
Algorithmic Operations Research Vol.7 (2012) 41–50

The makespan problem of scheduling multi groups of jobs on multi
processors at different speeds

Wei Ding

Department of Mathematics, Sun Yat-sen University, 510275Guangzhou, China

Abstract

In the paper we mainly study the makespan problem of scheduling n groups of jobs onn special-purpose processors
and m general-purpose processors at different speeds. We first propose an improvedLPT algorithm and investigate
several properties of this algorithm. We then obtain an upper bound for the ratio of the approximate solutionT to the
optimal solutionT ∗ under the improvedLPT algorithm.

Key words: Mathematics Subject Classification (2000): 90B35, 68M20
Heuristic algorithm, LPT algorithm, approximate solutions, optimal solutions, upper bound.

1. Introduction

The problem of schedulingn jobs {J1, J2, · · · , Jn}
with given processing time onm identical processors
{M1,M2, · · · ,Mm} with an objective of minimizing
the makespan is one of the most well-studied problems
in the scheduling literature, where processingJj after
Ji needs ready timew(i, j). It has been proved to be
NP − hard, cf. [10]. Therefore, the study of heuris-
tic algorithms will be important and necessary for this
scheduling problem. In fact, hundreds of scheduling the-
ory analysts have cumulatively devoted an impressive
number of papers to the worst-case and probabilistic
analysis of numerous approximation algorithms for this
scheduling problem.

In 1969 Graham [7] showed in his fundamental paper
that the bound of this scheduling problem is2 − 1

m
as

w(i, j) = 0 under the LS (List Scheduling) algorithm
and the tight bound is43 −

1
3m under the LPT (Longest

Processing Time) algorithm. In 1993 Ovacik and Uzsoy
[9] proved the bound is4 − 2

m
asw(i, j) ≤ tj , where

tj is the processing time of the jobJj , under the LS
algorithm. In 2003 Imreh [8] studied the on-line and
off-line problems on two groups of identical processors
at different speeds, presented the LG (Load Greedy) al-
gorithm, and showed that the bound about minimizing
the makespan is2+m−1

k
and the bound about minimiz-

ing the sum of finish time is2 + m−2
k

, wherem andk
are the numbers of two groups of identical processors.

Email: Wei Ding [dingwei@mail.sysu.edu.cn].

Gairing et al. (2007, [6]) proposed a simple combina-
torial algorithm for the problem of schedulingn jobs
onm processors at different speeds to minimize a cost
stream and showed it is effective and of low complexity.

Besides the above well-studied scheduling problem,
one may face the problem of scheduling multi groups
of jobs on multi processors in real production systems,
such as, the problem of processing different types of
yarns on spinning machines in spinning mills. Re-
cently, the problem of scheduling multi groups of jobs
on multi processors at same or different speeds were
studied provided each job has no ready time. In 2006
Ding [1] studied the problem of schedulingn groups of
jobs on one special-purpose processor andn general-
purpose processors at same speeds under an improved
LPT algorithm. In 2008 Ding [2] investigated the
problem of schedulingn groups of jobs onn special-
purpose processors andm general-purpose processors
at same speeds under an improved LPT algorithm.
In 2009 Ding [3] present an improved LS algorithm
for the Qm+2/rj/Cmax scheduling problem onm
general-purpose processors and two special-purpose
processors. In 2010 Ding [4] studied a heuristic algo-
rithm of the Q//Cmax problem on multi-tasks with
uniform processors. More recently, Ding and Zhao [5]
investigated an improved LS algorithm for the problem
of scheduling multi groups of jobs on multi processors
at the same speed provided each job has a ready time.

However, the problem of schedulingn groups of jobs
onn special-purpose processors andm general-purpose
processors at different speeds has not been studied yet.

c© 2012 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.

42 Wei Ding – Comparisons of Commercial MIP Solvers and an Adaptive Memory Procedure

Note that the classical LPT algorithm is only useful
to solve the problem of scheduling one group of jobs
on multi processors at same speeds or different speeds.
Therefore, our aim of this study is to propose an im-
proved LPT algorithm based on the classical LPT al-
gorithm and to use this new algorithm to analyze this
problem provided processors have different speeds.

The remainder of the paper is organized as follows. In
Section 2, we proposed an improved LPT algorithm and
study several properties of the improved LPT algorithm.
In Section 3 we obtain an upper bound for the ratio of
the approximate solutionT to the optimal solutionT ∗

under the improvedLPT algorithm.

2. An improved LPT algorithm

In the section, we will propose an improved LPT al-
gorithm for this scheduling problem and then investi-
gate several properties of this algorithm.

We will use the following notations throughout the
remainder of the paper.

Let Li (i = 1, · · · , n) denote theith group of jobs,
and letMi (i = 1, · · · , n) andMn+j (j = 1, · · · ,m)
denote theith special-purpose processor and thejth
general-purpose processor, respectively. Then, letL =
(L1, L2, · · · , Ln) stand for the set of all groups of jobs
and let|Lr| denote the number of all jobs inLr. Finally,
let |L| = |L1| + |L2| + · · · + |Ln| denote the number
of all jobs of all groups.

Let Jrk denote thekth job in the rth group after
ordering. If the jobJrk is earlier thanJr′k′ to be as-
signed to a processor, then we writeJrk ≺ Jr′k′ . If the
job Jrk is assigned to the processorMl, then we write
Jrk ∈ Ml.

We usetri (r = 1, · · · , n; i = 1, · · · , |Lr|) to de-
note the processing time ofJri. Then, we denote bysi
(i = 1, · · · , n) the speed of the special–purpose proces-
sorMi and bysn+j (j = 1, · · · ,m) the speed of the
general–purpose processorMn+j , respectively.

Note that the speeds of general–purpose processors
are less than those of special–purpose processors in real
production systems. For simplicity, we takesn+j = 1
(1 ≤ j ≤ m) and assumesi ≥ 1 (i = 1, · · · , n).

LetMTl(Jrk) denote the latest absolutely finish time
of the processorMl before the jobJrk is assigned
and letMTl denote the latest absolutely finish time of
the processorMl after all jobs are assigned. Next, let
MLl(Jrk) (l = 1, 2, · · · ,m+n) denote the set of jobs
assigned in the processorMl before the jobJrk is as-
signed and let

Tr =

|Lr|∑

i=1

tri r = 1, 2, · · · , n,

MTl(Jrk) =
∑

J
r
′
k
′ ∈Ml,J

r
′
k
′≺Jrk

tr′k′ , MTl

=
∑

Jrk∈Ml

trk, l = 1, 2, · · · , n+m,

and

MLl(Jrk) = {Jr′k′ |Jr′k′ ≺ Jrk, Jr′k′ ∈ Ml}

l = 1, 2, · · · , n+m.

The main strategy of the improvedLPT algorithm
is based on the intuitive fact thatn groups are listed in
order of the total real processing time of the group, i.e.,
T1

s1
≥ T2

s2
≥ · · · ≥ Tn

sn
, that the jobs in each group are

listed in order of the total processing time of the job,
i.e., tri ≥ tri+1, r = 1, 2, · · · , n, i = 1, 2, ·, |Lr| − 1,
and that whenever a processor becomes idle for assign-
ment, the first job unexecuted is taken from the list and
assigned to this processor.

Assume that the job is assigned in an increasing order
of the index and that if all jobs before thekthr job in the
groupLr have been assigned and the jobJrkr

is waiting
for being assigned, then jobsJ1k1

, J2k2
, · · · , Jnkn

are
called as candidates.
Definition 1. When jobsJ1k1

, J2k2
, · · · , Jnkn

are can-
didates, the possible absolutely processing time (SMT)
of the special-purpose processor for the groupLr is

SMTr(kr) = Tr −
∑

Jri∈

n+m⋃
j=n+1

Mj ,i<kr

tri,

r = 1, 2, · · · , n.

When some groupLr is the empty set, we setSMTr =
SMTr(k) ≡ 0, wherek is an arbitrary positive integer.
Definition 2. When the jobJrkr

is the candidate, the
relative SMT of the groupLr (r = 1, 2, · · · , n) is

SMTr(kr)

sr
, r = 1, 2, · · · , n.

The steps of the improvedLPT algorithm are the
following:

Step 1. Ordering. LetT1/s1 ≥ T2/s2 ≥ · · · ≥ Tn/sn,
tri ≥ tri+1, i = 1, 2, · · · , |Lr| − 1, r = 1, 2, · · · , n.

Step 2. Initialization. Setkr = 1, MTl(Jrkr
) = 0, and

MLl(Jrkr
) = ∅, r = 1, 2, · · · , n, l = 1, 2, · · · , n+m.

Wei Ding – Algorithmic Operations Research Vol.7 (2012) 41–50 43

Step 3. Choose the job for processing according to the
rule of the maximum relative SMT. If

r = min{r
′

|
SMTr

′ (kr′)

sr′
= max

r
′′=1,2,··· ,n

SMTr
′′ (kr′′)

sr′′
},

(1)
then the jobJrkr

is the candidate.

Step 4. Choose the processor according to the rule of
being the first with the earlier idle time. When the job
Jrkr

∈ Lr (r = 1, 2, · · · , n) is waiting for being as-
signed, if

p=min{q|
MTq(Jrkr

) + trkr

sq

= min
l=r,n+1,··· ,n+m

MTl(Jrkr
) + trkr

sl
},

then letJrkr
∈ Mp.

Step 5. If all jobs are assigned, then the program is
over. Otherwise, go to Step 3.

Let ST (Jij) andCT (Jij) denote the beginning time
and the finishing time of the jobJij , respectively. We
now present several properties of the improvedLPT
algorithm.
Lemma 1. (1) If Jij , Jrk ∈ Ml, l = 1, 2, · · · , n +m,
andJij ≺ Jrk, then

CT (Jij) ≤ ST (Jrk).

(2) If Jij , Jrk ∈ Lr, r = 1, 2, · · · , n, and Jij ≺ Jrk,
thenCT (Jij)− tij ≤ ST (Jrk).

(3) If Jij ∈ Lr, r = 1, 2, · · · , n, then MTl(Jij)+tij
sl

≥

CT (Jij), l = r, n+ 1, · · · , n+m.

Proof. By Step 1 and the definitions ofST (Jij) and
CT (Jij), we get (1) and (2). By Step 4 and the def-
initions of ST (Jij) andCT (Jij), we obtain (3). This
completes the proof of the lemma.

Lemma 2. Let T be the makespan of the above im-
proved LPT algorithm. If there exists a jobJrp ∈
Lr such thatCT (Jrp) = T , r = 1, 2, · · · , n, p =
1, 2, · · · , |Lr| andJkq ≺ Jrp, k = 1, 2, · · · , n, k 6= r,
q = 1, 2, · · · , |Lk|, then

Tk ≥ SMTk(q) > skT.

Proof. BecauseJkq ≺ Jrp, we may assume the jobJkq
is chosen to assign whenJkq andJrs are candidates,
wheres ≤ p. Based on the algorithm, we obtain

SMTk(q)

sk
>

SMTr(s)

sr
.

By the definition ofSMT , we have

Tk

sk
>

SMTk(q)

sk
>

SMTr(s)

sr
≥

SMTr(p)

sr
.

If Jrp ∈ Mr, in view of CT (Jrp) = T andT being
the makespan, thenMTr = srT. From the definition of
SMTr(p), we know thatJrp is the last finish job, but
may not be the last assigned job of the groupLr. When
the jobJrp is waiting for being assigned, we have

SMTr(p) = Tr −
∑

Jri∈
⋃

n+m

j=n+1
Mj , i<p

trj

=
∑

Jri∈Mr , i<p

trj + trp + trp+1 + · · ·+ tr|Lr|,

and

MTr =
∑

Jri∈Mr , i<p

trj + trp.

Then it follows that

SMTr(p) ≥ MTr = srT.

Thus, we get

Tk ≥ SMTk(q) > skT.

If Jrp ∈ Mj (n + 1 ≤ j ≤ n+m), in view of Step
4, then we have

MTr(Jrp) + trp
sr

> MTj(Jrp) + trp = T. (2)

It follows thatMTr(Jrp) + trp > srT .
Note thatCT (Jrp) = T . Thus

SMTr(p) =MTr(Jrp) +
∑

i≥p

tri

=MTr(Jrp) + trp +
∑

i≥p+1

tri

≥MTr(Jrp) + trp > srT. (3)

Therefore, we getTk > SMTk(q) > skT . This com-
pletes the proof of the lemma.

Lemma 3. If there exists a jobJrp ∈ Lr in L =
(L1, L2, · · · , Ln) such thatCT (Jrp) = T (L) and there
exists at least one groupLk, k 6= r, such that

{Jkq|Jkq ∈
n+m⋃

j=n+1

Mj , Jkq ≺ Jrp} = ∅,

44 Wei Ding – Comparisons of Commercial MIP Solvers and an Adaptive Memory Procedure

then there exists someL
′

such that|L
′

| < |L| and

T (L
′

)/T ∗(L
′

) ≥ T (L)/T ∗(L) = T/T ∗,

whereT (L) = T andT ∗(L) = T ∗.

Proof. Note that the assumption

{Jkq|Jkq ∈
n+m⋃
j=n+1

Mj, Jkq ≺ Jrp} = ∅ means that all

assigned jobs inLk before the last finish jobJrp have
not been assigned on the general-purpose processorMj

(n+ 1 ≤ j ≤ n+m). Let

L
′

1 = L1, L
′

2 = L2, · · · , L
′

k−1 = Lk−1, L
′

k = Lk+1,

· · · , L
′

n−1 = Ln, L
′

n = ∅, L
′

= (L
′

1, L
′

2, · · · , L
′

n).

ThenSMTn(L
′

) ≡ 0 and the order of the jobs inL
′

1,
L

′

2, · · · , L
′

n−1 is the same as that inL−Lk. Thus, they
have the same assignment.

By the assumption of Lemma 3, we know that all as-
signed jobs inLk before the jobJrp have been assigned
on the special-purpose processorMk. This implies that
any assigned jobs inLk after the last finish jobJrp will
not change the last finish timeT (L). SchedulingL−Lk

on n +m processors is equivalent to schedulingL on
n+m processors. Therefore the last finish time ofL is
the same as that ofL′, i.e.

CT (L
′

|Jrp) = CT (L|Jrp) = T (L).

Since|L
′

| < |L|, it follows that

T ∗(L
′

) ≤ T ∗(L).

This yields

T (L
′

)/T ∗(L
′

) ≥ T (L)/T ∗(L).

This completes the proof of the lemma.

3. Analysis of the improvedLPT algorithm

In the section, we obtain an upper bound for the ratio
of the approximate solutionT to the optimal solution
T ∗ under the improvedLPT algorithm.
Theorem 1. Consider the problem of schedul-
ing n groups of jobsL = {L1, L2, · · · , Ln} on
{M1,M2, · · · ,Mn} special-purpose processors and
{Mn+1,Mn+2 · · · ,Mn+m} general-purpose proces-
sors at different speeds with the objective of minimizing

the makespan. LetT be the makespan of the above im-
provedLPT algorithm. Then the bound of this schedul-
ing problem under the improvedLPT algorithm is

T

T ∗
≤ 1 +

m∑
i∈I

si
,

whereI is the set of group of jobs in which there exists
at least one job to be assigned on some general-purpose
processor before the latest finish time.

Proof. Assume there existsJrp ∈ Lr such that
CT (Jrp) = T .
Case A. If |I| = n, i.e., ∀Jkq ∈ Lk, k 6= r,

{Jkq|Jkq ∈
n+m⋃
j=n+1

Mj , Jkq ≺ Jrp} 6= ∅, then we may

assume

uk = max{i|Jki ∈
n+m⋃

j=n+1

Mj, Jki ≺ Jrp}.

From the algorithmJk1 ∈ Mk, we know thatuk ≥ 2.
Note thatCT (Jrp) = T . By Lemma 1, we obtain

MTr(Jrp) + trp
sr

≥ CT (Jrp) = T.

By Lemma 2, for anyJkuk
∈ Lk, k 6= r, we have

Tk ≥ SMTk(uk) > skT.

Thus

T ∗ ≥
T1 + T2 + · · ·+ Tn

m+
n∑

i=1

si

≥
T1 + T2 + · · ·+MTr(Jrp) + trp + · · ·+ Tn

m+
n∑

i=1

si

≥
s1T + s2T + · · ·+ srT + · · ·+ snT

m+
n∑

i=1

si

≥

n∑
i=1

si

m+
n∑

i=1

si

T.

This yields

T

T ∗
≤ 1 +

m
n∑

i=1

si

.

Wei Ding – Algorithmic Operations Research Vol.7 (2012) 41–50 45

Case B. If|I| < n, i.e., there existsJkq ∈ Lk, k 6= r,
such that

{Jkq|Jkq ∈
n+m⋃

j=n+1

Mj, Jkq ≺ Jrp} = ∅,

then by Lemma 3 and the definition ofI, we know that
there existsL

′

and|L
′

| = |I| such that

{Jkq|Jkq ∈
n+m⋃

j=n+1

Mj , Jkq ≺ Jrp} 6= ∅,

∀Jkq ∈ L
′

k, k 6= r.

By Lemma 3, in view of the proof of case A, we have

T

T ∗
=

T (L)

T ∗(L)
≤

T (L
′

)

T ∗(L′)
≤ 1 +

m∑
i∈I

si
.

This completes the proof of the theorem.

As a consequence of Theorem 1, we have
Corollary 1. The scheduling problem in Theorem 1 un-
der the improvedLPT algorithm has the boundT

T∗
≤

1 + m
|I| .

Next, the following example will show how the im-
provedLPT algorithm works.

Consider the following scheduling problems.
Assume that there are three groups of jobs and each

group separately owns one special-purpose processor
and jointly owns two general-purpose processors.

Step 1. Ordering.
Let the jobs of the groupL1 be denoted by

J11, J12, J13, J14, J15, J16, and let their absolutely
processing time bet11 = 65, t12 = 42, t13 =
37, t14 = 36, t15 = 28, t16 = 22, respectively.

Let the jobs of the groupL2 be denoted by
J21, J22, J23, J24, J25, and let their absolutely pro-
cessing time bet21 = 70, t22 = 55, t23 = 45, t24 =
39, t25 = 31, respectively.

Let the jobs of the groupL3 be denoted by
J31, J32, J33, J34, J35, J36, and let their absolutely
processing time bet31 = 60, t32 = 50, t33 = 40, t34 =
36, t35 = 34, t36 = 30, respectively.

Let the speed of the special-purposeM1 of L1 be
s1 = 1.2, let the speed of the special-purposeM2 of L2

be s2 = 1.3, and let the speed of the special-purpose
M3 of L3 bes3 = 1.5, respectively.

Let the speeds of two general-purpose processors be
s4 = s5 = 1. Then T1 = 230, T2 = 240, T3 =
250, T1

s1
= 191.7, T2

s2
= 184.6, T3

s3
= 166.7.

Step 2. Initialization.
Setk1 = 1, k2 = 1, k3 = 1. Let the latest absolutely

finish time of all processors beMTl = 0, and let the
sets of jobs assigned in all processors beMLl = ∅, l =
1, 2, 3, 4, 5.

Step 3. Choose the job for processing according to
the rule of the maximum realtiveSMT .

Since
SMT1(1)

s1
=

230

1.2
= 191.7,

SMT2(1)

s2
=

240

1.3
= 184.6,

and
SMT3(1)

s3
=

250

1.5
= 166.7,

it follows that the jobJ11 is the candidate. Takek1 = 2.
Step 4. Choose the processor according to the rule of

being the first with the earlier idle time.
Since

(MT1 + t11)

s1
=

65

1.2
= 54.2,

(MT4 + t11)

s4
=

65

1
= 65,

and
(MT5 + t11)

s5
=

65

1
= 65,

it follows that the jobJ11 is assigned on the processor
M1. Thus

ML1 = {J11}, MT1 = 65.

Step 3. Choose the job for processing.
Since

SMT1(2)

s1
=

230

1.2
= 191.7,

SMT2(1)

s2
=

240

1.3
= 184.6,

and
SMT3(1)

s3
=

250

1.5
= 166.7,

it follows that the jobJ12 is the candidate. Takek1 = 3.
Step 4. Choose the processor.
Since

(MT1 + t12)

s1
=

(65 + 42)

1.2
= 89.2,

(MT4 + t12)

s4
=

42

1
= 42,

46 Wei Ding – Comparisons of Commercial MIP Solvers and an Adaptive Memory Procedure

and
(MT5 + t12)

s5
=

42

1
= 42,

it follows that the jobJ12 is assigned on the processor
M4. Thus

ML4 = {J12}, MT4 = 42.

Step 3. Choose the job for processing.
Since

SMT1(3)

s1
=

(230− 42)

1.2
=

188

1.2
= 156.7,

SMT2(1)

s2
=

240

1.3
= 184.6,

and
SMT3(1)

s3
=

250

1.5
= 166.7,

it follows that the jobJ21 is the candidate. Takek2 = 2.
Step 4. Choose the processor.
Since

(MT2 + t21)

s2
=

70

1.3
= 53.8,

(MT4 + t21)

s4
=

(42 + 70)

1
= 112,

and
(MT5 + t21)

s5
=

70

1
= 70,

it follows that the jobJ21 is assigned on the processor
M2. Thus,

ML2 = {J21}, MT2 = 70.

Step 3. Choose the job for processing.
Since

SMT1(3)

s1
=

(230− 42)

1.2
=

188

1.2
= 156.7,

SMT2(2)

s2
=

240

1.3
= 184.6,

and
SMT3(1)

s3
=

250

1.5
= 166.7,

it follows that the jobJ22 is the candidate. Takek2 = 3.
Step 4. Choose the processor.
Since

(MT2 + t22)

s2
=

125

1.3
= 96.2,

(MT4 + t22)

s4
=

97

1
= 97,

and
(MT5 + t22)

s5
=

55

1
= 55,

it follows that the jobJ22 is assigned on the processor
M5. Thus

ML5 = {J22}, MT5 = 55.

Step 3. Choose the job for processing.
Since

SMT1(3)

s1
=

(230− 42)

1.2
=

188

1.2
= 156.7,

SMT2(3)

s2
=

(240− 55)

1.3
= 142.3,

and
SMT3(1)

s3
=

250

1.5
= 166.7,

it follows that the jobJ31 is the candidate. Takek3 = 2.
Step 4. Choose the processor.
Since

(MT3 + t31)

s3
=

60

1.5
= 40,

(MT4 + t31)

s4
=

(42 + 60)

1
= 102,

and
(MT5 + t31)

s5
=

(55 + 60)

1
= 115,

it follows that the jobJ31 is assigned on the processor
M3. Thus

ML3 = {J31}, MT3 = 60.

Step 3. Choose the job for processing.
Since

SMT1(3)

s1
=

(230− 42)

1.2
=

188

1.2
= 156.7,

SMT2(3)

s2
=

(240− 55)

1.3
= 142.3,

and
SMT3(2)

s3
=

250

1.5
= 166.7,

it follows that the jobJ32 is the candidate. Takek3 = 3.
Step 4. Choose the processor.

Wei Ding – Algorithmic Operations Research Vol.7 (2012) 41–50 47

Since

(MT3 + t32)

s3
=

(60 + 50)

1.5
= 73.3,

(MT4 + t32)

s4
=

(42 + 50)

1
= 92,

and
(MT5 + t32)

s5
=

(55 + 50)

1
= 105,

it follows that J32 is assigned on the processorM3.
Thus,

ML3 = {J31, J32}, MT3 = 60 + 50 = 110.

Step 3. Choose the job for processing.
Since

SMT1(3)

s1
=

(230− 42)

1.2
=

188

1.2
= 156.7,

SMT2(3)

s2
=

(240− 55)

1.3
= 142.3,

and
SMT3(3)

s3
=

250

1.5
= 166.7,

it follows that the jobJ33 is the candidate. Takek3 = 4.
Step 4. Choose the processor.
Since

(MT3 + t33)

s3
=

(110 + 40)

1.5
= 100,

(MT4 + t32)

s4
=

(42 + 40)

1
= 82,

and
(MT5 + t32)

s5
=

(55 + 40)

1
= 95,

it follows that the jobJ33 is assigned on the processor
M4. Thus,

ML4 = {J12, J33}, MT4 = 42 + 40 = 82.

Step 3. Choose the job for processing.
Since

SMT1(3)

s1
=

(230− 42)

1.2
=

188

1.2
= 156.7,

SMT2(3)

s2
=

(240− 55)

1.3
= 142.3,

and
SMT3(4)

s3
=

(250− 40)

1.5
= 140,

it follows that the jobJ13 is the candidate. Takek1 = 4.
Step 4. Choose the processor.
Since

(MT1 + t13)

s1
=

(65 + 37)

1.2
= 85,

(MT4 + t13)

s4
=

(82 + 37)

1
= 119,

and
(MT5 + t13)

s5
=

(55 + 37)

1 = 92
,

it follows that the jobJ13 is assigned on the processor
M1. Thus,

ML1 = {J11, J13}, MT1 = 65 + 37 = 102.

Step 3. Choose the job for processing.
Since

SMT1(4)

s1
=

(230− 42)

1.2
=

188

1.2
= 156.7,

SMT2(3)

s2
=

(240− 55)

1.3
= 142.3,

and
SMT3(4)

s3
=

(250− 40)

1.5
= 140,

it follows that the jobJ14 is the candidate. Takek1 = 5.
Step 4. Choose the processor.
Since

(MT1 + t14)

s1
=

(102 + 36)

1.2
= 115,

(MT4 + t14)

s4
=

(82 + 36)

1
= 118,

and
(MT5 + t14)

s5
=

(55 + 36)

1
= 91,

it follows that the jobJ14 is assigned on the processor
M5. Thus,

ML5 = {J22, J14}, MT5 = 55 + 36 = 91.

Step 3. Choose the job for processing.
Since

SMT1(5)

s1
=

(230− 42− 36)

1.2
=

152

1.2
= 126.7,

48 Wei Ding – Comparisons of Commercial MIP Solvers and an Adaptive Memory Procedure

SMT2(3)

s2
=

(240− 55)

1.3
= 142.3,

and
SMT3(4)

s3
=

(250− 40)

1.5
= 140,

it follows that the jobJ23 is the candidate. Takek2 = 4.
Step 4. Choose the processor.
Since

(MT2 + t23)

s2
=

(70 + 45)

1.3
= 88.5,

(MT4 + t23)

s4
=

(82 + 45)

1
= 127,

and
(MT5 + t23)

s5
=

(91 + 45)

1
= 136,

it follows that the jobJ23 is assigned on the processor
M2. Thus

ML2 = {J21, J23}, MT2 = 70 + 45 = 115.

Step 3. Choose the job for processing.
Since

SMT1(5)

s1
=

(230− 42− 36)

1.2
=

152

1.2
= 126.7,

SMT2(4)

s2
=

(240− 55)

1.3
= 142.3,

and
SMT3(4)

s3
=

(250− 40)

1.5
= 140,

it follows that the jobJ24 is the candidate. Takek2 = 5.
Step 4. Choose the processor.
Since

(MT2 + t24)

s2
=

(115 + 39)

1.3
= 118.5,

(MT4 + t24)

s4
=

(82 + 39)

1
= 121,

and
(MT5 + t24)

s5
=

(91 + 39)

1
= 130,

it follows that the jobJ24 is assigned on the processor
M2. Thus,

ML2 = {J21, J23, J24}, MT2 = 115 + 39 = 154.

Step 3. Choose the job for processing.

Since

SMT1(5)

s1
=

(230− 42− 36)

1.2
=

152

1.2
= 126.7,

SMT2(5)

s2
=

(240− 55)

1.3
= 142.3,

and
SMT3(4)

s3
=

(250− 40)

1.5
= 140,

it follows thatJ25 is the candidate. Takek2 = 6.
Step 4. Choose the processor.
Since

(MT2 + t25)

s2
=

(154 + 31)

1.3
= 142.3,

(MT4 + t25)

s4
=

(82 + 31)

1
= 113,

and
(MT5 + t25)

s5
=

(91 + 31)

1
= 122,

it follows that the jobJ25 is assigned on the processor
M4. Thus

ML4 = {J12, J33, J25}, MT4 = 82 + 31 = 113.

Step 3. Choose the job for processing.
Note that all jobs inL2 have been assigned. By com-

paring

SMT1(5)

s1
=

(230− 42− 36)

1.2
=

152

1.2
= 126.7

with
SMT3(4)

s3
=

(250− 40)

1.5
= 140,

we see that the jobJ34 is the candidate. Takek3 = 5.
Step 4. Choose the processor.
Since

(MT3 + t34)

s3
=

(110 + 36)

1.5
= 97.3,

(MT4 + t34)

s4
=

(113 + 36)

1
= 149,

and
(MT5 + t34)

s5
=

(91 + 36)

1
= 127,

it follows that the jobJ34 is assigned on the processor
M3. Thus,

ML3 = {J31, J32, J34}, MT3 = 110 + 36 = 146.

Wei Ding – Algorithmic Operations Research Vol.7 (2012) 41–50 49

Step 3. Choose the job for processing.
Since

SMT1(5)

s1
=

(230− 42− 36)

1.2
=

152

1.2
= 126.7

and
SMT3(5)

s3
=

(250− 40)

1.5
= 140,

it follows that the jobJ35 is the candidate. Takek3 = 6.
Step 4. Choose the processor.
Since

(MT3 + t35)

s3
=

(146 + 34)

1.5
= 120,

(MT4 + t35)

s4
=

(113 + 34)

1
= 147,

and
(MT5 + t35)

s5
=

(91 + 34)

1
= 125,

it follows that the jobJ35 is assigned on the processor
M3. Thus,

ML3 = {J31, J32, J34, J35}, MT3 = 146+34 = 180.

Step 3. Choose the job for processing.
Since

SMT1(5)

s1
=

(230− 42− 36)

1.2
=

152

1.2
= 126.7

and
SMT3(6)

s3
=

(250− 40)

1.5
= 140,

it follows that the jobJ36 is the candidate. Takek3 = 7.
Step 4. Choose the processor.
Since

(MT3 + t36)

s3
=

(180 + 30)

1.5
= 140,

(MT4 + t36)

s4
=

(113 + 30)

1
= 143,

and
(MT5 + t36)

s5
=

(91 + 30)

1
= 121,

it follows that the jobJ36 is assigned on the processor
M5. Thus,

ML5 = {J22, J14, J36}, MT5 = 91 + 30 = 121.

Step 3. Choose the job for processing.

Since all jobs inL3 have been assigned, we only need
to assign the remaining jobs inL1. Thus the jobJ15 is
the candidate. Takek1 = 6.

Step 4. Choose the processor.
Since

(MT1 + t15)

s1
=

(102 + 28)

1.2
= 108.3,

(MT4 + t15)

s4
=

(113 + 28)

1
= 141,

and
(MT5 + t15)

s5
=

(121 + 28)

1
= 149,

it follows that J15 is assigned on the processorM1.
Thus,

ML1 = {J11, J13, J15}, MT1 = 102 + 28 = 130.

Step 3. Choose the job for processing.
Let the jobJ16 be the candidate. Takek1 = 7.
Step 4. Choose the processor.
Since

(MT1 + t16)

s1
=

(130 + 22)

1.2
= 126.7,

(MT4 + t16)

s4
=

(113 + 22)

1
= 135,

and
(MT5 + t16)

s5
=

(121 + 22)

1
= 143,

it follows that the jobJ16 is assigned on the processor
M1. Thus,

ML1 = {J11, J13, J15, J16}, MT1 = 130+22 = 152.

Step 5. If all jobs are assigned, then the program is
over.

Up to now, all jobs in any groups have been assigned.
So all assigned jobs on each processor and their finish
time are the following:

ML1={J11, J13, J15, J16},MT1=152,
MT1

s1
=126.7,

ML2 = {J21, J23, J24},MT2 = 154,
MT2

s2
= 118.5,

ML3 = {J31, J32, J34, J35},MT3 = 180,
MT3

s3
= 120,

50 Wei Ding – Comparisons of Commercial MIP Solvers and an Adaptive Memory Procedure

ML4 = {J12, J33, J25},MT4 = 113,
MT4

s4
= 113,

ML5 = {J22, J14, J36},MT5 = 121,
MT5

s5
= 121.

Thus,T = 126.7 and

T ∗ ≥
(T1 + T2 + T3)

(s1 + s2 + s3 + s4 + s5)
= 120.

On the other hand, we have the following assignment:

ML1 = {J11, J12, J13},MT1 = 144,
MT1

s1
= 120,

ML2 = {J21, J22, J25},MT2 = 156,
MT2

s2
= 120,

ML3={J31, J32, J33, J36},MT3=180,
MT3

s3
=120,

ML4={J14, J15, J16,J35},MT4=120,
MT4

s4
=120,

ML5 = {J23, J24, J34},MT5 = 120,
MT5

s5
= 120.

This implies that the optimal solutionT ∗ = 120.
Thus,

T

T ∗
=

126.7

120
= 1.0558 < 1+

2

(1.2 + 1.3 + 1.5)
= 1.5,

which is consistent with the conclusion of Theorem 1.

Acknowledgments:This work was partially supported
by NSFC (No. 10971234). The author thanks the referee
for valuable comments and suggestions.

Received 1-3-2011; revised 19-3-2012; accepted 27-6-2012

References

[1] W. Ding, A type of scheduling problem on general-
purpose machinery andn group tasks,OR Transactions,
10 (2006), 122–126.

[2] W. Ding, A type of scheduling problem onm general-
purpose machinery andn group tasks with uniform
processors,Acta Sci. Natur. Univ. Sunyatseni, 47 (2008),
19–22.

[3] W. Ding, An improved LS algorithm for theQm+2

/rj /Cmax scheduling problem onm general-purpose
machineries and two special-purpose machineries,
Comm. On Appl. Math. And Comput., 23 (2009), 26–34.

[4] W. Ding, Heuristic algorithm of theQ//Cmax problem
on multi-tasks with uniform processors,Acta Sci. Natur.
Univ. Sunyatseni, 49 (2010), 5–8.

[5] W. Ding and Y. Zhao, An improved LS algorithm for
the problem of scheduling multi groups of jobs on multi
processors at the same speed,Algorithmic Operations
Research, 5 (2010), 34–38.

[6] M. Gairing, B. Monien and A. Woclaw, A faster
combinatorial approximation algorithm for scheduling
unrelated parallel machines,Theoret. Comput. Sci., 380
(2007), 87–99.

[7] R. L. Graham, Bounds on multiprocessing timing
anomalies,SIAM J. Appl. Math., 17 (1969), 416–429.

[8] Cs. Imreh, Scheduling problems on two sets of identical
machines,Computing, 70 (2003), 277–294.

[9] I. M. Ovacik and R. Uzsoy, Worst-case error bounds
for parallel machine sceduling problems with bounded
sequence dependent setup times,Oper. Res. Lett., 14
(1993), 251–256.

[10] P. Schuurman and G. J. Woeginger, Polynomial time
approximation algorithms for machine scheduling: Ten
open problems,J. Sched.2 (1999), 203–213.

