n
 Algorithmic Operations Research Vol. 7 (2012) 41-50
 The makespan problem of scheduling multi groups of jobs on multi processors at different speeds

Wei Ding
Department of Mathematics, Sun Yat-sen University, 510275 Guangzhou, China

Abstract

In the paper we mainly study the makespan problem of scheduling n groups of jobs on n special-purpose processors and m general-purpose processors at different speeds. We first propose an improved LPT algorithm and investigate several properties of this algorithm. We then obtain an upper bound for the ratio of the approximate solution T to the optimal solution T^{*} under the improved LPT algorithm.

Key words: Mathematics Subject Classification (2000): 90B35, 68M20
Heuristic algorithm, LPT algorithm, approximate solutions, optimal solutions, upper bound.

1. Introduction

The problem of scheduling n jobs $\left\{J_{1}, J_{2}, \cdots, J_{n}\right\}$ with given processing time on m identical processors $\left\{M_{1}, M_{2}, \cdots, M_{m}\right\}$ with an objective of minimizing the makespan is one of the most well-studied problems in the scheduling literature, where processing J_{j} after J_{i} needs ready time $w(i, j)$. It has been proved to be $N P$ - hard, cf. [10]. Therefore, the study of heuristic algorithms will be important and necessary for this scheduling problem. In fact, hundreds of scheduling theory analysts have cumulatively devoted an impressive number of papers to the worst-case and probabilistic analysis of numerous approximation algorithms for this scheduling problem.

In 1969 Graham [7] showed in his fundamental paper that the bound of this scheduling problem is $2-\frac{1}{m}$ as $w(i, j)=0$ under the LS (List Scheduling) algorithm and the tight bound is $\frac{4}{3}-\frac{1}{3 m}$ under the LPT (Longest Processing Time) algorithm. In 1993 Ovacik and Uzsoy [9] proved the bound is $4-\frac{2}{m}$ as $w(i, j) \leq t_{j}$, where t_{j} is the processing time of the job J_{j}, under the LS algorithm. In 2003 Imreh [8] studied the on-line and off-line problems on two groups of identical processors at different speeds, presented the LG (Load Greedy) algorithm, and showed that the bound about minimizing the makespan is $2+\frac{m-1}{k}$ and the bound about minimizing the sum of finish time is $2+\frac{m-2}{k}$, where m and k are the numbers of two groups of identical processors.

[^0]Gairing et al. (2007, [6]) proposed a simple combinatorial algorithm for the problem of scheduling n jobs on m processors at different speeds to minimize a cost stream and showed it is effective and of low complexity.

Besides the above well-studied scheduling problem, one may face the problem of scheduling multi groups of jobs on multi processors in real production systems, such as, the problem of processing different types of yarns on spinning machines in spinning mills. Recently, the problem of scheduling multi groups of jobs on multi processors at same or different speeds were studied provided each job has no ready time. In 2006 Ding [1] studied the problem of scheduling n groups of jobs on one special-purpose processor and n generalpurpose processors at same speeds under an improved LPT algorithm. In 2008 Ding [2] investigated the problem of scheduling n groups of jobs on n specialpurpose processors and m general-purpose processors at same speeds under an improved LPT algorithm. In 2009 Ding [3] present an improved LS algorithm for the $Q_{m+2} / r_{j} / C_{\max }$ scheduling problem on m general-purpose processors and two special-purpose processors. In 2010 Ding [4] studied a heuristic algorithm of the $Q / / C_{\max }$ problem on multi-tasks with uniform processors. More recently, Ding and Zhao [5] investigated an improved LS algorithm for the problem of scheduling multi groups of jobs on multi processors at the same speed provided each job has a ready time.

However, the problem of scheduling n groups of jobs on n special-purpose processors and m general-purpose processors at different speeds has not been studied yet.

Note that the classical LPT algorithm is only useful to solve the problem of scheduling one group of jobs on multi processors at same speeds or different speeds. Therefore, our aim of this study is to propose an improved LPT algorithm based on the classical LPT algorithm and to use this new algorithm to analyze this problem provided processors have different speeds.

The remainder of the paper is organized as follows. In Section 2, we proposed an improved LPT algorithm and study several properties of the improved LPT algorithm. In Section 3 we obtain an upper bound for the ratio of the approximate solution T to the optimal solution T^{*} under the improved $L P T$ algorithm.

2. An improved $L P T$ algorithm

In the section, we will propose an improved LPT algorithm for this scheduling problem and then investigate several properties of this algorithm.

We will use the following notations throughout the remainder of the paper.

Let $L_{i}(i=1, \cdots, n)$ denote the i th group of jobs, and let $M_{i}(i=1, \cdots, n)$ and $M_{n+j}(j=1, \cdots, m)$ denote the i th special-purpose processor and the j th general-purpose processor, respectively. Then, let $L=$ $\left(L_{1}, L_{2}, \cdots, L_{n}\right)$ stand for the set of all groups of jobs and let $\left|L_{r}\right|$ denote the number of all jobs in L_{r}. Finally, let $|L|=\left|L_{1}\right|+\left|L_{2}\right|+\cdots+\left|L_{n}\right|$ denote the number of all jobs of all groups.

Let $J_{r k}$ denote the $k^{t h}$ job in the $r^{t h}$ group after ordering. If the job $J_{r k}$ is earlier than $J_{r^{\prime} k^{\prime}}$ to be assigned to a processor, then we write $J_{r k} \prec J_{r^{\prime} k^{\prime}}$. If the job $J_{r k}$ is assigned to the processor M_{l}, then we write $J_{r k} \in M_{l}$.

We use $t_{r i}\left(r=1, \cdots, n ; i=1, \cdots,\left|L_{r}\right|\right)$ to denote the processing time of $J_{r i}$. Then, we denote by s_{i} $(i=1, \cdots, n)$ the speed of the special-purpose processor M_{i} and by $s_{n+j}(j=1, \cdots, m)$ the speed of the general-purpose processor M_{n+j}, respectively.

Note that the speeds of general-purpose processors are less than those of special-purpose processors in real production systems. For simplicity, we take $s_{n+j}=1$ $(1 \leq j \leq m)$ and assume $s_{i} \geq 1(i=1, \cdots, n)$.

Let $M T_{l}\left(J_{r k}\right)$ denote the latest absolutely finish time of the processor M_{l} before the job $J_{r k}$ is assigned and let $M T_{l}$ denote the latest absolutely finish time of the processor M_{l} after all jobs are assigned. Next, let $M L_{l}\left(J_{r k}\right)(l=1,2, \cdots, m+n)$ denote the set of jobs assigned in the processor M_{l} before the job $J_{r k}$ is assigned and let

$$
\begin{gathered}
T_{r}=\sum_{i=1}^{\left|L_{r}\right|} t_{r i} \quad r=1,2, \cdots, n, \\
M T_{l}\left(J_{r k}\right)= \\
\sum_{J_{r^{\prime} k^{\prime}} \in M_{l}, J_{r^{\prime} k^{\prime}} \prec J_{r k}} t_{r^{\prime} k^{\prime}}, \quad M T_{l} \\
=\sum_{J_{r k} \in M_{l}} t_{r k}, \quad l=1,2, \cdots, n+m
\end{gathered}
$$

and

$$
\begin{aligned}
M L_{l}\left(J_{r k}\right)= & \left\{J_{r^{\prime} k^{\prime}} \mid J_{r^{\prime} k^{\prime}} \prec J_{r k}, J_{r^{\prime} k^{\prime}} \in M_{l}\right\} \\
& l=1,2, \cdots, n+m
\end{aligned}
$$

The main strategy of the improved $L P T$ algorithm is based on the intuitive fact that n groups are listed in order of the total real processing time of the group, i.e., $\frac{T_{1}}{s_{1}} \geq \frac{T_{2}}{s_{2}} \geq \cdots \geq \frac{T_{n}}{s_{n}}$, that the jobs in each group are listed in order of the total processing time of the job, i.e., $t_{r i} \geq t_{r i+1}, r=1,2, \cdots, n, i=1,2, \cdot,\left|L_{r}\right|-1$, and that whenever a processor becomes idle for assignment, the first job unexecuted is taken from the list and assigned to this processor.

Assume that the job is assigned in an increasing order of the index and that if all jobs before the $k_{r}^{t h}$ job in the group L_{r} have been assigned and the job $J_{r k_{r}}$ is waiting for being assigned, then jobs $J_{1 k_{1}}, J_{2 k_{2}}, \cdots, J_{n k_{n}}$ are called as candidates.
Definition 1. When jobs $J_{1 k_{1}}, J_{2 k_{2}}, \cdots, J_{n k_{n}}$ are candidates, the possible absolutely processing time (SMT) of the special-purpose processor for the group L_{r} is

$$
\begin{gathered}
S M T_{r}\left(k_{r}\right)=T_{r}-\sum_{J_{r i} \in \bigcup_{j=n+1}^{n+m} M_{j}, i<k_{r}} t_{r i}, \\
r=1,2, \cdots, n .
\end{gathered}
$$

When some group L_{r} is the empty set, we set $S M T_{r}=$ $S M T_{r}(k) \equiv 0$, where k is an arbitrary positive integer. Definition 2. When the job $J_{r k_{r}}$ is the candidate, the relative SMT of the group $L_{r}(r=1,2, \cdots, n)$ is

$$
\frac{S M T_{r}\left(k_{r}\right)}{s_{r}}, \quad r=1,2, \cdots, n
$$

The steps of the improved $L P T$ algorithm are the following:
Step 1. Ordering. Let $T_{1} / s_{1} \geq T_{2} / s_{2} \geq \cdots \geq T_{n} / s_{n}$, $t_{r i} \geq t_{r i+1}, i=1,2, \cdots,\left|L_{r}\right|-1, r=1,2, \cdots, n$.
Step 2. Initialization. Set $k_{r}=1, M T_{l}\left(J_{r k_{r}}\right)=0$, and $M L_{l}\left(J_{r k_{r}}\right)=\emptyset, r=1,2, \cdots, n, l=1,2, \cdots, n+m$.

Step 3. Choose the job for processing according to the rule of the maximum relative SMT. If
$r=\min \left\{r^{\prime} \left\lvert\, \frac{S M T_{r^{\prime}}\left(k_{r^{\prime}}\right)}{s_{r^{\prime}}}=\max _{r^{\prime \prime}=1,2, \cdots, n} \frac{S M T_{r^{\prime \prime}}\left(k_{r^{\prime \prime}}\right)}{s_{r^{\prime \prime}}}\right.\right\}$,
then the job $J_{r k_{r}}$ is the candidate.
Step 4. Choose the processor according to the rule of being the first with the earlier idle time. When the job $J_{r k_{r}} \in L_{r}(r=1,2, \cdots, n)$ is waiting for being assigned, if

$$
\begin{aligned}
p & =\min \left\{q \left\lvert\, \frac{M T_{q}\left(J_{r k_{r}}\right)+t_{r k_{r}}}{s_{q}}\right.\right. \\
& \left.=\min _{l=r, n+1, \cdots, n+m} \frac{M T_{l}\left(J_{r k_{r}}\right)+t_{r k_{r}}}{s_{l}}\right\},
\end{aligned}
$$

then let $J_{r k_{r}} \in M_{p}$.
Step 5. If all jobs are assigned, then the program is over. Otherwise, go to Step 3.

Let $S T\left(J_{i j}\right)$ and $C T\left(J_{i j}\right)$ denote the beginning time and the finishing time of the job $J_{i j}$, respectively. We now present several properties of the improved $L P T$ algorithm.
Lemma 1. (1) If $J_{i j}, J_{r k} \in M_{l}, l=1,2, \cdots, n+m$, and $J_{i j} \prec J_{r k}$, then

$$
C T\left(J_{i j}\right) \leq S T\left(J_{r k}\right)
$$

(2) If $J_{i j}, J_{r k} \in L_{r}, r=1,2, \cdots, n$, and $J_{i j} \prec J_{r k}$, then $C T\left(J_{i j}\right)-t_{i j} \leq S T\left(J_{r k}\right)$.
(3) If $J_{i j} \in L_{r}, r=1,2, \cdots, n$, then $\frac{M T_{l}\left(J_{i j}\right)+t_{i j}}{s_{l}} \geq$ $C T\left(J_{i j}\right), l=r, n+1, \cdots, n+m$.

Proof. By Step 1 and the definitions of $S T\left(J_{i j}\right)$ and $C T\left(J_{i j}\right)$, we get (1) and (2). By Step 4 and the definitions of $S T\left(J_{i j}\right)$ and $C T\left(J_{i j}\right)$, we obtain (3). This completes the proof of the lemma.
Lemma 2. Let T be the makespan of the above improved LPT algorithm. If there exists a job $J_{r p} \in$ L_{r} such that $C T\left(J_{r p}\right)=T, r=1,2, \cdots, n, p=$ $1,2, \cdots,\left|L_{r}\right|$ and $J_{k q} \prec J_{r p}, k=1,2, \cdots, n, k \neq r$, $q=1,2, \cdots,\left|L_{k}\right|$, then

$$
T_{k} \geq S M T_{k}(q)>s_{k} T
$$

Proof. Because $J_{k q} \prec J_{r p}$, we may assume the job $J_{k q}$ is chosen to assign when $J_{k q}$ and $J_{r s}$ are candidates, where $s \leq p$. Based on the algorithm, we obtain

$$
\frac{S M T_{k}(q)}{s_{k}}>\frac{S M T_{r}(s)}{s_{r}}
$$

By the definition of $S M T$, we have

$$
\frac{T_{k}}{s_{k}}>\frac{S M T_{k}(q)}{s_{k}}>\frac{S M T_{r}(s)}{s_{r}} \geq \frac{S M T_{r}(p)}{s_{r}}
$$

If $J_{r p} \in M_{r}$, in view of $C T\left(J_{r p}\right)=T$ and T being the makespan, then $M T_{r}=s_{r} T$. From the definition of $S M T_{r}(p)$, we know that $J_{r p}$ is the last finish job, but may not be the last assigned job of the group L_{r}. When the job $J_{r p}$ is waiting for being assigned, we have

$$
\begin{aligned}
\operatorname{SMT}_{r}(p) & =T_{r}-\sum_{J_{r i} \in \bigcup_{j=n+1}^{n+m} M_{j}, i<p} t_{r j} \\
& =\sum_{J_{r i} \in M_{r}, i<p} t_{r j}+t_{r p}+t_{r p+1}+\cdots+t_{r\left|L_{r}\right|},
\end{aligned}
$$

and

$$
M T_{r}=\sum_{J_{r i} \in M_{r}, i<p} t_{r j}+t_{r p}
$$

Then it follows that

$$
S M T_{r}(p) \geq M T_{r}=s_{r} T
$$

Thus, we get

$$
T_{k} \geq S M T_{k}(q)>s_{k} T
$$

If $J_{r p} \in M_{j}(n+1 \leq j \leq n+m)$, in view of Step 4, then we have

$$
\begin{equation*}
\frac{M T_{r}\left(J_{r p}\right)+t_{r p}}{s_{r}}>M T_{j}\left(J_{r p}\right)+t_{r p}=T \tag{2}
\end{equation*}
$$

It follows that $M T_{r}\left(J_{r p}\right)+t_{r p}>s_{r} T$.
Note that $C T\left(J_{r p}\right)=T$. Thus

$$
\begin{align*}
S M T_{r}(p) & =M T_{r}\left(J_{r p}\right)+\sum_{i \geq p} t_{r i} \\
& =M T_{r}\left(J_{r p}\right)+t_{r p}+\sum_{i \geq p+1} t_{r i} \\
& \geq M T_{r}\left(J_{r p}\right)+t_{r p}>s_{r} T \tag{3}
\end{align*}
$$

Therefore, we get $T_{k}>S M T_{k}(q)>s_{k} T$. This completes the proof of the lemma.

Lemma 3. If there exists a job $J_{r p} \in L_{r}$ in $L=$ $\left(L_{1}, L_{2}, \cdots, L_{n}\right)$ such that $C T\left(J_{r p}\right)=T(L)$ and there exists at least one group $L_{k}, k \neq r$, such that

$$
\left\{J_{k q} \mid J_{k q} \in \bigcup_{j=n+1}^{n+m} M_{j}, J_{k q} \prec J_{r p}\right\}=\emptyset
$$

then there exists some L^{\prime} such that $\left|L^{\prime}\right|<|L|$ and

$$
T\left(L^{\prime}\right) / T^{*}\left(L^{\prime}\right) \geq T(L) / T^{*}(L)=T / T^{*}
$$

where $T(L)=T$ and $T^{*}(L)=T^{*}$.
Proof. Note that the assumption
$\left\{J_{k q} \mid J_{k q} \in \bigcup_{j=n+1}^{n+m} M_{j}, J_{k q} \prec J_{r p}\right\}=\emptyset$ means that all assigned jobs in L_{k} before the last finish job $J_{r p}$ have not been assigned on the general-purpose processor M_{j} $(n+1 \leq j \leq n+m)$. Let
$L_{1}^{\prime}=L_{1}, L_{2}^{\prime}=L_{2}, \cdots, L_{k-1}^{\prime}=L_{k-1}, L_{k}^{\prime}=L_{k+1}$,
$\cdots, L_{n-1}^{\prime}=L_{n}, L_{n}^{\prime}=\emptyset, L^{\prime}=\left(L_{1}^{\prime}, L_{2}^{\prime}, \cdots, L_{n}^{\prime}\right)$.
Then $S M T_{n}\left(L^{\prime}\right) \equiv 0$ and the order of the jobs in L_{1}^{\prime}, $L_{2}^{\prime}, \cdots, L_{n-1}^{\prime}$ is the same as that in $L-L_{k}$. Thus, they have the same assignment.

By the assumption of Lemma 3, we know that all assigned jobs in L_{k} before the job $J_{r p}$ have been assigned on the special-purpose processor M_{k}. This implies that any assigned jobs in L_{k} after the last finish job $J_{r p}$ will not change the last finish time $T(L)$. Scheduling $L-L_{k}$ on $n+m$ processors is equivalent to scheduling L on $n+m$ processors. Therefore the last finish time of L is the same as that of L^{\prime}, i.e.

$$
C T\left(L^{\prime} \mid J_{r p}\right)=C T\left(L \mid J_{r p}\right)=T(L)
$$

Since $\left|L^{\prime}\right|<|L|$, it follows that

$$
T^{*}\left(L^{\prime}\right) \leq T^{*}(L)
$$

This yields

$$
T\left(L^{\prime}\right) / T^{*}\left(L^{\prime}\right) \geq T(L) / T^{*}(L)
$$

This completes the proof of the lemma.

3. Analysis of the improved $L P T$ algorithm

In the section, we obtain an upper bound for the ratio of the approximate solution T to the optimal solution T^{*} under the improved $L P T$ algorithm.
Theorem 1. Consider the problem of scheduling n groups of jobs $L=\left\{L_{1}, L_{2}, \cdots, L_{n}\right\}$ on $\left\{M_{1}, M_{2}, \cdots, M_{n}\right\}$ special-purpose processors and $\left\{M_{n+1}, M_{n+2} \cdots, M_{n+m}\right\}$ general-purpose processors at different speeds with the objective of minimizing
the makespan. Let T be the makespan of the above improved LPT algorithm. Then the bound of this scheduling problem under the improved LPT algorithm is

$$
\frac{T}{T^{*}} \leq 1+\frac{m}{\sum_{i \in I} s_{i}}
$$

where I is the set of group of jobs in which there exists at least one job to be assigned on some general-purpose processor before the latest finish time.

Proof. Assume there exists $J_{r p} \in L_{r}$ such that $C T\left(J_{r p}\right)=T$.
Case A. If $|I|=n$, i.e., $\forall J_{k q} \in L_{k}, k \neq r$, $\left\{J_{k q} \mid J_{k q} \in \bigcup_{j=n+1}^{n+m} M_{j}, J_{k q} \prec J_{r p}\right\} \neq \emptyset$, then we may assume

$$
u_{k}=\max \left\{i \mid J_{k i} \in \bigcup_{j=n+1}^{n+m} M_{j}, J_{k i} \prec J_{r p}\right\}
$$

From the algorithm $J_{k 1} \in M_{k}$, we know that $u_{k} \geq 2$.
Note that $C T\left(J_{r p}\right)=T$. By Lemma 1, we obtain

$$
\frac{M T_{r}\left(J_{r p}\right)+t_{r p}}{s_{r}} \geq C T\left(J_{r p}\right)=T
$$

By Lemma 2, for any $J_{k u_{k}} \in L_{k}, k \neq r$, we have

$$
T_{k} \geq S M T_{k}\left(u_{k}\right)>s_{k} T
$$

Thus

$$
\begin{aligned}
T^{*} & \geq \frac{T_{1}+T_{2}+\cdots+T_{n}}{m+\sum_{i=1}^{n} s_{i}} \\
& \geq \frac{T_{1}+T_{2}+\cdots+M T_{r}\left(J_{r p}\right)+t_{r p}+\cdots+T_{n}}{m+\sum_{i=1}^{n} s_{i}} \\
& \geq \frac{s_{1} T+s_{2} T+\cdots+s_{r} T+\cdots+s_{n} T}{m+\sum_{i=1}^{n} s_{i}} \\
& \geq \frac{\sum_{i=1}^{n} s_{i}}{m+\sum_{i=1}^{n} s_{i}} T .
\end{aligned}
$$

This yields

$$
\frac{T}{T^{*}} \leq 1+\frac{m}{\sum_{i=1}^{n} s_{i}}
$$

Case B. If $|I|<n$, i.e., there exists $J_{k q} \in L_{k}, k \neq r$, such that

$$
\left\{J_{k q} \mid J_{k q} \in \bigcup_{j=n+1}^{n+m} M_{j}, J_{k q} \prec J_{r p}\right\}=\emptyset
$$

then by Lemma 3 and the definition of I, we know that there exists L^{\prime} and $\left|L^{\prime}\right|=|I|$ such that

$$
\begin{aligned}
\left\{J_{k q} \mid J_{k q} \in\right. & \left.\bigcup_{j=n+1}^{n+m} M_{j}, J_{k q} \prec J_{r p}\right\} \neq \emptyset \\
& \forall J_{k q} \in L_{k}^{\prime}, k \neq r
\end{aligned}
$$

By Lemma 3, in view of the proof of case A, we have

$$
\frac{T}{T^{*}}=\frac{T(L)}{T^{*}(L)} \leq \frac{T\left(L^{\prime}\right)}{T^{*}\left(L^{\prime}\right)} \leq 1+\frac{m}{\sum_{i \in I} s_{i}}
$$

This completes the proof of the theorem.
As a consequence of Theorem 1, we have
Corollary 1. The scheduling problem in Theorem 1 under the improved LPT algorithm has the bound $\frac{T}{T^{*}} \leq$ $1+\frac{m}{|I|}$.

Next, the following example will show how the improved LPT algorithm works.

Consider the following scheduling problems.
Assume that there are three groups of jobs and each group separately owns one special-purpose processor and jointly owns two general-purpose processors.

Step 1. Ordering.
Let the jobs of the group L_{1} be denoted by $J_{11}, J_{12}, J_{13}, J_{14}, J_{15}, J_{16}$, and let their absolutely processing time be $t_{11}=65, t_{12}=42, t_{13}=$ $37, t_{14}=36, t_{15}=28, t_{16}=22$, respectively.

Let the jobs of the group L_{2} be denoted by $J_{21}, J_{22}, J_{23}, J_{24}, J_{25}$, and let their absolutely processing time be $t_{21}=70, t_{22}=55, t_{23}=45, t_{24}=$ $39, t_{25}=31$, respectively.

Let the jobs of the group L_{3} be denoted by $J_{31}, J_{32}, J_{33}, J_{34}, J_{35}, J_{36}$, and let their absolutely processing time be $t_{31}=60, t_{32}=50, t_{33}=40, t_{34}=$ $36, t_{35}=34, t_{36}=30$, respectively.

Let the speed of the special-purpose M_{1} of L_{1} be $s_{1}=1.2$, let the speed of the special-purpose M_{2} of L_{2} be $s_{2}=1.3$, and let the speed of the special-purpose M_{3} of L_{3} be $s_{3}=1.5$, respectively.

Let the speeds of two general-purpose processors be $s_{4}=s_{5}=1$. Then $T_{1}=230, T_{2}=240, T_{3}=$ $250, \frac{T_{1}}{s_{1}}=191.7, \frac{T_{2}}{s_{2}}=184.6, \frac{T_{3}}{s_{3}}=166.7$.

Step 2. Initialization.
Set $k_{1}=1, k_{2}=1, k_{3}=1$. Let the latest absolutely finish time of all processors be $M T_{l}=0$, and let the sets of jobs assigned in all processors be $M L_{l}=\emptyset, l=$ $1,2,3,4,5$.

Step 3. Choose the job for processing according to the rule of the maximum realtive $S M T$.

Since

$$
\begin{aligned}
& \frac{S M T_{1}(1)}{s_{1}}=\frac{230}{1.2}=191.7 \\
& \frac{S M T_{2}(1)}{s_{2}}=\frac{240}{1.3}=184.6
\end{aligned}
$$

and

$$
\frac{S M T_{3}(1)}{s_{3}}=\frac{250}{1.5}=166.7
$$

it follows that the job J_{11} is the candidate. Take $k_{1}=2$.
Step 4. Choose the processor according to the rule of being the first with the earlier idle time.

Since

$$
\begin{aligned}
& \frac{\left(M T_{1}+t_{11}\right)}{s_{1}}=\frac{65}{1.2}=54.2 \\
& \frac{\left(M T_{4}+t_{11}\right)}{s_{4}}=\frac{65}{1}=65
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{11}\right)}{s_{5}}=\frac{65}{1}=65
$$

it follows that the job J_{11} is assigned on the processor M_{1}. Thus

$$
M L_{1}=\left\{J_{11}\right\}, \quad M T_{1}=65
$$

Step 3. Choose the job for processing.
Since

$$
\begin{aligned}
& \frac{S M T_{1}(2)}{s_{1}}=\frac{230}{1.2}=191.7 \\
& \frac{S M T_{2}(1)}{s_{2}}=\frac{240}{1.3}=184.6
\end{aligned}
$$

and

$$
\frac{S M T_{3}(1)}{s_{3}}=\frac{250}{1.5}=166.7
$$

it follows that the job J_{12} is the candidate. Take $k_{1}=3$.
Step 4. Choose the processor.
Since

$$
\begin{gathered}
\frac{\left(M T_{1}+t_{12}\right)}{s_{1}}=\frac{(65+42)}{1.2}=89.2 \\
\frac{\left(M T_{4}+t_{12}\right)}{s_{4}}=\frac{42}{1}=42
\end{gathered}
$$

and

$$
\frac{\left(M T_{5}+t_{12}\right)}{s_{5}}=\frac{42}{1}=42
$$

it follows that the job J_{12} is assigned on the processor M_{4}. Thus

$$
M L_{4}=\left\{J_{12}\right\}, \quad M T_{4}=42
$$

Step 3. Choose the job for processing.
Since

$$
\begin{gathered}
\frac{S M T_{1}(3)}{s_{1}}=\frac{(230-42)}{1.2}=\frac{188}{1.2}=156.7 \\
\frac{S M T_{2}(1)}{s_{2}}=\frac{240}{1.3}=184.6
\end{gathered}
$$

and

$$
\frac{S M T_{3}(1)}{s_{3}}=\frac{250}{1.5}=166.7
$$

it follows that the job J_{21} is the candidate. Take $k_{2}=2$.
Step 4. Choose the processor.
Since

$$
\begin{gathered}
\frac{\left(M T_{2}+t_{21}\right)}{s_{2}}=\frac{70}{1.3}=53.8 \\
\frac{\left(M T_{4}+t_{21}\right)}{s_{4}}=\frac{(42+70)}{1}=112
\end{gathered}
$$

and

$$
\frac{\left(M T_{5}+t_{21}\right)}{s_{5}}=\frac{70}{1}=70
$$

it follows that the job J_{21} is assigned on the processor M_{2}. Thus,

$$
M L_{2}=\left\{J_{21}\right\}, \quad M T_{2}=70
$$

Step 3. Choose the job for processing.
Since

$$
\begin{gathered}
\frac{S M T_{1}(3)}{s_{1}}=\frac{(230-42)}{1.2}=\frac{188}{1.2}=156.7 \\
\frac{S M T_{2}(2)}{s_{2}}=\frac{240}{1.3}=184.6
\end{gathered}
$$

and

$$
\frac{S M T_{3}(1)}{s_{3}}=\frac{250}{1.5}=166.7
$$

it follows that the job J_{22} is the candidate. Take $k_{2}=3$. Step 4. Choose the processor.
Since

$$
\frac{\left(M T_{2}+t_{22}\right)}{s_{2}}=\frac{125}{1.3}=96.2
$$

$$
\frac{\left(M T_{4}+t_{22}\right)}{s_{4}}=\frac{97}{1}=97,
$$

and

$$
\frac{\left(M T_{5}+t_{22}\right)}{s_{5}}=\frac{55}{1}=55,
$$

it follows that the job J_{22} is assigned on the processor M_{5}. Thus

$$
M L_{5}=\left\{J_{22}\right\}, \quad M T_{5}=55
$$

Step 3. Choose the job for processing.
Since

$$
\begin{gathered}
\frac{S M T_{1}(3)}{s_{1}}=\frac{(230-42)}{1.2}=\frac{188}{1.2}=156.7 \\
\frac{S M T_{2}(3)}{s_{2}}=\frac{(240-55)}{1.3}=142.3
\end{gathered}
$$

and

$$
\frac{S M T_{3}(1)}{s_{3}}=\frac{250}{1.5}=166.7
$$

it follows that the job J_{31} is the candidate. Take $k_{3}=2$.
Step 4. Choose the processor.
Since

$$
\begin{gathered}
\frac{\left(M T_{3}+t_{31}\right)}{s_{3}}=\frac{60}{1.5}=40 \\
\frac{\left(M T_{4}+t_{31}\right)}{s_{4}}=\frac{(42+60)}{1}=102
\end{gathered}
$$

and

$$
\frac{\left(M T_{5}+t_{31}\right)}{s_{5}}=\frac{(55+60)}{1}=115
$$

it follows that the job J_{31} is assigned on the processor M_{3}. Thus

$$
M L_{3}=\left\{J_{31}\right\}, \quad M T_{3}=60
$$

Step 3. Choose the job for processing.
Since

$$
\begin{gathered}
\frac{S M T_{1}(3)}{s_{1}}=\frac{(230-42)}{1.2}=\frac{188}{1.2}=156.7 \\
\frac{S M T_{2}(3)}{s_{2}}=\frac{(240-55)}{1.3}=142.3
\end{gathered}
$$

and

$$
\frac{S M T_{3}(2)}{s_{3}}=\frac{250}{1.5}=166.7
$$

it follows that the job J_{32} is the candidate. Take $k_{3}=3$.
Step 4. Choose the processor.

Since

$$
\begin{aligned}
& \frac{\left(M T_{3}+t_{32}\right)}{s_{3}}=\frac{(60+50)}{1.5}=73.3 \\
& \frac{\left(M T_{4}+t_{32}\right)}{s_{4}}=\frac{(42+50)}{1}=92
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{32}\right)}{s_{5}}=\frac{(55+50)}{1}=105
$$

it follows that J_{32} is assigned on the processor M_{3}. Thus,

$$
M L_{3}=\left\{J_{31}, J_{32}\right\}, \quad M T_{3}=60+50=110
$$

Step 3. Choose the job for processing.
Since

$$
\begin{gathered}
\frac{S M T_{1}(3)}{s_{1}}=\frac{(230-42)}{1.2}=\frac{188}{1.2}=156.7 \\
\frac{S M T_{2}(3)}{s_{2}}=\frac{(240-55)}{1.3}=142.3
\end{gathered}
$$

and

$$
\frac{S M T_{3}(3)}{s_{3}}=\frac{250}{1.5}=166.7
$$

it follows that the job J_{33} is the candidate. Take $k_{3}=4$.
Step 4. Choose the processor.
Since

$$
\begin{aligned}
& \frac{\left(M T_{3}+t_{33}\right)}{s_{3}}=\frac{(110+40)}{1.5}=100 \\
& \frac{\left(M T_{4}+t_{32}\right)}{s_{4}}=\frac{(42+40)}{1}=82
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{32}\right)}{s_{5}}=\frac{(55+40)}{1}=95
$$

it follows that the job J_{33} is assigned on the processor M_{4}. Thus,

$$
M L_{4}=\left\{J_{12}, J_{33}\right\}, \quad M T_{4}=42+40=82
$$

Step 3. Choose the job for processing.
Since

$$
\begin{gathered}
\frac{S M T_{1}(3)}{s_{1}}=\frac{(230-42)}{1.2}=\frac{188}{1.2}=156.7 \\
\frac{S M T_{2}(3)}{s_{2}}=\frac{(240-55)}{1.3}=142.3
\end{gathered}
$$

and

$$
\frac{S M T_{3}(4)}{s_{3}}=\frac{(250-40)}{1.5}=140
$$

it follows that the job J_{13} is the candidate. Take $k_{1}=4$.
Step 4. Choose the processor.
Since

$$
\begin{aligned}
& \frac{\left(M T_{1}+t_{13}\right)}{s_{1}}=\frac{(65+37)}{1.2}=85 \\
& \frac{\left(M T_{4}+t_{13}\right)}{s_{4}}=\frac{(82+37)}{1}=119
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{13}\right)}{s_{5}}=\frac{(55+37)}{1=92}
$$

it follows that the job J_{13} is assigned on the processor M_{1}. Thus,

$$
M L_{1}=\left\{J_{11}, J_{13}\right\}, \quad M T_{1}=65+37=102
$$

Step 3. Choose the job for processing.
Since

$$
\begin{gathered}
\frac{S M T_{1}(4)}{s_{1}}=\frac{(230-42)}{1.2}=\frac{188}{1.2}=156.7 \\
\frac{S M T_{2}(3)}{s_{2}}=\frac{(240-55)}{1.3}=142.3
\end{gathered}
$$

and

$$
\frac{S M T_{3}(4)}{s_{3}}=\frac{(250-40)}{1.5}=140
$$

it follows that the job J_{14} is the candidate. Take $k_{1}=5$.
Step 4. Choose the processor.
Since

$$
\begin{aligned}
& \frac{\left(M T_{1}+t_{14}\right)}{s_{1}}=\frac{(102+36)}{1.2}=115 \\
& \frac{\left(M T_{4}+t_{14}\right)}{s_{4}}=\frac{(82+36)}{1}=118
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{14}\right)}{s_{5}}=\frac{(55+36)}{1}=91
$$

it follows that the job J_{14} is assigned on the processor M_{5}. Thus,

$$
M L_{5}=\left\{J_{22}, J_{14}\right\}, \quad M T_{5}=55+36=91
$$

Step 3. Choose the job for processing.
Since

$$
\frac{S M T_{1}(5)}{s_{1}}=\frac{(230-42-36)}{1.2}=\frac{152}{1.2}=126.7
$$

$$
\frac{S M T_{2}(3)}{s_{2}}=\frac{(240-55)}{1.3}=142.3
$$

and

$$
\frac{S M T_{3}(4)}{s_{3}}=\frac{(250-40)}{1.5}=140
$$

it follows that the job J_{23} is the candidate. Take $k_{2}=4$.
Step 4. Choose the processor.
Since

$$
\begin{aligned}
& \frac{\left(M T_{2}+t_{23}\right)}{s_{2}}=\frac{(70+45)}{1.3}=88.5 \\
& \frac{\left(M T_{4}+t_{23}\right)}{s_{4}}=\frac{(82+45)}{1}=127
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{23}\right)}{s_{5}}=\frac{(91+45)}{1}=136
$$

it follows that the job J_{23} is assigned on the processor M_{2}. Thus

$$
M L_{2}=\left\{J_{21}, J_{23}\right\}, \quad M T_{2}=70+45=115
$$

Step 3. Choose the job for processing. Since

$$
\begin{gathered}
\frac{S M T_{1}(5)}{s_{1}}=\frac{(230-42-36)}{1.2}=\frac{152}{1.2}=126.7 \\
\frac{S M T_{2}(4)}{s_{2}}=\frac{(240-55)}{1.3}=142.3
\end{gathered}
$$

and

$$
\frac{S M T_{3}(4)}{s_{3}}=\frac{(250-40)}{1.5}=140
$$

it follows that the job J_{24} is the candidate. Take $k_{2}=5$.
Step 4. Choose the processor.
Since

$$
\begin{gathered}
\frac{\left(M T_{2}+t_{24}\right)}{s_{2}}=\frac{(115+39)}{1.3}=118.5 \\
\frac{\left(M T_{4}+t_{24}\right)}{s_{4}}=\frac{(82+39)}{1}=121
\end{gathered}
$$

and

$$
\frac{\left(M T_{5}+t_{24}\right)}{s_{5}}=\frac{(91+39)}{1}=130
$$

it follows that the job J_{24} is assigned on the processor M_{2}. Thus,

$$
M L_{2}=\left\{J_{21}, J_{23}, J_{24}\right\}, \quad M T_{2}=115+39=154
$$

Step 3. Choose the job for processing.

Since

$$
\begin{gathered}
\frac{S M T_{1}(5)}{s_{1}}=\frac{(230-42-36)}{1.2}=\frac{152}{1.2}=126.7 \\
\frac{S M T_{2}(5)}{s_{2}}=\frac{(240-55)}{1.3}=142.3
\end{gathered}
$$

and

$$
\frac{S M T_{3}(4)}{s_{3}}=\frac{(250-40)}{1.5}=140
$$

it follows that J_{25} is the candidate. Take $k_{2}=6$.
Step 4. Choose the processor.
Since

$$
\begin{gathered}
\frac{\left(M T_{2}+t_{25}\right)}{s_{2}}=\frac{(154+31)}{1.3}=142.3 \\
\frac{\left(M T_{4}+t_{25}\right)}{s_{4}}=\frac{(82+31)}{1}=113
\end{gathered}
$$

and

$$
\frac{\left(M T_{5}+t_{25}\right)}{s_{5}}=\frac{(91+31)}{1}=122
$$

it follows that the job J_{25} is assigned on the processor M_{4}. Thus

$$
M L_{4}=\left\{J_{12}, J_{33}, J_{25}\right\}, \quad M T_{4}=82+31=113
$$

Step 3. Choose the job for processing.
Note that all jobs in L_{2} have been assigned. By comparing

$$
\frac{S M T_{1}(5)}{s_{1}}=\frac{(230-42-36)}{1.2}=\frac{152}{1.2}=126.7
$$

with

$$
\frac{S M T_{3}(4)}{s_{3}}=\frac{(250-40)}{1.5}=140
$$

we see that the job J_{34} is the candidate. Take $k_{3}=5$.
Step 4. Choose the processor.
Since

$$
\begin{aligned}
& \frac{\left(M T_{3}+t_{34}\right)}{s_{3}}=\frac{(110+36)}{1.5}=97.3 \\
& \frac{\left(M T_{4}+t_{34}\right)}{s_{4}}=\frac{(113+36)}{1}=149
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{34}\right)}{s_{5}}=\frac{(91+36)}{1}=127
$$

it follows that the job J_{34} is assigned on the processor M_{3}. Thus,

$$
M L_{3}=\left\{J_{31}, J_{32}, J_{34}\right\}, \quad M T_{3}=110+36=146
$$

Step 3. Choose the job for processing. Since

$$
\frac{S M T_{1}(5)}{s_{1}}=\frac{(230-42-36)}{1.2}=\frac{152}{1.2}=126.7
$$

and

$$
\frac{S M T_{3}(5)}{s_{3}}=\frac{(250-40)}{1.5}=140
$$

it follows that the job J_{35} is the candidate. Take $k_{3}=6$.
Step 4. Choose the processor.
Since

$$
\begin{aligned}
& \frac{\left(M T_{3}+t_{35}\right)}{s_{3}}=\frac{(146+34)}{1.5}=120 \\
& \frac{\left(M T_{4}+t_{35}\right)}{s_{4}}=\frac{(113+34)}{1}=147
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{35}\right)}{s_{5}}=\frac{(91+34)}{1}=125
$$

it follows that the job J_{35} is assigned on the processor M_{3}. Thus,
$M L_{3}=\left\{J_{31}, J_{32}, J_{34}, J_{35}\right\}, \quad M T_{3}=146+34=180$.
Step 3. Choose the job for processing.
Since

$$
\frac{S M T_{1}(5)}{s_{1}}=\frac{(230-42-36)}{1.2}=\frac{152}{1.2}=126.7
$$

and

$$
\frac{S M T_{3}(6)}{s_{3}}=\frac{(250-40)}{1.5}=140
$$

it follows that the job J_{36} is the candidate. Take $k_{3}=7$.
Step 4. Choose the processor.
Since

$$
\begin{aligned}
& \frac{\left(M T_{3}+t_{36}\right)}{s_{3}}=\frac{(180+30)}{1.5}=140 \\
& \frac{\left(M T_{4}+t_{36}\right)}{s_{4}}=\frac{(113+30)}{1}=143
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{36}\right)}{s_{5}}=\frac{(91+30)}{1}=121,
$$

it follows that the job J_{36} is assigned on the processor M_{5}. Thus,

$$
M L_{5}=\left\{J_{22}, J_{14}, J_{36}\right\}, \quad M T_{5}=91+30=121
$$

Step 3. Choose the job for processing.

Since all jobs in L_{3} have been assigned, we only need to assign the remaining jobs in L_{1}. Thus the job J_{15} is the candidate. Take $k_{1}=6$.

Step 4. Choose the processor.
Since

$$
\begin{aligned}
& \frac{\left(M T_{1}+t_{15}\right)}{s_{1}}=\frac{(102+28)}{1.2}=108.3 \\
& \frac{\left(M T_{4}+t_{15}\right)}{s_{4}}=\frac{(113+28)}{1}=141
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{15}\right)}{s_{5}}=\frac{(121+28)}{1}=149
$$

it follows that J_{15} is assigned on the processor M_{1}. Thus,

$$
M L_{1}=\left\{J_{11}, J_{13}, J_{15}\right\}, \quad M T_{1}=102+28=130
$$

Step 3. Choose the job for processing.
Let the job J_{16} be the candidate. Take $k_{1}=7$.
Step 4. Choose the processor.
Since

$$
\begin{aligned}
& \frac{\left(M T_{1}+t_{16}\right)}{s_{1}}=\frac{(130+22)}{1.2}=126.7 \\
& \frac{\left(M T_{4}+t_{16}\right)}{s_{4}}=\frac{(113+22)}{1}=135
\end{aligned}
$$

and

$$
\frac{\left(M T_{5}+t_{16}\right)}{s_{5}}=\frac{(121+22)}{1}=143
$$

it follows that the job J_{16} is assigned on the processor M_{1}. Thus,
$M L_{1}=\left\{J_{11}, J_{13}, J_{15}, J_{16}\right\}, \quad M T_{1}=130+22=152$.
Step 5. If all jobs are assigned, then the program is over.

Up to now, all jobs in any groups have been assigned. So all assigned jobs on each processor and their finish time are the following:
$M L_{1}=\left\{J_{11}, J_{13}, J_{15}, J_{16}\right\}, M T_{1}=152, \frac{M T_{1}}{s_{1}}=126.7$,
$M L_{2}=\left\{J_{21}, J_{23}, J_{24}\right\}, M T_{2}=154, \frac{M T_{2}}{s_{2}}=118.5$,
$M L_{3}=\left\{J_{31}, J_{32}, J_{34}, J_{35}\right\}, M T_{3}=180, \frac{M T_{3}}{s_{3}}=120$,

$$
\begin{aligned}
& M L_{4}=\left\{J_{12}, J_{33}, J_{25}\right\}, M T_{4}=113, \frac{M T_{4}}{s_{4}}=113 \\
& M L_{5}=\left\{J_{22}, J_{14}, J_{36}\right\}, M T_{5}=121, \frac{M T_{5}}{s_{5}}=121
\end{aligned}
$$

Thus, $T=126.7$ and

$$
T^{*} \geq \frac{\left(T_{1}+T_{2}+T_{3}\right)}{\left(s_{1}+s_{2}+s_{3}+s_{4}+s_{5}\right)}=120
$$

On the other hand, we have the following assignment:

$$
\begin{aligned}
& M L_{1}=\left\{J_{11}, J_{12}, J_{13}\right\}, M T_{1}=144, \frac{M T_{1}}{s_{1}}=120 \\
& M L_{2}=\left\{J_{21}, J_{22}, J_{25}\right\}, M T_{2}=156, \frac{M T_{2}}{s_{2}}=120 \\
& M L_{3}=\left\{J_{31}, J_{32}, J_{33}, J_{36}\right\}, M T_{3}=180, \frac{M T_{3}}{s_{3}}=120, \\
& M L_{4}=\left\{J_{14}, J_{15}, J_{16}, J_{35}\right\}, M T_{4}=120, \frac{M T_{4}}{s_{4}}=120 \\
& M L_{5}=\left\{J_{23}, J_{24}, J_{34}\right\}, M T_{5}=120, \frac{M T_{5}}{s_{5}}=120
\end{aligned}
$$

This implies that the optimal solution $T^{*}=120$. Thus,
$\frac{T}{T^{*}}=\frac{126.7}{120}=1.0558<1+\frac{2}{(1.2+1.3+1.5)}=1.5$,
which is consistent with the conclusion of Theorem 1.
Acknowledgments: This work was partially supported by NSFC (No. 10971234). The author thanks the referee for valuable comments and suggestions.

Received 1-3-2011; revised 19-3-2012; accepted 27-6-2012

References

[1] W. Ding, A type of scheduling problem on generalpurpose machinery and n group tasks, OR Transactions, 10 (2006), 122-126.
[2] W. Ding, A type of scheduling problem on m generalpurpose machinery and n group tasks with uniform processors, Acta Sci. Natur. Univ. Sunyatseni, 47 (2008), 19-22.
[3] W. Ding, An improved LS algorithm for the Q_{m+2} $/ r_{j} / C_{\max }$ scheduling problem on m general-purpose machineries and two special-purpose machineries, Comm. On Appl. Math. And Comput., 23 (2009), 26-34.
[4] W. Ding, Heuristic algorithm of the $Q / / C_{\text {max }}$ problem on multi-tasks with uniform processors, Acta Sci. Natur. Univ. Sunyatseni, 49 (2010), 5-8.
[5] W. Ding and Y. Zhao, An improved LS algorithm for the problem of scheduling multi groups of jobs on multi processors at the same speed, Algorithmic Operations Research, 5 (2010), 34-38.
[6] M. Gairing, B. Monien and A. Woclaw, A faster combinatorial approximation algorithm for scheduling unrelated parallel machines, Theoret. Comput. Sci., $\mathbf{3 8 0}$ (2007), 87-99.
[7] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969), 416-429.
[8] Cs. Imreh, Scheduling problems on two sets of identical machines, Computing, 70 (2003), 277-294.
[9] I. M. Ovacik and R. Uzsoy, Worst-case error bounds for parallel machine sceduling problems with bounded sequence dependent setup times, Oper. Res. Lett., 14 (1993), 251-256.
[10] P. Schuurman and G. J. Woeginger, Polynomial time approximation algorithms for machine scheduling: Ten open problems, J. Sched. 2 (1999), 203-213.

[^0]: $\overline{\text { Email: Wei Ding [dingwei@mail.sysu.edu.cn]. }}$

