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Abstract

We consider a generalization of the well known greedy algorithm, calledm-step greedy algorithm, wherem elements
are examined in each iteration. Whenm = 1 or 2, the algorithm reduces to the standard greedy algorithm. For
m = 3 we provide a complete characterization of the independencesystem, called trioid, where them-step greedy
algorithm guarantees an optimal solution for all weight functions. We also characterize the trioid polytope and propose
a generalization of submodular functions.
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1. Introduction

Let E = {1, 2, . . . , n} andF ⊆ 2E so that(E,F)
is an independence system, (i.e. ifA ∈ F andB ⊆ A
thenB ∈ F ). Let w : E → R be a prescribed weight
function. We consider the following linear combinato-
rial optimization problem (LCOP):

Maximize{w[S] : S ∈ F},

wherew[S] =
∑

i∈S w(i), if S 6= ∅, andw[∅] = 0.

The well known greedy algorithm for LCOP can be
described as follows.

In his path-breaking work [7], Edmonds showed that
an independence system(E,F) is amatroid[22] if and
only if the greedy algorithm computes an optimal so-
lution to the corresponding instances of LCOP for all
weight functions. By relaxing the restriction of an in-
dependence system and/or modifying the greedy algo-
rithm appropriately, various classes of discrete systems
(E,F) are identified by researchers that guarantee op-
timality of the solution produced by the algorithm for
the corresponding instances of LCOP for all weight
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Algorithm 1: The Greedy Algorithm

Input : E = {1, 2, . . . , n}; F : the family of
feasible solutions (possibly given as an
oracle);

Output : X , the solution obtained.

Order the elements ofE such thatw(1) ≥ w(2) ≥
· · · ≥ w(r) > 0 ≥ w(r + 1) ≥ · · · ≥ w(n);
X ← ∅;
k ← 1;
while k ≤ r do

if X ∪ {k} ∈ F then
X ← X ∪ {k};

end
k ← k + 1;

end
OutputX

functions. These discrete systems include pseudoma-
troids [4], greedoids [16], matroid embeddings [12], su-
permatroids [6,10,21], among others [9,13,15]. Various
modifications of the greedy algorithm have also been
analyzed extensively as approximation strategies with
guaranteed average performance [17] and worst case
performance [18] for various classes of linear combi-
natorial optimization problems. In each of these algo-
rithms, in each iteration, exactly one element is added to
the current solution to build the optimal (approximate)
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solution.

Jenkyns [14] considered a generalization of the
greedy algorithm, calledJ-Greedy algorithm, where
more than one element is added in each iteration. His
algorithm can be described as follows:

Algorithm 2: TheJ-Greedy Algorithm

Input : E = {1, 2, . . . , n}; an independence
system(E,F) (possibly given as an
oracle); and a functionJ : F × E → Z+;

Output : X , the solution obtained.

X ← ∅;
δ ← 1;
i← 1;
while |X | < n andδ > 0 do

ChooseS ⊆ E −X such that
w[S] =

∑

e∈S w(e) is maximized subject to
|S| ≤ J(X, i) andX ∪ S ∈ F ;
X ← X ∪ S;
δ = |S|;
i← i+ 1;

end
OutputX

If J(X, i) = 1 for all i, the above algorithm reduces
to the greedy algorithm. Unlike the greedy algorithm,
no simple characterization of an independence system
that guarantees optimality of the solution produced by
the J-greedy algorithm is known. Further, while the ma-
troid polytope can be elegantly defined, no similar rep-
resentation of such an independence system is known.

In this paper, we consider another generalization of
the greedy algorithm which we call them-step greedy
algorithm. As in the case of Jenkyns’ algorithm, our al-
gorithm allows more than one element (in fact, at most
m elements, for a given integerm) to be selected in each
iteration. However, the two algorithms are quite differ-
ent. Form ≤ 3, we give a complete characterization
of the class of independence systems, for which them-
step greedy algorithm guarantees an optimal solution to
the associated LCOP for all weight functions. The re-
sulting mathematical structure generalizes the class of
matroids. We also characterize the polytopes associated
with this class of systems. Further, our study leads to the
identification of an interesting new class of set functions
that are closely related to submodular functions [11].

2. Notations and Basic Definitions

Definition 1 : A discrete system(E,F), whereE =
{1, 2, . . . , n} andF ⊆ 2E, is an independence system
if and only ifA ∈ F andB ⊂ A implies thatB ∈ F .
Each element ofF is called an independent set of the
system.

Throughout the paper, we only consider discrete sys-
tems that are independence systems.

For a given positive integerm, we introduce them-
step greedy algorithm which can be summarized as fol-
lows. We order the elements ofE = {1, 2, . . . , n} such
thatw(1) ≥ w(2) ≥ · · · ≥ w(n) and we start with the
empty set as the initial solution and with all the ele-
ments ofE as unscanned. In each iteration, we scan the
first m of the currently unscanned elements ofE in the
order1, 2, 3, . . . , n and augment the current solution by
adding all thesem elements or a subset of it (the subset
could be empty as well) so that the resulting solution is
feasible and gives maximum improvement. Them ele-
ments ofE scanned in this iteration are then marked as
scanned. In the last iteration, depending on the value of
n, the number of unscanned elements could be less than
m and all of them are scanned in this iteration. In ev-
ery other iteration, we always scan exactlym elements.
A formal description of them-step greedy algorithmis
given below.
Definition 2 An independence system(E,F) is an m-
step greedy system if and only if for any weight function
w : E → R, them-step greedy algorithm produces an
optimal solution to the corresponding LCOP.

It may be noted that the1-step greedy algorithm is
precisely the greedy algorithm (Algorithm 1). Hence,
the class of1-step greedy systems is precisely the class
of matroids. The following result shows that the class
of 2-step greedy systems is also precisely the class of
matroids.
Observation 1 An independence system(E,F) is a2-
step greedy system if and only if it is a matroid.
Proof.It is easy to observe that for any given instance of
LCOP, the outputs of the2-step greedy algorithm and
the1-step greedy algorithm are the same. The proof of
the observation follows from this.

However, a3-step greedy system is not necessarily a
matroid as illustrated in the following example.
Example 1 Consider the system(E,F) whereE =
{1, 2, 3} andF = {∅, {1}, {2}, {3}, {2, 3}}. (E,F) is
not a matroid but it is a3-step greedy system.

Thus it is interesting to examine the properties of a
3-step greedy system, which is the primary focus of this
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Algorithm 3: Them-step Greedy Algorithm

Input : E = {1, 2, . . . , n}; an independence
system(E,F) (possibly given as an
oracle); integerm.

Output : XG, the solution obtained.

Order the elements ofE such that
w(1) ≥ w(2) ≥ · · · ≥ w(n);
S0 ← ∅;
k ← 0;
while k < ⌈ n

m
⌉ do

k← k + 1;
if n ≥ mk then

Ak ← {m(k−1)+1,m(k−1)+2, . . . ,mk}
else

Ak = E − {1, 2, . . . ,m(k − 1)}
end
FindX ⊆ Ak such thatSk−1 ∪X ∈ F and
w[X ] is maximum;
Sk = Sk−1 ∪X {* X could be empty set *}

end
OutputXG = Sk

paper. We shall call a3-step greedy system atrioid.
Definition 3 : An independence system(E,F) is a tri-
oid if and only if for any weight functionw : E → R,
the3-step greedy algorithm produces an optimal solu-
tion to the corresponding LCOP.

We need the following additional definitions.
Definition 4 : For an independence system(E,F) and
any setA ⊆ E, F/A = {X : X ∈ F , X ∩ A = ∅}.
We say that the system(E −A,F/A) is obtained from
(E,F) by deleting elements ofA.
Definition 5 : For an independence system(E,F), any
set A ⊆ E and any maximal setB ⊆ A such that
B ∈ F , F \ (A,B) = {X : X ⊆ E−A,X ∪B ∈ F}.
We say that(E−A,F\(A,B)) is obtained from(E,F)
by contractingA with respect toB.

3. Independence Axioms for GG System

In this section, we shall give a complete characteri-
zation of the family of independent sets of a trioid. We
start with some observations.
Observation 2 If (E,F) is a trioid then for anyA ⊆
E, (E −A,F/A) is a trioid.
Proof.Extend any weight functionw : (E−A)→ R to
a weight functionw′ : E → R as follows:w′(i) = w(i)
for eachi ∈ E − A andw′(i) = −M for eachi ∈ A,

whereM is a sufficiently large positive number. Then
the corresponding instances of LCOP on(E,F) and
(E −A,F/A) have the same optimal solution and the
3-step greedy algorithm for the two instances of LCOP
results in the same output.
Observation 3 Let (E,F) be a trioid. For anyA ⊆ E
such that|A| = 3, and anyB ⊆ A such thatB ∈ F and
is a maximal such set,(E −A,F \ (A,B)) is a trioid.
Proof. Extend any weight functionw : (E − A) → R
to a weight functionw′ : E → R as follows:w′(i) =
w(i) for eachi ∈ E − A, w′(i) = 3M for eachi ∈
B and w′(i) = M for eachi ∈ A − B, whereM
is a sufficiently large positive number. The result now
follows.
Theorem 4 Let(E,F) be a trioid. For anyA ⊆ E with
|A| = 3, let B1, B2 be maximal independent subsets of
A. ThenF\(A,B1) = F\(A,B2).
Proof. For convenience letA = {1, 2, 3}. For anyi ∈
{1, 2}, let j = {1, 2}−{i} and letX ∈ F\(A,Bi). It is
sufficient to prove thatX ∈ F\(A,Bj), (i.e.Bj ∪X ∈
F ).

Choosew(1), w(2), w(3), each greater than 2, such
thatw[Bi] + ǫ = w[Bj ] ≥ {w[Y ] : Y ⊆ A, Y ∈ F}.
Assignw(ℓ) = 1 for all ℓ ∈ X andw(ℓ) = −1 for all
ℓ ∈ E − (A ∪ X). Then the 3-step greedy algorithm
choosesS1 = Bj . Sincew[XG] ≥ w[Bi ∪X ] we must
haveBj ∪X = XG ∈ F .

In light of the above theorem, henceforth if(E,F)
is a trioid, then we shall denoteF\(A,B) by F\A).
Theorem 5 Let (E,F) be a trioid. LetX,Y ∈ F
where|X | > |Y |.
(1) If |Y | = 3k or 3k + 2 for some integerk, then

there existsℓ ∈ X − Y such thatY ∪ {ℓ} ∈ F

(2) If |Y | = 3k+1 for some integerk and there does
not existℓ ∈ X − Y such thatY ∪ {ℓ} ∈ F
then for anyi ∈ Y and any{j, p} ⊆ X − Y,
(Y − {i}) ∪ {j, p} ∈ F .

Proof. Since(E,F) is a trioid, the3-step greedy algo-
rithm produces an optimal solution to the corresponding
instance of LCOP for any weight functionw onE.

To prove the assertion of part (1), we consider the
following weight function.

w(i) =











1 + ǫ for all i ∈ Y

1 for all i ∈ X − Y

−1 otherwise

whereǫ is an arbitrarily small positive number. Since
|Y | = 3k or 3k + 2, the setSk+1 in the algorithm
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must containY . Butw[X ] > w[Y ]. Hence the solution
XG ∈ F output by the3-step greedy algorithm must
containY ∪ {ℓ} for someℓ ∈ X − Y . This proves part
(1).

Let us now prove part (2), where|Y | = 3k + 1 for
some integerk. Since |X | > |Y | and there does not
existℓ ∈ X − Y such thatY ∪ {ℓ} ∈ F , it follows that
|X − Y | ≥ 2. Consider the weight function,

w(ℓ) =































1 + 3ǫ for all ℓ ∈ Y − {i}

1 + 2ǫ for ℓ = i

1 + ǫ for ℓ ∈ {j, p}

1 for all ℓ ∈ X − (Y ∪ {j, p})

−1 otherwise

Since|Y | = 3k + 1, the setSk in the3-step greedy
algorithm is preciselyY −{i}. In the(k+1)th iteration,
the algorithm considers the triplet{i, j, p}. If i ∈ Sk+1

then as in the previous case, the algorithm must choose
someℓ ∈ X − Y and henceY ∪ {ℓ} ∈ F , a contra-
diction. If i /∈ Sk+1, then it follows from the defini-
tion of the3-step greedy algorithm that it must choose
Sk+1 = (Y − {i}) ∪ {j, p} ∈ F .

This proves the theorem.
Corollary 6 Let (E,F) be a trioid. For anyA =
{i, j, p} ⊆ E if B1 = {i} andB2 = {j, p} are maximal
independent subsets ofA, thenF\A = ∅.
Proof. Suppose there exists{ℓ} ∈ F\A then{i, ℓ} ∈
F and {j, p, ℓ} ∈ F . By theorem 5, therefore either
{i, j, ℓ} ∈ F or {i, p, ℓ} ∈ F , contradicting maximality
of setsB1 andB2.
Theorem 7 Let (E,F ) be a trioid. LetX,Y ∈ F with
|X | > |Y | and suppose∄ℓ ∈ X−Y such thatY ∪{ℓ} ∈
F . LetR ⊂ Y be such that|R| = 3r for some integer
r. Then:
(1) For any i, j ∈ Y − R, i 6= j and p ∈ E − Y ,

R ∪ {i, j, p} ∈ F .
(2) For any i ∈ Y − R and {j, p} ⊆ E − Y, j 6= p,

R∪{i, j} ∈ F orR∪{i, p} ∈ F orR∪{j, p} ∈ F .
(3) If R ⊆ X ∩ Y , then for anyi ∈ (X ∩ Y ) − R

and {j, p} ⊆ E − Y, j 6= p, R ∪ {i, j} ∈ F or
R ∪ {i, p} ∈ F .

Proof. Since there does not existℓ ∈ X − Y such that
Y ∪ {ℓ} ∈ F , by Theorem 5,|Y | = 3k + 1 for some
integerk and|X − Y | ≥ 2.
Suppose part (1) of the theorem is not true. Then there
exist

i, j ∈ Y −R andp ∈ E−Y such thatR∪{i, j, p} /∈ F .
(1)

Assign the following weights to the elements ofE:

w(ℓ) =







































1 + 4ǫ ∀ℓ ∈ R

1 + 3ǫ for ℓ = i, j

1 + 2ǫ for ℓ = p

1 + ǫ ∀ℓ ∈ Y − (R ∪ {i, j})

1 ∀ℓ ∈ X − (Y ∪ {p})

−1 otherwise

The optimal objective function value of the corre-
sponding instance of LCOP is at leastw[X ] > w[Y ].
The 3-step greedy algorithm choosesSr = R and
Sr+1 as eitherR ∪ {i, j} or R ∪ {i, j, p}. In view
of (1), Sr+1 = S ∪ {i, j}. Since |Y | = 3k + 1,
Sk = Y − {u, v} for someu, v ∈ Y − R. The next
triplet scanned by the algorithm is{u, v, z} for some
z ∈ X − (Y ∪ {p}). Hence the algorithm must choose
Sk+1 such thatY ⊆ Sk+1, and therefore the solution
XG output by the algorithm satisfiesY ∪ {ℓ} ⊆ XG

for someℓ ∈ X − Y , a contradiction.

Let us now consider part (2) of the theorem. If this is
not true, then there exists

i ∈ Y −R and{j, p} ⊆ E − Y, j 6= p, such that (2)

R ∪ {i, j} /∈ F , R ∪ {i, p} /∈ F , andR ∪ {j, p} /∈ F .

Assign the following weights to the elements ofE.

w(ℓ) =







































1 + 4ǫ ∀ℓ ∈ R

1 + 3ǫ for ℓ = i

1 + 2ǫ for ℓ = j, p

1 + ǫ ∀ℓ ∈ Y − (R ∪ {i})

1 ∀ℓ ∈ X − (Y ∪ {j, p})

−1 otherwise

The algorithm now choosesSr = R andSr+1 as ei-
therR∪{i} or R∪{i, j} or R∪{i, p} or R∪{j, p} or
R ∪ {i, j, p}. In view of (2), we haveSr+1 = R ∪ {i}
and henceSk+1 = Y . Sincew[X ] > w[Y ], we must
haveXG ⊇ Y ∪ {ℓ} for someℓ ∈ X − Y , a contradic-
tion.

Let us now consider part (3) of the theorem. If this is
not true, then there exist

R ⊆ X ∩ Y ; i ∈ (X ∩ Y )−R (3)

and{j, p} ⊆ E − Y, j 6= p, such thatR ∪ {i, j} /∈ F ,

andR ∪ {i, p} /∈ F .
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Assign the following weights to the elements ofE.

w(ℓ) =







































2 + 6ǫ ∀ℓ ∈ R

2 + 5ǫ for ℓ = i

1 + 2ǫ for ℓ = j, p

1 + ǫ ∀ℓ ∈ Y − (R ∪ {i})

1 ∀ℓ ∈ X − (Y ∪ {j, p})

−1 otherwise

The algorithm now choosesSr = R andSr+1 as ei-
therR∪{i} or R∪{i, j} or R∪{i, p} or R∪{i, j, p}.
In view of (3), we haveSr+1 = R ∪ {i} and hence
Sk+1 = Y . Since w[X ] > w[Y ], we must have
XG ⊇ Y ∪ {ℓ} for someℓ ∈ X − Y , a contradiction.

This proves the theorem.
Corollary 8 Let [E,F ] be a trioid. If∃e ∈ E such that
{e} /∈ F (i.e. e is a loop) then for anyX,Y ∈ F such
that |X | > |Y |, ∃ℓ ∈ X−Y such thatY ∪{ℓ} ∈ F . In
particular, all the maximal elements ofF are of same
cardinality.
Proof. If possible, letX,Y ∈ F be such that|X | >
|Y | and there does not existℓ ∈ X − Y such that
Y ∪ {ℓ} ∈ F . If |Y | ≥ 2, then from part1 of Theorem
7 by choosing any distincti, j ∈ Y , p = e andR = ∅,
we have a contradiction. If|Y | = 1, i.e.Y = {i}, then
from part2 of Theorem 7 by choosing thisi, p = e,
any j ∈ X andR = ∅, we have a contradiction. This
proves the result.
Theorem 9 Let (E,F) be a trioid and letX,Y ∈ F
with |X − Y | ≥ 2. Then for anye ∈ Y −X, ∃{x, y} ⊆
X − Y such thatX ∪ {e} − {x, y} ∈ F .
Proof.For anye ∈ Y −X assign the following weights
to elements ofE.

w(ℓ) =



















2 + 2ǫ ∀ℓ ∈ X ∩ Y

2 + ǫ for ℓ = e

1 ∀ℓ ∈ X − Y

−1 otherwise

SinceY ∈ F , (X ∩ Y ) ∪ {e} ∈ F . Let ⌊ |X∩Y |
3
⌋ =

k. Then the algorithm choosesSk+1 ⊇ (X ∩ Y ) ∪
{e}, and therefore(X ∩ Y ) ∪ {e} ⊆ XG. Since the
optimal objective function value is at leastw[X ], XG

must contain all but at most two elements, say{x, y}
of X − Y . HenceX ∪ {e} − {x, y} ∈ F .
If X,Y ∈ F are such thatX−Y = {x}, then obviously
for anye ∈ Y −X , X ∪ {e} − {x} ∈ F .

Corollary 10 Let (E,F) be an independence system
that satisfies Theorems 5 and 9. LetX,Y ∈ F with
|X − Y | ≥ 3. Then for anye ∈ Y −X, ∃z ∈ X − Y
such thatX ∪ {e} − z ∈ F .
Proof. By Theorem 9,∃{x, y} ⊆ X − Y such that
X̄ = X ∪ {e} − {x, y} ∈ F . If there existsj ∈ {x, y}
such thatX̄ ∪ {j} = X ∪ {e} − {z} ∈ F where
{z} = {x, y}− {j}, then the result is proved. Else, us-
ing Theorem 5 withX̄,X and anyz ∈ X−Y −{x, y}
we haveX̄−{z}∪{x, y} = X ∪{e}−{z} ∈ F . This
proves the result.
Theorem 11 Let (E,F) be a trioid andX,Y ∈ F
with |X − Y | = 2. Then:
(1) If |X ∩ Y | ≥ 1, then for anye ∈ Y −X (i) there

existsz ∈ X − Y such thatX ∪ {e} − {z} ∈ F
or (ii) for any j ∈ X ∩ Y , X ∪ {e} − {j} ∈ F .

(2) If |X ∩ Y | = 3k for some integerk ≥ 0, and
|X − Y | = |Y −X | = 2, then letX − Y = {i, j}
andY − X = {e, f}. ThenX ∪ {e} − {i} ∈ F
or X ∪ {e} − {j} ∈ F or X ∪ {f} ∈ F .

Proof. To prove part (1), let̄Y = (X ∩ Y ) ∪ {e}. If
∃j ∈ X − Y such thatȲ ∪ {j} = X ∪ {e} − {z} ∈ F
for {z} = (X − Y ) − {j}, the result follows. Else by
Theorem 5 withȲ , X and anyj ∈ X ∩ Y , we get
Ȳ − {j} ∪ (X − Y ) = X ∪ {e} − {j} ∈ F .

To prove part (2) let us assign the following weights to
elements ofE:

w(ℓ) =































3 ∀ℓ ∈ X ∩ Y

2 + ǫ for ℓ = e

1 + ǫ ∀ℓ ∈ {i, j}

1 for ℓ = f

−1 otherwise

The3-step greedy algorithm choosesSk+1 = X ∪ {e}
or X ∪ {e} − {i} or X ∪ {e} − {j} or X . In the first
three cases, the result is proved. In the last case, since
w[Y ] > w[X ], the the algorithm must chooseXG =
X ∪ {f} ∈ F . This proves the result.
Theorem 12 Suppose an independence system(E,F)
satisfies theorems 5, 7, 9, 11. Then:
(1) For anyA ⊆ E, (E −A,F/A) satisfies theorems

5, 7, 9, 11.
(2) For anyB ⊆ A ⊆ E such that|A| = 3 andB is

a maximal subset ofA in F , (E −A,F\(A,B))
satisfies theorems 5, 7, 9, 11.

Proof. Proof of part (1) is straightforward and hence
omitted.
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We now prove part (2). Thus, suppose(E,F) sat-
isfies Theorems 5, 7, 9, 11. It is easy to see that
(E −A,F\(A,B)) satisfies Theorem 9 and part (1) of
Theorem 11.
To prove that(E −A,F\(A,B)) satisfies Theorem 5,
consider anyX,Y ∈ F\(A,B) with |X | > |Y |. Then
X ∪B ∈ F andY ∪B ∈ F . The only non-trivial case
is when|Y ∪ B| = 3k + 1 and |Y | = 3k or 3k − 1.
But in this case, using the fact that(E,F) satisfies
parts(1) and (3) of Theorem 7 withX ∪B , Y ∪B and
with R as a subset ofB of cardinality3⌊ |B|

3
⌋, we get

B ∪ {x} ∈ F for somex ∈ A − B, contradicting the
fact thatB is a maximal subset ofA in F .

Now let us prove that(E − A,F\(A,B)) satisfies
Theorem 7. Thus, consider anyX,Y ∈ F\(A,B)
with |X | > |Y |, such that∄ℓ ∈ X − Y with
Y ∪{ℓ} ∈ F\(A,B). LetR ⊂ Y be such that|R| = 3r
for some integerr. Since(E − A,F\(A,B)) satisfies
Theorem 5,|Y | = 3k + 1, for some integerk. Also,
since(E,F) satisfies Theorem 5 andX ∪ B ∈ F and
Y ∪ B ∈ F , |Y ∪ B| = 3k′ + 1. This implies that
|B| = 0 or 3. The result now follows by applying The-
orem 7 to(E,F) with X ∪B, Y ∪B andR′ = R∪B.

To prove that(E − A,F\(A,B)) satisfies part (2) of
Theorem 11, consider anyX,Y ∈ F with |X∩Y | = 3k
for some integerk ≥ 0, X − Y = {i, j} andY −X =
{e, f}. Let Ȳ = Y ∪B − {f} andX̄ = X ∪B. Then
X̄, Ȳ ∈ F . If Ȳ ∪{y} = X̄ ∪{e}− {x} ∈ F for some
y ∈ {i, j} where{x} = {i, j} − {y}, then the result
is proved. Else, by Theorem 5,|Ȳ | = 3k′ + 1, which
implies that |B| = 0 or 3 and therefore|X̄ ∩ Ȳ | =
3(k + 1). The result now follows by applying part (2)
of Theorem 11 toX̄ andȲ .
Corollary 13 Let (E,F) be an independence system
such that all the maximal elements ofF are of same
cardinality. Then(E,F) is a trioid if and only if it is a
matroid.
Proof. The “if” part of the corollary follows from
Theorem 4 and the facts that (1) the greedy algorithm
(Algorithm 1) produces an optimal solution to LCOP
on a matroid and (2) any deletion/contraction of a ma-
troid is a matroid.

To prove the “only if” part, consider any pair of
maximal elementsX,Y ∈ F and anye ∈ Y − X .
It is sufficient to show that∃i ∈ X − Y such that
X ∪ {e} − {i} ∈ F . If |X − Y | = |Y −X | = 1 this
is trivially true. If |X − Y | = |Y − X | ≥ 3, then the

result follows from Corollary 10. Suppose|X − Y | =
|Y − X | = 2. Let X − Y = {i, j}, Y − X = {e, f}
andȲ = Y − {f}. If Ȳ ∪ {y} = X ∪ {e} − {x} ∈ F
for somey ∈ {i, j} where{x} = {i, j}−{y}, then the
result is proved. Else, it follows from Theorem 5 that
|Ȳ | = 3k + 1 and therefore|X ∩ Y | = 3k. From The-
orem 11,X ∪ {e} − {i} ∈ F or X ∪ {e} − {j} ∈ F
or X ∪ {f} ∈ F . In the first two cases, the result is
proved. In the last case, we have a contradiction to fact
thatX is a maximal element ofF .
This proves the corollary.

We now prove our main result of this paper.
Theorem 14 Let [E,F ] be an independence system.
Then[E,F ] is a trioid if and only if it satisfies condi-
tions of theorems 5, 7, 9 and 11.
Proof. The ‘only if’ part of the theorem follows from
theorems 5, 7, 9 and 11. Let us now prove the ‘if’
part. If the result is not true, then choose a counter-
example with minimum value of|E| and choose a
weight functionw : E → R such that a correspond-
ing solution produced by the3-step greedy algorithm
is not optimal. Obviouslyw(i) > 0 for all i ∈ E
for otherwise it follows from Theorem 12 that we
could delete elements ofE with non-positive weights
to obtain a counter-example with a smaller value of
|E|, contradicting the minimality of|E|. Without loss
of generality we assume that all weights are distinct
and the valuesw[A] =

∑

i∈A w(i) are distinct for all
A ⊆ E. Hence the solutionXG produced by the3-
step greedy algorithm and the optimal solutionX∗ are
unique withXG 6= X∗. Obviously,XG andX∗ are
maximal elements ofF . Let E = {1, 2, · · · , n} and
w(1) > w(2) > · · · > w(n).

The3-step greedy algorithm first considers the triplet
{1, 2, 3} andS1 ⊆ {1, 2, 3}. Note thatS1 6= ∅ for oth-
erwise,(E−{1, 2, 3},F) is a smaller counter-example.
If {1, 2, 3} ∩ (X∗∆XG) = ∅, where∆ is the sym-
metric difference operator, thenS1 ⊆ XG ∩ X∗ and
by Theorem 12,[E − {1, 2, 3},F\({1, 2, 3}, S1)] is a
smaller counter-example, contradicting the minimality
of |E|. Hence the set{1, 2, 3} contains the element
e ∈ X∗∆XG with w(e) maximum. If e ∈ XG − X∗

thenS1∩ (XG−X∗) 6= ∅. If e ∈ X∗−XG, then since
e /∈ XG it follows that

{1, 2, 3} − {e} = {f, g} = S1 ⊆ XG −X∗

and

w(f) + w(g) > w(e).
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Case (1) |XG| < |X∗|: In this case, by max-
imality of XG and X∗ and by Theorem 5, it
follows that |XG| = 3k∗ + 1 for some inte-
ger k∗ ≥ 0. This implies that in some iteration
i ≤ k∗+1, the3-step greedy algorithm scans the triplet
{3i−2, 3i−1, 3i}* XG. Let i∗ be the first such itera-
tion and let{3i∗− 2, 3i∗− 1, 3i∗} = {x1, x2, x3} with
x1 /∈ XG. ThenSi∗−1 ⊂ XG, and|Si∗−1| = 3(i∗−1).

Case (1(a)):|{x2, x3}∩XG| = 1: Without loss of gen-
erality, letx2 ∈ XG. Then it follows from the definition
of XG that the algorithm setsSi∗ = Si∗−1 ∪ {x2}. By
part (2) of Theorem 7, one of the following holds:

(i) Si∗−1 ∪ {x2, x3} ∈ F ,
(ii) Si∗−1 ∪ {x1, x2} ∈ F
(iii) Si∗−1 ∪ {x1, x3} ∈ F

In the first two cases, we have a contradiction to the
choice ofSi∗ by the 3-step greedy algorithm. In the
third case, choice ofSi∗ by the3-step greedy algorithm
implies thatw(x2) > w(x1) + w(x3). Since{x1, x3}
are the first two elements ofE − XG scanned by the
algorithm, we have the following:

For all x, y ∈ X∗ −XG, w(x2) > w(x1) + w(x3) >
w(x) +w(y). SinceS1 ∩ (XG−X∗) 6= ∅, there exists
g ∈ Si∗ ∩ (XG −X∗) and by Theorem 9 there exists
x, y ∈ X∗−XG such thatX̄ = X∗∪{g}−{x, y} ∈ F .
But w(g) ≥ w(x2) > w(x) + w(y) and hence
w[X̄ ] > w[X∗], contradicting the definition ofX∗.

Case (1(b)):{x2, x3} ⊆ XG: In this case, the3-step
greedy algorithm setsSi∗ = Si∗−1 ∪ {x2, x3}. But
by part (1) of Theorem 7,Si∗−1 ∪ {x1, x2, x3} ∈ F ,
contradicting the choice ofSi∗ by the algorithm.

Case (1(c)):{x2, x3} ∩ XG = ∅: In this case, by
definition of XG, Si∗ = Si∗−1. But Si∗−1 ⊆ XG,
|Si∗−1| = 3(i∗−1), |XG| = 3k∗+1 and(i∗−1) ≤ k∗.
Hence, using part (2) of Theorem 7 with some
i ∈ XG − Si∗−1 and{j, p} ⊆ {x1, x2, x3} we get that
Si∗−1 ∪ {α} ∈ F for someα ∈ {j, p}, contradicting
the choice ofSi∗ by the algorithm.

Case (2)|XG| > |X∗|: By Theorem 5 and maximality
ofX∗ andXG, we have|X∗| = 3k∗+1 for some integer
k∗ ≥ 0. If the largest elemente of X∗∆XG is in XG,
then for anyx ∈ X∗−XG,w(e) > w(x). But, by Theo-
rem 5, for anyx ∈ X∗−XG, X̄ = X∗−{x}∪{e} ∈ F
and w[X̄ ] > w[X∗], contradicting the definition of
X∗. Hencee ∈ X∗ − XG and therefore as shown

before,e = 1 and {2, 3} = S1 ⊆ XG − X∗ and
w(1) < w(2) + w(3). If X∗ − XG = {1}, then
w[X∗] < w[XG], a contradiction. Hence, there exists
y ∈ X∗ −XG − {1}. But w(y) < w(3). By Theorem
5, ¯̄X = X∗ − {y} ∪ {3} ∈ F andw[ ¯̄X ] > w[X∗]
contradicting the definition ofX∗.

Case (3) |XG| = |X∗|: Let e be the element of
XG∆X∗ with maximum value ofw(e). Then, as
shown before,e ∈ {1, 2, 3}.

Supposee ∈ XG − X∗. Thenw(e) > w(x) for all
x ∈ X∗ − XG. Sincew[X∗] > w[XG], this implies
that |X∗ − XG| ≥ 2. If |X∗ − XG| ≥ 3, then by
Corollary 10, there existsz ∈ X∗ − XG such that
X̄ = X∗ ∪ {e} − {z} ∈ F . But w[X̄ ] > w[X∗], con-
tradicting the definition ofX∗. Thus |X∗ − XG| =
|XG −X∗| = 2.

Let XG − X∗ = {e, f} andX∗ − XG = {x, y}.
Sincew[X∗] > w[XG], w(x) + w(y) > w(e) + w(f)
and hence,min{w(x), w(y)} > w(f). If there ex-
ists z ∈ XG ∩ X∗ such thatw(z) < w(e), then by
Theorem 11, there existsℓ ∈ X∗ − XG such that
X̂ = X∗∪{e}−{ℓ} ∈ F or X̃ = X∗∪{e}−{z} ∈ F .
But w[X̂ ] > w[X∗] and w[X̃ ] > w[X∗], a contra-
diction. HenceXG ∩ X∗ ⊆ {1, 2, 3} − {e} and so
(XG ∩ X∗) ∪ {e} ⊆ S1. Sincew[X∗] > w[XG],
w(f) < min{w(x), w(y)}. Hence,S1 = (XG∩X∗)∪
{e}.

If XG ∩ X∗ = ∅, then{1, 2, 3} − {e} = {i, j} ⊆
E −XG. If X̂ = {e, j} ∈ F for somej ∈ {x, y} then
sincew[X̂ ] > w[X∗], we have a contradiction. Else,
by part (2) of Theorem 7 we have either{e, i} ∈ F
or {e, j} ∈ F or (i, j) ∈ F . From this and the fact
that w(i) + w(j) ≥ w(x) + w(y) > w(e) we get a
contradiction to the choice ofS1.

If XG ∩ X∗ 6= ∅, then |S1| 6= 3k + 1. Hence,
by Theorem 5, there existsz ∈ {x, y} such that
X̂ = S1 ∪ {z} ∈ F . But w[X̂ ] > w[X∗] and we have
a contradiction.

Supposee ∈ X∗ −XG. Then, as shown before,e =
1, {2, 3} = S1 ⊆ XG−X∗ andw(2) +w(3) > w(1).

If |X∗−XG| ≥ 3, then by Corollary 10, there exists
j ∈ XG−X∗ such thatXG∪{1}−{j} ∈ F . But this
implies that{1, 2} ∈ ff or {1, 3} ∈ F , contradicting
the choice ofS1. Hence,|X∗−XG| = |XG−X∗| = 2



36 Santosh N. Kabadi & Abraham P. Punnen – Trioid: A generalization of matroid and the associated polytope

with XG −X∗ = {2, 3}. Let X∗ −XG = {1, y}.

If XG ∩ X∗ 6= ∅, then by Theorem 11, there exists
z ∈ {2, 3} such thatXG ∪ {1} − {z} ∈ F or for any
j ∈ XG ∩ X∗, XG ∪ {1} − {j} ∈ F . In either case,
we get a contradiction to the choice ofS1.

If XG∩X∗ = ∅, then by Theorem 11,{1, 2} ∈ F or
{1, 3} ∈ F or {y, 2, 3} ∈ F . We thus have either a con-
tradiction to the choice ofS1 or to the choice ofXG.

This proves the theorem.

4. Trioid polytope

For any discrete system(E,F) its rank functionf :
2E → Z+ is defined as follows:

f(A) = max{wA[Y ] : Y ∈ F},

wherewA
i =

{

1 if i ∈ A

0 otherwise
Let (E,F) be a trioid. Consider anyA,B ⊆ E. Let

X ∈ F be a solution tomax{wA∪B[Y ] : Y ∈ F}
obtained by using the3-step greedy algorithm with el-
ements ofE arranged in the following order: elements
of A ∩ B, followed by elements ofA − B, then ele-
ments ofB −A and finally elements ofE − (A ∪B).
The observations (1) to (5) below can be easily verified
using the definition of rank function, the3-step greedy
algorithm and properties of a trioid.

(1) f(A ∪B) = |X |
(2) f(A) ≥ |X ∩ A|
(3) f(B) ≥ |X ∩B|
(4) If |A ∩B| ≡ 0 or 2(mod3), then|X ∩A ∩B| =

f(A ∩B) and hence,

f(A) + f(B) ≥ |X ∩ A|+ |X ∩B|

= |X |+ |X ∩ A ∩B|

= f(A ∪B) + f(A ∩B)

(5) If |A ∩ B| ≡ 1(mod3), then |X ∩ A ∩ B| ≥
f(A ∩B)− 1. Hence,

f(A) + f(B) ≥ |X ∩A|+ |X ∩B|

= |X |+ |X ∩ A ∩B|

≥ f(A ∪B) + f(A ∩B)− 1

We thus have the following theorem:

Theorem 15 Let (E,F) be a trioid with rank function
f : 2E → Z+. Then for anyA,B ⊆ E,
(1) If |A∩B| = 0 or 2( mod3) thenf(A)+ f(B) ≥

f(A ∪B) + f(A ∩B)
(2) If |A ∩ B| = 1( mod3) then f(A) + f(B) ≥

f(A ∪B) + f(A ∩B)− 1
A set function satisfying conditions (1) and (2) of

theorem 15 is called analmost submodular function.
Consider the polytope defined by

P = {X ∈ Rn :
∑

j∈S

xj ≤ f(S)∀S ∈ 2E; xj ≥ 0∀j ∈ E}

We now show that if(E,F) is a trioid, then for any
w ∈ Rn, the optimal solution generated by the3-step
greedy algorithm is an optimal solution to the linear
program (LP-trioid) given below.

LP-trioid Maximize
n
∑

j=1

wjxj

Subject to
X ∈ P.

In other words, we show thatP represents the con-
vex hull of incidence vectors of elements ofF when
(E,F) is a trioid. The dual of LP-trioid, (which we
denote by D-trioid), can be written as follows:

D-trioid Minimize
∑

S⊆E

f(S)yS

Subject to
∑

{yS : j ∈ S ⊆ E} ≥ w(j),

∀j ∈ E
yS ≥ 0 ∀S ⊆ E.

Consider the trioid(E,F) with w1 ≥ w2 ≥ · · · ≥
wn ≥ 0. Each iterationi of the3-step greedy algorithm
will be of one of the following 3 types:

Type 1: n ≥ 3i, Si = Si−1 ∪ {3i − 2} and
Si−1 ∪ {3i − 1, 3i} ∈ F . (This implies that
w3i−2 ≥ w3i−1 + w3i.)

Type 2: n ≥ 3i, Si = Si−1 ∪ {3i − 1, 3i} and
Si−1 ∪ {3i − 2} ∈ F . (This implies that
w3i−2 ≤ w3i−1 + w3i.)

Type 3: All other cases
Let k∗ = ⌈n

3
⌉. Fori ∈ {1, 2, . . . , k∗}, we recursively

define a class ofni×ai matricesBi and a class ofmi×
ai matricesDi as follows, whereai = min{3i, n} and
ni,mi are some integers. (For convenience, we assume
thatn = 3k∗.)
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• If iteration 1 is of type 1 or 2, thenD1 =

[

1 1 0
1 0 1

]

;

elseD1 =
[

1 1 1
]

• If iteration 1 is of type 1 thenB1 =

[

1 0 0

D1

]

• If iteration 1 is of type 2 thenB1 =

[

0 1 1

D1

]

• If iteration 1 is of type 3 thenB1 =





1 0 0
1 1 0

D1





For i = 2, 3, . . . , k∗,

if iteration i is of type 1 or 2 then

Di =





















Di−1

1 1 0
...

...
...

1 1 0

Di−1

1 0 1
...

...
...

1 0 1





















else,

Di =






Di−1

1 1 1
...

...
...

1 1 1







If iteration i is of type 1, then

Bi =













Di−1

1 0 0
...

...
...

1 0 0

Di













If iteration i is of type 2, then

Bi =

[

Di

0 · · · 0 0 1 1

]

Otherwise

Bi =



































Di−1

1 0 0
...

...
...

1 0 0

Di−1

1 1 0
...

...
...

1 1 0

Di−1

1 1 1
...

...
...

1 1 1



































Note that each column ofBi represents a unique el-
ements ofE. Let Li be theni × n matrix where its
(k, j)th elementLi

kj = Bi
kj if j ≤ ai, and0 otherwise.

We now define ap× n matrixB as:

B =











L1

L2

...
Lk∗











.

Each rowi of B is the incidence vector of some subset
Si of E. Let b be ap-vector whoseith component is
f(Si). It is not difficult to verify that the incidence
vectorx∗ of XG ∈ F (the output of the3-step greedy
algorithm) belongs toP and satisfies

Bx = b.

It follows from LP duality [19] that to show thatx∗ is an
optimal solution to LP-trioid, it is sufficient to produce
a dualp-vectory∗ ≥ 0 such thatyTB = w and has the
dual objective function value

∑p

j=1
f(Sj)y

∗
j = wx∗.

We assign values to components ofy∗ recursively.
Please note that for convenience we assume thatn =
3k∗. Let ji =

∑i

k=1
nk for all i ∈ {1, 2, . . . , k∗}. Let

wk∗

= w. For i = k∗, k∗ − 1, . . . , 1
(1) If iteration i is of type 1, we define

y∗r =











































1

mi−1

(wi
3i)

for r = ji −mi−1 + 1, . . . ji
1

mi−1

(wi
3i−1)

for r = ji − 2mi−1 + 1, . . . , ji −mi−1

1

mi−1

(wi
3i−2 − wi

3i − wi
3i−1)

for r = ji−1 + 1, . . . ji − 2mi−1

Let ȳ = (y∗ji−1+1, . . . , y
∗
ji
) and wi−1 = wi −

ȳTBi.
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(2) If iteration i is of type 2, we define

y∗r =















































1

mi−1

(

wi

3i−2
+wi

3i−1
−wi

3i

2

)

for r = ji−1 + 1, . . . ji−1 +mi−1

1

mi−1

(

wi

3i−2
+wi

3i
−wi

3i−1

2

)

for r = ji−1 +mi−1 + 1, . . . , ji − 1
(

wi

3i−1
+wi

3i
−wi

3i−2

2

)

for r = ji

Let ȳ = (y∗ji−1+1, . . . , y
∗
ji
) andwi−1 = wi −

ȳTBi.
(3) If iteration i is of type 3, we define

y∗r =











































1

mi−1

(wi
3i)

for r = ji −mi−1 + 1, . . . ji
1

mi−1

(wi
3i−1 − wi

3i)

for r = ji − 2mi−1 + 1, . . . , ji −mi−1

1

mi−1

(wi
3i−2 − wi

3i−1)

for r = ji−1 + 1, . . . ji−1 +mi−1

Let wi−1
r = wi

r − w3i−2.
The foregoing discussion leads to the following the-

orem.
Theorem 16 For any trioid (E,F), polytopeP gives
the convex hull of incidence vectors of elements ofF .
.

5. Conclusion

We proposed a generalization of the greedy algo-
rithm, calledm-step greedy algorithm, and provide a
complete characterization of an independence system,
called trioid, where the3-step greedy algorithm guar-
antees an optimal solution. Trioids form a proper gen-
eralization the well studied discrete system of matroids.
We also characterize trioid polytope, generalizing the
matroid polytope. Further we introduced a class of set
functions, called almost submodular functions, that gen-
eralizes submodular functions. It is shown that the rank
function of a trioid is almost submodular. We conjecture
that the converse of this result is also true. i.e. almost
submodularity of the rank function is a necessary and
sufficient condition for an independence system to be a
trioid. It will be interesting to investigate mathematical
properties them-step greedy algorithm form ≥ 4. This

is left as a topic for future research. Finally, it will be
interesting to explore natural examples of trioids, be-
yond matroids and subset system based examples that
are not matroids illustrated in the paper.
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