1-12 7

\ 2p+2p \
I I
I I
I I
: 2p+p—3 !
I
I I
1 I
I I
I 3 I
1 2p+3p | 1
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¢ | 1 2p+p—2 1 )
SoeNSooooo------- ’ R
v
H.
/ 1y — moAmy _ 3pt2p
w(A}, Ay) = w(Af, Ay) = 2
’ A 1" oAn\ _ 3p+3p
w(A27A3) - w(A27A3) - 2
/ A 7 1\ __ 3p+p—2
w(Ay, Ay) = w(Ay, AY) = s
Fig. 5. Example of the polynomial-time transformation.
2p 2p
@ @ P 2p 3p

s () &) e [elalel[ v =] [ -

H.

w(Aj, Af) = 2p+ 3p w(Ay, Ap) = w(AY, Af) = S22

Fig. 6. Correspondence between a perfect matching and anadchedule.

its symmetrical problem (this is not true for approx- ule for the reverse problem converts into a schedule for
imation). In Figure 2, there is a symmetry between the original problem with the same makespan. By re-
lla;=L;=p, b;|Crmaz @andl|a;, L; =b; =p|Cras (Re- laxing the incompatibility constraint, the proof stay the

mind also Remark 1). We give the following Lemma same. If the length change between the two solutions,
for symmetric complexity equivalence by relaxing the that means our solution is not optimal. Thus, the two
incompatibility constraint: problems are equivalens

Lemma 5 Two problems which are symmetrical forthe ~ Using Lemma 5, we propose the following corollary
complexity, stay symmetric by relaxing the incompati- of Theorem 2:

bility constraint. Corollary 1 ProblemII, admits a polynomial-time al-
Proof. The proof is the same as Orman et Potts; we con- 90rithm.

sider any feasible schedufewith makesparC,, .. (5) Proof. ProblemII) is symmetrical toll; thanks to

in which taski completes at time”; fori = 1,...,n. Lemma 5, and we know from Theorem 2 that problem
For the reverse problem, the schedule in which task IIj is polynomial then alsdl. The scheduling is opti-
starts at time’,,,,.(S) — C; fori = 1,,..,nis also fea- mal with Algorithm 1 by exchanging; anda; values.

sible and has makespéh,...(S). Similarly, any sched- =
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(n—2m) times 2m times
Algorithm 1: An optimal scheduling in polynomial N
time vl Jpl - [pl L Jw[p]p] [?
inDUt P A= {AlaAQa---aAn}v H,., Gc b v=(n—2m)(2p+L) ’Y-llQm;D
. opt
OUtPUt' Crtac Fig. 8. lllustration of the second lower bound
begin

e Search inH, a perfect matching/
minimizing the weight of the matching edges
e For each edge = (A;, A}) € H. (resp.

e = (A}, A7) € H.) of the matchingl/, such
that A} and A (resp.A; and A’) belong to
the same grapty’, (resp.G?), the acquisition
tasksA; and A; associated to the gragh. are
scheduled into each other according to the
edge weight.;

Two cases are possible,if> b; > b; then
o0(A;) =0o(4;) + a;, and ifb; > p then

U(Al) = O'(Aj) + a;.

e For each edge = (4}, A)) € H,. of the
matching)M, such thatd] € G/ and A} € G,
the acquisition tasld; associated to the graph
G. is executed after the scheduling.

2.6. Summary of complexity results

We have proven thé\V"P-completeness ofl; and
11, and the polynomiality ofil; andII). As we in-
dicated in the introduction of this paper, all problems
which were alreadyV"P-complete without incompati-
bility constraints (see Figure 2) remaiiP-complete
whend, is introduced. For problems which were poly-
nomial without a compatibility graph, the introduction
of G, varies the complexity fofl} andII, while I}
and IT; stay polynomial. This leads us to conclude
that the introduction of compatibility graph is an im-
portant but not deterministic factor in the complexity
of coupled-task scheduling problems. Figure 7 summa-
rizes the complexity results presented in this paper by
reusing the global visualization introduced by Orman
and Potts.

In the following section, we continue our analysis by
proposing a polynomial-time approximation algorithm
for A"P-complete problenil;.

3. Approximation algorithm for problem IT}

This section is devoted to the study of a polyno-
mial approximation algorithm folV/>-complete prob-
lem I1} : 1|a; = b; = p,L; = L, G.|Cynq4.- Note that
problemII}, has been studied in two respective papers

[15,14].

We are interested in the approximation AfP-
complete problenil}. Recall that we work witm ac-
quisition tasks, and wheh > 2p the adding of the in-
compatibility constraint leads to th&P-completeness
of the problem. In order to achieve a schedule closest
to the optimal, our research of an heuristic with non-
trivial performance guarantee will focus on a study on
the compatibility graphG.. We will give two lower
bounds, and an upper bound obtained by a maximal
cliques cover ot~ vertices. In the following, let us call
cort (resp.Ch ..) the length of an optimal schedule
(resp. a schedule from our heuristic) fidf .

Lemma 6 By considering a maximum matching
M of size m in G., our lower bound will be
CoPt > maxz{2np, (n — 2m)(L + 2p) + 2m}.

Proof.

The optimal scheduling is obtained when there is no
inactivity time:
> Sequential Time= > (a; +b;) = 2np (1)

i=1

For the second lower bound, by considering a maxi-
mum matchingV/ of sizem in the compatibility graph,
the number of isolated vertices equéls— 2m). In the
worst case, the optimal scheduling length needs to be
superior to the scheduling length obtained by isolated
vertices, which form an independent set. Furthermore,
we know that a task cannot be executed entirely into an-
other, thus we can add at le&st times the execution
time p of a sub-task to the scheduling length (see Figure
8). Thus, we obtain a second lower bound according to
a maximum matchind/ of sizem:

Copt Z

max

opt
mazx

(n —2m)(L + 2p) + 2mp 2

Therefore, according to the parameters values in our
study, our lower bound will be the maximum between
the two lower bounds (1) and (2):

Copt

max

> max{2np, (n — 2m)(L + 2p) + 2mp}  (3)

]
Lemma 7 The heuristic, based on the research of a
partition of G. by L maximal cliques of size less than
L/p, gives an upper bound equal 16(L + p) + np.
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Proof. The general idea consists in researching maxi- C2t > max{2np, (n — 2m)(L + 2p) + 2mp}, fol-
mal cliques of size less thah/p in G, in order to fill lowing cases should be considefed

a maximum of s!ots qreated py the acquisition t_asks. e Form € [0, %[, CoPt > (n —2m)(L + 2p) +
Each maximal clique is associated to the execution of  2y,p

a block of a_cquisition tgsks as preyi_ous!y, but this time ¢ Form e [%7 1], CoPt > 2np

the block will not be without inactivity time. In order

to compute the achieved scheduling lengtf),,,, we According tom values, we obtain a new upper bound
sum the number of obtained blocks, which create each to; our heuristic and a new lower bound for an opti-

of them a slot of lengtiL. We add the number of tasks 151 schedule (see Figure 10). When= - L2 _ we

2(p+L)’

to execute which represents the sequential time of all see in Figure 10 that the optimal ratio is obtained. The
sub-tasks); to execute (See Figure 9). following equations give us the researched value:
Py L=3p | 3p h _ _LIn__
@3@ ! a1 | as | as | [ 5i] 2] bs l pg Cmuim < (TL 2(p+L))(p+L) +np
0 (p+L)+3p ng)aw 2np
@p+L)-L)
Fig. 9. Possible scheduling for a block P22 (p+L)+p
2p

The obtained makespan with a vertex covetinby ot L ap+ L
K maximal cliques gives the following upper bound: p= Pty _ 2P (7)
supd_ZAlrieure suivante : 2p 4p
ch . <K(L+p)+ Zbi = K(L+p)+np (4) Note that form = 0, p = 1 (obviously, since the

i—1 compatibility graph is a set of independenttasks). More-

" over,form:g,p:%. "

The relative performance using this heuristic is
given by Theorem 3: heuristique.
Theorem 3 This heuristic, based on the maximal m |0 ot D) 2
cligues covering, gives a relative performance equal to )
p < 4121—+L P ‘ 1/ \ 3p+L

— 4 . . . 1
Proof. By using the obtained bounds (equations (3) and § = dptL i

. . . 4p

(4)), we obtain the following relative performance: per-
formance relative suivante: Fig. 10. Behavior of the relative performangeaccording to

the value ofm.
Chaz  K(L+p)+np )

T Ol 2np This ends the probleri] analysis. On negative side,

This ratio is a general result for our problem, but we have shown that the problemA§P-complete. On
we can search another approach using the second lowepositive side, we gave an approximation algorithm with
bound with the matching. We can analyze the value relative performance bounded by< 22t£ whereL
of the relative performance ratio when the heuristic, andp are problem parameters. The fact that the value
used to approximate the problem, consists in finding a of relative performance, associated to the algorithm,

maximum matchingV/ of size m. In this case X = depends on parametefsandp, leads to continue our
(n — m) because the matching creates blocks of work in research of approximation algorithms with a
size (L + 3p) and the isolated tasks forfm — 2m) constant performance guarantee.

blocks of sizg L+2p). By substitutingC in the obtained The approximation study @f;, had been done in [14].
bound in equation (4), we find a new upper bound: For this problem, we study the limit between polyno-

h miality and \P-completeness according to the values
Crmaz < (n=m)(L +p) +np 6) of parametet when it depends on andb.
From the study of themax function in the

lower bound (given by equation (2)), we can ana- 2 We search the value afx in order to obtainCo%, >
lyze the behavior of the relative performance. Since (n — 2m)(L + 2p) + 2mp or C3Et, > 2np.
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Table 1
‘ Problem ‘ Complexity Ratio. Ref. ‘
i (ai=bi=p,Li=L),G. N'P-complete | “5tL This paper
(ai=L;=b;),G. NP-complete 3 [15]
I5: (a;=a,L;=L,b;=b),G. NP-complete| No bound | This paper
(ai=a,Li=L=a+b,b;=b),G. | N'P-complete| [2,2] [14]
I5: (a;=L; =p, bi), Ge Polynomial 1 This paper
1} : (ai, Li =b; =p), G Polynomial 1 This paper

Summary of results

4. Conclusion one of the other twoa; or b;. If L; is equal toa; or b;,
the only way to schedule tasks is either to overlap them

We have studied throughout this paper the schedul- two by two, or to execute them consecutively. This con-
ing problem on single processor with coupled-tasks figuration leads us to search a maximum matching or a
in presence of arbitrary compatibility gragh.. The perfect in compatibility graph. Wheh; is independent
different sub-problems encountered arise because weof the other two parameters, the possible schedules of
vary basic parameter@:;, L;,b;) of coupled-tasks in  tasks lead to seek chains, or cliquegip and most of
the same manner as do Orman and Potts in their papetthese problems are known to B&P-complete.
on the study of coupled-tasks without incompatibility A general observation that we can do on the ap-
constraint. The goal sought throughout our paper was proximation of studied problems is the following: intro-
to determine the impact of incompatibility constraint on duction of incompatibility constraint is fundamentally
these problems, and to analyze critical cases located atchanging traditional approach to this kind of problem,
the limit between polynomiality and/P-completeness  and lead to study graph problems known to be hard
according to parameters value. to approximate. As obtained approximation bounds de-

We have presented twlP-completeness proofs for ~ pend onL; most of the time, perspectives of this work
problemsIT; andII}, and two polynomial proofs for consist in determining existence or not of constant factor
problemsIT, andIT,. Figure 7 summarizes the com- approximation algorithms fak/P-complete problems.
plexity results presented in this paper. The first obser-
vation is that the introduction of incompatibility con-
straints has a significant impact on the complexity of
some problems: e.g. problef; which was solvable
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