7N
P
Algorithmic Operations Research Vol.6 (2011) 56-67

Analysis and Comparison of Three Algorithms for the Vertex Cover Problem
on Large Graphs with Low Memory Capacities. !

Eric Angel* Romain Campigottd Christian Laforest

#Lab. IBISC, Université d’Evry, France
PLab. LIMOS, CNRS — Université B. Pascal (Clermont 2), Feanc

Abstract

In this paper, we consider the classiddP-completevERTEX COVERproblem inlarge graphsWe assume that the size

and the access to the input graph impose the following camgs: (1) the input graph must not be modifigdtégrity

of the input instance), (2) the computer running the aldorithas a memory of limited size (compared to the graph) and
(3) the result must be sent to an output memory once a new pfeszdution is calculated. Despite the severe constraints
of the model, we propose three algorithms that satisfy thalnderive exact formulas giving tlexpected sizef the
solution they return. This allows us to compare them, in aalgit way. Then, we consider their complexities. We give
exact formulas expressing tlexpected number of requedtsey perform on the input graph. Again, we compare them
analytically. For both comparisons, we show that none ofrthie better than the two others.

The formulas we give can help users to estimate the best dmlbetween quality of the solution and performance.

Key words: large graphs, vertex cover, mean analysis of algorithms

1. Introduction source can open the access of its collected data to exter-
nal partners® . However, as the data often result from
heavy and/or costly experimental process, they must not

explore, mark, modify, etc. the instance given as input be corrupted by the manipulations of the partners. This
before producing their results. To do that, the instance M€ans that the data must be read-only and must be pre-

is entirely loaded into the memory of the computer and S€"ved from modifications.

is manipulated by the algorithm. Often, “extra” data ~ However, a partner does not always have a machine
structures are also necessary to memorize parameteravith the capacity to load the whole data and as the
useful all along the computation or to update the current treatment of such huge data takes time and it cannot
solution that will be returned as the final product of the in general allocate all its computers during such a long
program. period. For simplicity here, we suppose that it allocates
only one computer with standard memory capacities.

Most of the known optimization algorithms need to

However, this classical model is no more adapted for) .
many new computing applications. Indeed, nowadays, OUr General Model of Access to DataWith the previ-
many fields such as biology, meteorology, finance, etc. 0US discussions, we model the situation as follows (we
produce very large amount of data. These data are usu-9iVe an illustration in Fig. 1). We assume there is one
ally stored on large databases, caltteda warehouses stan(_jard computer, ca_lled the “Processmg_Umt”, for ac-
in order to be exploited and analyzed. These data areC€SSing data and running algorithms. The input data are
collected by sourcethat can be a laboratory (collection ~ Stored on a data warehouse called “Input data”. As the
of experimental results or physical measures) or a com- Solution of the computation can be large, we suppose
pany (collection of financial values for example). This that it is stored on an external memory (e.g. a hard disk

or a data warehouse) called “Result”. We enumerate
Email: Eric Angel [eric.angel@ibisc.fr], Romain Campig- now the main constraints of our general model.
otto [romain.campigotto@ibisc.fr], Christian Laforeshfis-

tian.laforest@isima.fr]. 2 We do not treat at all here problems related to rights of

1 Work partially supported by the projectBoDo (French access to these data. We suppose that the partners have all
ANR) and Approximation rapideof GDR-RO. the appropriated rights teead the data.

(© 2011 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All rigdreserved.

Eric Angel et al. — Algorithmic Operations Research Vol.612) 56-67 57

C1. Theinput data cannot be modified; tinéegrity of lem in Our Model. Let us consider the Single Nu-
input data must be preserved. cleotide Polymorphism (SNP, pronounced “snip”)
C>. The processing unit has a “small” memory space Haplotype Assembly Problem [8]. In this problem, ge-
(compared to the huge size of the data/instance). neticists are interested to the genetic differences among
C3. The solution must be sent piece by piece to an individuals. More precisely, they want to determine
external memory, called here “Result”, as soon as haplotypes for large numbers of individuals, i.e. sets of
it is produced. variants genetically linked because of their proximity
ConstraintC, implies that the instance cannot be loaded on the genome.
into the memory of the processing unit (see hypothesis LetG = (S,C) be aSNP conflict graphconstructed
above). The constrairtfs comes from the fact that in from DNA sequences, SNPs and experimental values.
many cases, the solution is (in order of magnitude) as In this graph, each vertex € S represents a SNP and
large as the input data, i.e. impossible to be stored in each edge(s;,s;} € C represents a conflict between
the memory of the processing unit. Because of memory two distinct SNPss; and s; (for more details about
constraints, the solution cannot fit in memory of the this notion, see [14]). The SNP Assembly Problem is to
processing unit. Hence, using intermediate solutions to maximize the number of SNPs which are not in conflict.
construct the final one can here be complex, take time In other words, the goal is to remove the smallest subset
and memory since this imply to reload the appropriated S’ of S from G, such that the induced subgra@gh S’
part of the current solution from the result machine. contains no edge; that is to find a cover of minimum
To avoid such complex mecanisms, we adopt here asize ingG.
radical point of view in proposing methods that scan ~ From massive experimental measures, one can gen-
data and send final results as soon as they are producedgrate very large DNA sequences and very large number
without keeping in memory trace of past computation of SNPs (in a DNA Sequencing Center for example)

and without modifying past part of the solution. and then easily create a (very lar@NIP conflict graph
The Vertex Cover Problem. We have chosen to sStored on a data warehouse. These data/graphs can be
study in this paper the well-knoOWRERTEX COVER shared, via read-only access, with scientists for various

problem, a classicaNP-complete optimization graph ~ computational experiments, measures, etc.
problem [5], that has received a particular attention for A geneticist, who wants to resolve biological conflicts
the last few decades. In particular, this problem oc- in such a particular graph, does not necessarily have
curs in many concrete applications, such as the network powerful computers to make the work. Therefore, he
monitoring [12,17] or the resolution of biological con- has limited possibilities, e.g. he cannot copy the whole
flicts [12,15], and many approximation algorithms have graph into the memory of its computer (but he can let a
been proposed (see for example the section of [3] de- software run for several days). Thus, a simple process
voted to this problem). of computation must be implemented on its machine,
Notations. GraphsG = (V, E) considered through- getting theSNP conflict grapipiece by piece by sending
out this paper are undirected, simple, unweighted and requests to the data warehouse, perform processing on
represent thinstanceto be treated here. We denote by each of these pieces and send the result to an external
n the number of verticesi(= |V|) and bym the num- local hard disk for example.
ber of edges+. = |E|). For any vertexu € V, we In this paper, we propose and compare algorithms
denote byN (u) the set ofneighborsof « (i.e. the set that have all the features to run under such particular
of vertices sharing an edge with), d(u) = | N (u)| the constraints and low powerful environments.
degreeof u (i.e. the number of neighbors) antl the
maximum degreef vertices ofG. Quick Overview of Existing Algorithms for Vertex
Definition of the Vertex Cover Problem. A cover Covering. Many algorithms have been proposed for the
C of G is a subset of vertices such that every edge VERTEX COVER problem. As it isNP-hard, most of

contains (oris covered by at least one vertex of’, the methods are approximation algorithms or heuristics.
thatisC C V andVe = uv € F, one hasy € C or Here, we give a rapid overview of these methods.

v € C (or both). ThevVERTEX COVER problem is to A well-known heuristic is to select a vertex of maxi-
find a cover of minimum size. mum degree and delete this vertex and its incident edges

Example of Application on the Vertex Cover Prob- 3 A SNPis a single base mutation in DNA.

58 Eric Angel et al. — Analysis and Comparison of Three Algarith

oA aaa

Processing Unit

Input data Result

Figure 1. Overview of the model

from the graph, until all edges have been removed [10]. complexity of our algorithms. We show that based on
It has an approximation ratio i?(log A). Another pop- this measure, none of the algorithm is better than the
ular algorithm, with the best known constant approxi- two others.
mation ratio,2, is to construct a maximal matching of We conclude and give perspectives in Sect. 5..
the input graph and return the vertices of the matching
(see [3]). To compute such a solution, an edge is ran-
domly chosen, and its two endpoints with their incident
edges are deleted from the graph, until all edges have
been removed. For these algorithms, in order to delete a
vertex and its incident edges, we have to modify the in-
put graph or store information on deleted elements into
the memory of the processing unit, and that does not
satisfy constraint§’; andC5. Another well-known al-
gorithm is to construct ®FS spanning tree and select
its internal nodes [13]. It has an approximation ratio o
2. During the computation of BFS spanning tree, we
have to keep several vertices into memory (those whic
are being explored and those which have been explored)
or to mark these vertices in the input graph, and again
that does not satisfy our constraints.

The best known algorithm has an approximation ra-

2. The Algorithms £L£, Sorted-LL, Antisorted-LL

We describe in this section three algorithms suitable

to our modelLL (ListLeff), SLL (Sorted-LL) andm
(Anti Sorted-LD.

Labeling of Nodes, Left and Right Neighbors.In
real applications, the vertices have labels (depending on
the applications domain) which are assumed to be pair-
f wise distinct and can be ordered (e.g. by lexicographic

order). We formalize this as follows. Inabeled graph
h denoted byG' = (V. L, E), the vertices ofG are la-
beled by a given functiorl, such that for each vertex
u € V, a uniquelabel L(u) € {1,...,n}. We denote
by L(G) the set of all possible labelings for a graph
G = (V, E). Given a labeled grap&' = (V, L, E) and

a vertexu € V, v is called aright neighbor(resp.left

tioof2—-0© < L . It is based on semidefinite pro- neighbo) of « if v € N(u) and ifv has a label larger

4/ logn
gramming relaxation (see [7]). This kind of method re- (resp. sr_na_ller) than. . : .
Description of the Algorithms. We give now a basic

uires to fit entirely the graph into memory, that does > s .
d y grap ¥ description of our algorithms, based on the previous

not satisfyCs. . . .
Cs notions. We give later the way they can be implemented

Thus, there are many algorithms for theRTEX . . : .
' in the model of Fig. 1 to satisfy constrainds, Cs, Cs.
COVER problem but there does not seem to be a way to 9 fy 2, Cs

implement them in order to satisfy the constraifits
C> and(Cj given in the introduction.

Algorithm 1 [£L] Let G = (V, L, E) be a labeled
graph. For each vertex v € V, u is added to the

o . cover if it has at least one right neighbor.
Organization of the Paper. Despite the very severe

constraints of the model and the intrinsic difficulty of the
VERTEX COVER problem (NP-complete), we describe Algorithm 2 [S£L] Let G = (V, L, E) be a labeled
in Sect. 2. three algorithms adapted to our model. graph. For each vertex v € V, u is added to the

To compare them, we propose in Sect. 3. general cover if v € N(u) such that d(v) < d(u) or if u has
analytical formulas giving the exact expected size of the at least one right neighbor with the same degree.
vertex cover produced. This leads us to show that none
of them is better than the two others. -

To go further in the comparison, we give in Sect. 4. Algorithm 3 [SLL] Let G = (V, L, E) be a labeled
general formulas giving the maximum number and the graph. For each vertex v € V, u is added to the
expected number of requests made by the algorithmscover if 3v € N (u) such that d(v) > d(u) or if u has
on the “Input data” warehouse. This is a measure of at least one left neighbor with the same degree.

Eric Angel et al. — Algorithmic Operations Research Vol.612) 56-67 59

Approximation Ratios. It can be easily seen that 3. Mean Analysis about Quality of Solutions
these algorithms always return a vertex cover of the
input graph££ andSLL have an approximation ratio These three algorithms work deterministically on any
of at leastA. Indeed, on star€£. can return all the given labeled graph. However, the labels of vertices are
leaves, if the center is labeled by andSLL returns often totally arbitrary and only come from the applica-
all the leaves. It has been proved in [4] ti&£ L (pre- tion domains. Different labelings can give different re-

sented as dist a|gor|thm) has an approximation ratio SUltS, i.e. covers of different sizes. In this SeCtion, we
of at most¥2 -+ 3 compare these algorithms with respect to the size of the
2 2"

vertex cover they return. Since there afepossible la-
belings inL(G), we assume that each one can occur
Details on the Model and Satisfaction of the Con- with a probability ;.

straints C'y, Co and C3. We suppose thatthe dataware- ~ We give in Theorem 1 exact formulas correspond-
house stores the labeled graph= (V, L, E) in the ing to the expected size of solution constructeds;

form of an adjacency list in which vertices and their s,/ andS22 on any graphG. For that, we introduce
neighbors are stored in an arbitrary order (not necessar-5qditional notations.

ily following the labels). (L_et S =V\{u]| 3 e Nu),dv) < du)} (resp.

If the degrees of the vertices are not stored in the S =V \ {u | Jv € N(u),d(v) > d(u)}) be the set
input data unit, onlyC£ can be used. If we suppose Of vertices with no neighbor of lower (resp. greater)
that, in addition, the degrees are stored in a table (with degree. Let(u) = [{v | v € N(u) Ad(v) = d(u)}| be
direct access in the input unity,L.L andeTﬁ can also the number of neighbors af having the same degree
be executed. The table of degrees must have been store@S that ofu.

and computed when the graph has been constructed; wel heorem 1. Let G = (V,E) be any graph. Let
suppose here that it is available. E[A(G)] be the expected size of the solution con-

structed by algorithmA on G. By considering all the

The processing unit (runningL, SLL or SLL) labelings ofL(G) with equiprobability assumption, we

sendsrequestdo the data warehouse to scahvertex have
by vertex and for each current verteXits label and its 1
degree if needed), scans its neighbors (their labels and E[LL(G)] =n — Z T =1 (1)
their degrees if needed) one by one. When the process- ev (u) +

ing unit decides that a vertaxbelongs to the solution 1

(applying the conditions given in the descriptions of
the algorithms above), is put immediately and defini-
tively into the cover (it is sent to “Result”). Then, the E[%(G}] =n— Z
processing unit asks for the next vertex (and its neigh- wes
bors) from the data warehouse; otherwise, it must scan _

all the neighbors of: (and, at the end, require the next FT0f- We give the proof forLL and for SLL. The
vertex like in the previous case). We suppose that the Proof for SLL is similar to theSLL one.

“Input data” warehouse has the ability to do all these ~ ProofforCL. Let G = (V,L,E) be any labeled
operations in an efficient way (returning the labels and graph. LetC. be a cover constructed l§C on the la-

the degrees, going to the next neighbor, the next vertex, beled grapltz. Let us consider a vertexof G. u is not
etc.). selected byC L if and only if it has no right neighbor,

_)) which means that all its neighbors have labels smaller
In this model, the three algorithms satisfy the con- than it. Since we consider a uniform distribution over

straintsC; (the instance is not loaded) (atany mo- the set ofn! possible labelings, this event appears with
ment the processing unit only has two labels in mem- d(u)!

; a probability ofm. Indeed, if we sort: and the
ory and two degrees) an@ds (the current piece of the N
solution is sent as soon as it is produced).

E[SLL(G)] =n — 7;5 EMEEE 2

1

o(u)+1° ®)

d(u) vertices of N(u) by increasing order of labels,
there are(d(u) + 1)! possible permutations, and the
It is worth to notice thatC£ can be adapted to the number of permutations such thais in the last posi-

streaming model (see [9] for a survey), since it requires tion is d(u)!. Thus,P[u € Crc] =1 — gy and the

only labels of vertices to compare them. result follows by summing those probabilities for each

60 Eric Angel et al. — Analysis and Comparison of Three Algarith

vertexu of G.

Proof forSLL. Let G = (V, L, E) be any labeled
graph. LetCs.. be a cover constructed h§LL on
the labeled grapld=. Let us consider a vertex of G.

If u ¢ S, it means that there exists a vertexc N (u)
such thatd(v) < d(u). So, for all the vertices oF \ S,

we haveP[u € Csce | u & S| = 1. Also, if u € S,
then it is selected bysLL if it has at least one right
neighbor with the same degree. By following the same
principle as for£L, for all the vertices of \ S, we
haveP[u € Cser |u € S| =1— W The result
follows by summing those probabilities for each vertex
u of G. O

One can note similarities between the proof of Theo-
rem 1 for£L and a result oCaroand Wei on the size
of anIndependent Seh a graph (see [1]).

Theorem 2. AmongLL, SLL andf%—ﬁ, no algorithm

can be elected as the best one: there exist graphs for
which each algorithm returns, in expectation, a cover
smaller than the two others.

Proof. We show that, for each algorithm, there exist

graphs for which it is the best in expectation.

e Let S, be a star withn vertices. If we apply resp.
(1), (2) and (3) onS,, for all n > 2, we have

n—1 1 n 1 1
R R
For SLL, the setS contains all the leaves of,,.
Thus, we have

E[SLL(S:)] = n—n+1 =1.

E [‘C‘C(Sn)} =

— — .
For SLL, the setS only contains the center f,,.
Hence, we have

E[SLL(S,)] = n—1 .

We can easily see that
E[SLL(S,)] < E[LL(S.)] < E[SLL(S,)].
Note thatSLL is optimal forS,,.
o Let GR,«, be a grid graph witlh = p x g vertices.
Vp, q > 2, we have

E[LL(GR,xq)]

_ o (p=2)(@=2) 20p+q—4) 4
5 4 3

_4n ptqg 2

5 10 15

For SLL, the setS contains all the vertices which
are neighbors to the border and the corner vertices of
GRpx4. SO, we have

E[SLL(GRyxq)]

_, =4e-4 20+q¢-8
5 3

dn 20p+q 28

5 15 15

o < .
For SLL, the setS contains all the border and
corner vertices ot R, «,. Therefore, we have

E[SLL(GRyy)]

_,_P=Y-4 20p+q-8) 4
5 4 3

_4dn 3(p+gq) 8

=5 T 10 15

Thus, we can see th#L is better in expectation
thanSLL andSLL on grid graphs.

e Let AL be a special bipartite graph with= 2a? +

a — 1 vertices. InAI, the set of vertices is{; U
X, UY; UY,, with X; = {Ul,.../uaz,Q}, Y, =

{wl, . ,waz}, Xy = {2’1, .. .,Za} andY, = {t}
The set of edges ig;w; Vi, j, ziwg(i—1)4x fOr k =
1,...,aandi = 1,...,a; andtz; Vi. An example

is given in Fig. 2. Note that amI; graph is an
extension of graphs presented in [4].

We consider thatt > 2. The set of vertice¥ =
X1 UY; UXyUYs is constituted as followsX
containsa? — 2 vertices of degree?, Y; containsa?
vertices of degree? — 1, X, containsa vertices of
degreen + 1, andY; containsl vertex of degree.
Thus, for£L, we have

B[LL(ATY)]
_ a? -2 a? a 1
T eI T @141 a+2 a+1

a?—2 a 1
=n—1-—

a2+1 a+2 a+1°
For SLL, the setS only contains the vertekof Y.
Thus, we have

E[SLL(AIF)] = n—1.

For gﬁﬁ, the set<§ contains thez? — 2 vertices of
X;. Therefore, we have
E[S.Cﬁ(AIj)] =

We can see thaf L is better tharSLL. We com-

paregﬁﬁ with LL:

]E[EE(AIJ)} —]E[SEE(AIJ)}

_ a?—2 _a 1
a’+1 a+2 a+1

n—a>+2.

=a? -3 >0

Eric Angel et al. — Algorithmic Operations Research Vol.612) 56-67

a’—2

a
whena > 3, becaussm <1 5 < 1 and
1 H H a“—2 a 1
-1 < 1, thatimplies’s £ + 45 + 37 < 3.
Hence,

E[SLL(AIT)] < E[LL(AL})] < E[SLL(AIT)].
Note thatSLL always returns a worst solution (of
sizen — 1) on any AT} graph.

Figure 2. Example ofdAI; graph witha = 3

O

Applications of (1), (2) and (3) on another classes of
graphs can be found in [2].
Special Properties of£L. We show here that for any
graph G, LL can construct an optimal cover for any
graphG in the best case or a very large cover in the
worst case.
Lemma 1. For any graphG, there exists a labeling
function L* € L(G) such thatLL returns an optimal
solution on the labeled grapy = (V, L*, E).

Proof. Let C* be an optimal cover. It is easy to show
thatV \ C* is an independent set and that each C*
has at least a neighbor i\ C* (otherwise,u and all
its neighbors would be i, thusC* would not be
optimal). The labeling functior.* we propose is one
such that vertices of* get labels betweeh and |C*|
and vertices ol \ C* get labels betweejC*| 4+ 1 and

n. If algorithm £L is executed on such a labeled graph,
it returns all the vertices of?* (since each vertex

of C* has at least a neighbor ¥ \ C* with a higher
label) and no vertex oV \ C* (becausd” \ C* is an

independent set and thus each vertex in this set only has

neighbors inC*, i.e. “on its left”). O

Lemma 2. For any graphG, there exists a labeling
function L,, € L(G) such thatLL returns a cover of
sizen — c on the labeled graplir = (V, L, E), with ¢
the number of connected componentsiofc = 1 if G

61

is connected). This bound is tighf:£ cannot construct
a cover of size more tham — c.

Proof. First, we consider a grap&y with ¢ = 1 con-
nected component. L&t be any spanning tree 6f. Let

r be any vertex of". The labeling functiorl,, € L(G)
labels the vertices as follows. Vertexgets labeln.
The d; neighbors/children of in T get thed; labels

(n —dy,...,n — 1); the d> vertices at distance get
theds preceding labels{— d; — ds,...,n —d; — 1),
etc. until each vertex receives a label, level by level
(see Fig. 3 for an illustration). With this labeling, since
T is a spanning tree, each vertex# r has at least
one right neighbor: its parentin the treeT" rooted in

r. Hence, the execution of £ on this labeled graph
G = (V, Ly, E) will return all the vertices, except the
root r, which is the vertex labeled with the maximum
value. This is the maximum size achievable, sida2
never put in a cover the vertex with the larger label
(since it cannot have a right neighbor).

03

Figure 3. Example of a labeled spanning tree of a graph.
Dotted linescorrespond to edges which are present in the
graph but not in the spanning tree.

If G is not connected, we can apply the previous
labeling and analysis on each connected component of
G. O

4. Analysis of the Number of Requests

In Sect. 2., we have seen that, during the execution
of algorithms, the processing unit gets vertices one by
one, in any order of labels (not necessarily frono n).
Moreover, the neighbors of a vertexare also obtained
one by one, in any order. That implies two situations.
(1) If u is not sent to the cover by examining the
current neighbor, the processing unit retrieves a
neighbor ofu which has not yet been scanned. If
there is no remaining neighbor, i.e. whanhas
been compared with all of its neighbors, it decides
definitively thatu is not in the cover.

(2) If uis sentto the cover because of the examination
of the current neighbor, the system doesn't need
to go further and to compare with its remain-

62

ing neighbors. Hence, the processing unit is not

required to retrieve all the neighbors of a vertex.
We callrequestthe action of getting a neighbor (its la-
bel, and its degree, if needed) which has not yet been
scanned. In this section, we evaluate thenber of re-
guestsmade by the three algorithms to construct their
solutions. Given a labeled graph, this number depends
on the order in which neighbors of vertices are sent to
the algorithm.

In our model, the processing unit takes longer to get
a neighbor from the “Input data” warehouse than to
compare two vertices (their labels and/or their degrees)
stored in its memory. Hence, the number of requests
determines the running time of the algorithms. So, we
study precisely in this section the worst time complexity
and the average time complexity of our three algorithms.

Note that this kind of study is similar to thguery
complexityapproach presented in [11]. It has a finer
granularity than the complexity analysis in 1/0-efficient
algorithms or streaming algorithms. Indeed, in the 1/O-
efficient model (see [16] for a survey), we focus on the
number of access disk, while in the streaming model
[9], we focus on the number of passes through the data
stream.

In Subsect. 4.1., we study the maximum number of
requests, by considering for each vertex the worst order
in which its neighbors can be retrieved.

In Subsect. 4.2., we study the average number o
requests, by considering that for each veriex V, its
d(u) neighbors can be retrieved in any one of ite)!
possible orders with a uniform probability. Then, we
assume that all the! labelings of a grapli (in L(G))
can occur with a uniform probability.

Notations. We denote byd* (u) (resp.d(u)) the
number of right (resp. left) neighbors of We denote
by dint(u) (resp.dsup(u)) the number of neighbors af
having a degree smaller (resp. greater) than that. of
We denote byt (u) (resp.oc™ (u)) the number of right
(resp. left) neighbors of having the same degree.

f

4.1. The Maximum Number of Requests

In this subsection, we give exact formulas for the
maximum number of requests performed by the three
algorithms.

Lemma 3. Let G = (V, L, E) be any labeled graph.
We denote byV{Qu(G, L)} (resp.C.4) the maximum
number of requests made (resp. the cover constructed)
by algorithm.A on the labeled grapldiz. One has

Eric Angel et al. — Analysis and Comparison of Three Algarith

W{Qce(G, L)} = > d(u)

ugZCrr

+ > (d(w)+1),

ueCrr

b=) dw
ugCsce

+) (dsup(u) + o (u) +1)

u€Cscr

W{esz(G. D)} = Y dw)
u€Csr7

+ > (dit(u) + ot () +1) .

ueCqs7

We give the proof for L. Proofs forSLL andgﬁﬁ
are similar.

Proof. LetG = (V, L, E) be a labeled graph. L&t .

be a cover constructed b§/L on G. Let us consider a
vertexu of G. u € C, . if and only if it has at least one
right neighbor. In the worst case, the processing unit
gets all the left neighbors af before getting a right
neighbor. Hence, it makes exactly (u) + 1 requests

to decide that is in the cover; otherwise, if ¢ C.,
then we have to get all the neighborswfto decide
finally thatu is not in the cover (we don’t know it has no
right neighbor a priori), which generates exacfly:)
requests. The result follows by summing those values
for each vertex: of G. O

Theorem 3. Let G be any graph. LeW{Q4(G)} =
maxper(q) W{QA(G, L)} be the maximum number of
requests made by algorithod on G. One has

W{Qa(@)} =m +[CR™] , (7)

where|C"}**| is the maximum size of cover returned by
algorithm A on G.

Proof. We give the proof for£L and forSLL. The
proof form is similar to theSLL one.

Proof for£L. Let G = (V,L,FE) be any labeled
graph and’. . the cover constructed gL on G. We
can simplify (4) as follows.

ST odw)+ Y (d () + 1) =m+[Crel
ugCrr ueCrr
since,Yu & Crr, d(u) = d~(u) and}_ .\, d™(u) =
m. Now, if we maximize (8) by considering all the
n! possible labelings oL(G), we need to maximize
the size ofC... Hence, we obtainV{Q,.(G)} =
m+ |Cwax|,

(4)
(5)

W{Qs,c(G, L

(6)

(8)

Eric Angel et al.

Proof forSLL. Let G =
graph andCs. . the cover constructed h§LL on G.
We can simplify (5) as follows.

ST odw)+ > (dswplw) o (w) +1) (9)
uZCsrr uECscr

=m+ |Csccl

since,Vu & Cscz, d(u) = dsup(u) + o~ (u) and
> wey (dsup(u) + o~ (u)) = m. Now, if we maximize
(9) by considering all the! possible labelings dt(G),
we need to maximize the size dfs;... Hence, we
obtainW{ Qs (G)} = m + [CEE%|. O

Corollary 1. The maximum number of requests made

by £L£ on any graphG (over all its labelingsL(G))
havingc connected components is

W{Qce(G)}=m+n—c. (10)

MoreoverW{Qu(G)} <m+n—1for A=SLL or
LL.

Proof. The results foi £ are derived from Theorem 3
and Lemma 2. Fo§LL andgl;,c, note that any cover

C 4 cannot contain all the vertices 6f. O

4.2. The Expected Number of Requests

In this subsection, we give exact formulas express- E
ing the expected number of requests for the three algo-

rithms.
Lemma 4. Let G =

rithm A on the labeled grapld;. One has

E[Qcc(G,L)] = > dlu) (11)
ugCrr
d(u) +1
+uezcu dt(u)+1 "’
E[Qsce(G L)) = Y du) (12)
uZCscr
N d(u) +1
u€Cscr dlnf()+ U+() +1 ’
ElQs (G, L)) = Y du (13)
u&CgE—E
d
+ o)(ﬁ)j(l)+ 1
uGCm sup

(V,L,E) be any labeled

(V,L, E) be any labeled graph.
We note [Q4(G, L)] (resp.C4) the expected number
of requests made (resp. the cover constructed) by algo-

—Algorithmic Operations Research Vol.612) 56-67 63

We give the proof forl £. Proofs forSLL andSLL
are similar.

Proof. Let G = (V, L, E) be any labeled graph. Let
C.r be a cover constructed b§L on G. Let us con-
sider a vertex: of G. If u ¢ Cr, then the algorithm
has to get all of its/(u) neighbors; otherwise, it makes

% requests in expectation before getting one of
the d*(u) right neighbors ofu. This value can be ex-
plained as follows. If a player is to draw balls from a
bag containing: white balls and black balls until he
draws a black ball, not replacing the ball drawn, then the
expected number of white balls he will drawié; (see

for example [6]). Now, suppose that tHéu) neighbors

of u are balls in a bag, witd—(u) (resp.d™(u)) white

(resp. black) balls. Using = d~(u) andb = d*(u),
we obtaingty +1 = d*(u(;i) +1= dfzﬁz)ill requests
in average (including the one giving the “black ball”).
The result follows by using linearity of expectation]

Theorem 4. Let G be any graph. Lef[Q4(G)] =

w1 2rer(c) E[Qa(G, L)] be the expected number of
requests made by algorithpd on G, assuming that all
the labelings ofL(G) occur with the same probability.
For £LL andSLL, we have

[Qec(G)] =) H(d (14)
uev
E[Qscc(G)) (15)
= 7%‘:/ :fliig i 1 (H (dinf(u) + o(u) + 1)
1
—H (dnt (1)) — Udi%)_o ST

whereH(n) =143+ %+ -+ L andH(0) =
E[Qm(G)} is obtained by replacinglin(u) b
dsup(u) N (15).

Proof. We give the proof for££ and forSLL. The
proof form is similar to theSLL one.

Proof for£L. Let G = (V, E) be any graph. We
calculate thecontribution of each vertexu € V in
E[Qcc(G)]. Let L € L(G) be any labeling or; and
Cr the cover constructed gL on the labeled graph
G = (V,L,E). Notice that for each vertex € V,
u & Crc if and only if d*(u) = 0. Let Bx(u) be the
proportion of labelingd, € L(G) for whichd™ (u) = k.

64 Eric Angel et al. — Analysis and Comparison of Three Algarith

Using (11), thecontributionof vertexu in E[Qz.(G)]
is

1
)+ Z () - = :1 . (16)

Let us compute the value @ (u). The value ofi™ (u)
depends only on the label of vertexcompared to those
of its neighbors. There are exactly

(d(u?—i— 1) cd(u)! x (n— (d(w) +1))! (A7)
labelings in whichi™ (u) = k. Indeed, we assign labels
to vertices ofG as follows. First, we choosé(u) + 1
labels amongn andu gets the(k + 1) largest label
in order to havel* (u) = k. Then, there remaid(u)!
possibilities for labeling neighbors efand(n— (d(u)+
1))! possibilities for the other vertices 6f. We obtain
Br(u) by dividing(l?) byn!. Thusvk € {0,...,d(u)},
Br(u) = u)+1 Now, we simplify (16) and we get

d(u) +1
+Zﬂk 1
d(dw) "YU
+Zk+1 d(u)+1+];2 k
d(u)
:1+Z% = H(d(u))
k=2

The result follows by using the linearity of expectation.

Proof forSLL. Let G = (V, E) be any graph. We
calculate thecontribution of each vertexu € V in
E[Qszz(G)]. Let L € L(G) be any labeling on&
and Cs.. the cover constructed b§LL on the la-
beled graphG = (V, L, E). Notice that for each ver-
texu € V, u & Csgp if and only if dinr(u) = 0 and
o™ (u) = 0. Also, note that ifdin;(u) > 0, whatever the
labeling of vertices of7, u is always selected b§ L L.
Let 5. (u) be the proportion of labelings € L(G) for
which o™ (u) = k.

(1) If dint(u) > 0, whatever the value of ™ (u) (be-
tween0 ando (u) and denoted by the following),
the contributionof vertexu in E[Qs..(G)] is

d(u) +1

. —_— 18
P (u) dinf(u) +k+1 (18)
(2) If dins(u) = 0, then the fact that is in the cover

returned bySLL or not depends only on label af

compared to those of its neighbors having the same
degree. In this case, ttentribution of vertexu

in E[Q‘gﬁg(Gﬂ is

Biy(w) - L with k=1,...,0(u)
if ue Csrr, (19)
Bi(u)-d(u) otherwise.

We obtain the value off; (u) by using the same rea-
soning as forLL. We replaced(u) in B (u) by o(u)
and thus we have, for any vertex ;. (u) = 5,
Vk € {0,...,0(u)}. So, in order to simplify (18), we
apply this result for each vertexsuch thatdins(u) > 0:

1 d(u) + 1
k=0 o(u)+1 ' dint(u) + k + 1 (20)
Cd(u) +1 o(u)+1)
= olu)+1 ; dinf(u) + k
= %(H(dmf(u) + U(u) + 1) _ H(dmf(u))) :

and we apply this result on (19), for each vertex
such thatdins(u) = 0:

d(u) N Z U(ul d(u) +1 21)

1
ou)+1 o(u) — k

_d(u)+1
= o1 -H(o(u)+1) — EOFEE
The result follows by summing (20) and (21) for each
vertex ofG. O

Corollary 2. The expected number of requests made by
LL,SLL andSLL on aA-regular graph isn - H(A),
that tends tan - log A whenA tends to+oc.

Proof. As in G for all w € V we haved(u) = A,
the result for£L immediately follows and we also get
dintf(u) = dsup(v) = 0 ando(u) = d(u). Using these
values, we can simplify (15) and get the result§at L
andSZL. O

Theorem 5. AmongLL, SLL andSLL, no algorithm
can be elected as the best one: there exist graphs for

Eric Angel et al. — Algorithmic Operations Research Vol.612) 56-67 65

which each algorithm makes an expected number of
probes to the instance smaller than the two others.

Proof. Here, we apply formulas given in Theorem 4
to show that, for each algorithm, there exist graphs for
which it can be the best in expectation.
e Let S, be a star withn vertices. If we apply resp.
(14), (15) and (15) by replacingns(u) by dsug(u),
for all n > 2, we have

E[QLL(SH)} = H(n—l)—i—n—l .

In a starS,, such that, > 2, no vertex has a neighbor
having the same degree as it.

ForSLL, then —1 leaves ofS,, have no neighbor
with a smaller degree. The center 8f hasn — 1

neighbors (the leaves) having a degree smaller than

it. Thus, we have

E[Qsce(Sn)]
=(n-1)-2+n(HMn)—HMn-1)) — (n—1)

For§££, the center of5,, has no neighbor having a
degree greater than it. Each leaf%f has a neighbor
(the center) with a greater degree. Thus, we have

E[Qszz(Sn)]
—nt(n—1)-2(H2) - H1) —1=2n—2 .

Thus, we can easily see that
E[Qscc(Sn)] < E[Qce(Sn)] < E[Qgz7(Sn)]-
o LetK,, = (XUY, E) be a complete bipartite graph
with n = a+b vertices (where = | X | andb = |Y)).
Assuming that: > b > 4, we have

E[Qcc(Kap)] = a-H(b)+b-H(a) .

In a complete bipartite grapk, ; such thata # b,

no vertex has a neighbor having the same degree as it.

For SLL, the a vertices of X have no neighbor
with a smaller degree. Each vertexiohasa vertices
(those ofX) having a degree smaller than it. Thus,
we have

E[Qsce(Kap)]
=alb+1)+bla+1)(H(a+1)—H(a)) —a
=ab+b .

Forgﬁﬁ, theb vertices ofY” have no neighbor with a

greater degree. Each vertexXfhasb vertices (those
of Y) having a degree greater than it. Thus, we have

E[Qgzz (Kap)]
=bla+1)+alb+1)(H(b+1)—H(D)) —b

=ab+a .

We can easily see th&£L is better thanSLL

(because > b). We compareCL with SLL:

E[Qsce(Kap)] —E[Qes(Kap)]
=ab+b—a-H(b)—b-H(a)

= HO)+ D b Ha) 4 > 0
because > H(b) whenb > 4 and% > H(a) when
a > 4.

Therefore, wherw > b > 4, L£L produces, in
expectation, a smaller number of requests (N4
andSZL.

Let CK;,,, be anecklacewith n = [x w vertices.

A necklaceCK; ,, is a cycle ofl complete graphs
where each complete graph (: € {1,...,1}) hasw
verticesaw — 2 vertices of degree — 1 and2 distinct
verticesa; and b; of degreew, called connectors
which connecf; to its previous and to its following
neighbors in the cycle (see Fig. 4 for an illustration).

Assuming that > 1 andw > 4, we have

E[Qcc(CKiw)]
=l(w—-2)-Hw-1)+2]- H(w)
:n-H(w—1)+2—l .

w
In a necklaceC'L, ,,, each vertex belonging to the
[complete graphs except tf¥# connectorssz; and
b; hasw — 3 neighbors having the same degree as
it. Each connector has 2 neighbors having the same
degree as it.

For SLL, the l[(w — 2) different vertices of the
connectors have no neighbor with a smaller degree.
Each connector has — 2 neighbors (the vertices
of the complete graph it belongs) having a degree
smaller than it. Thus, we have

E[Qscc(CKiw)]
=l(w—2)-$-H(w—2)

w? —
:n.H(w—2)+2§l'ﬁ_l :

For gﬁﬁ, the2l connectors have no neighbor with a
greater degree. Each vertex (except the connectors)

66 Eric Angel et al. — Analysis and Comparison of Three Algarith

has2 neighbors (the connectors of the complete graph modify the input graph, they don’t need a large mem-
it belongs) having a degree greater than it. Thus, we ory on the processing unit, and they don’t need to read

have

E[Qs:7(CKiw)]

— . wT“ CH(3)
Hi(w—2) - (Hw) ~ H) - 2

We compare them:

E[Qce(CKiw)] — E[Qgs7(CKiw)]
Chn A 4

BECRETIC)
1(5w? —
_ 5w —28w+36)
18w
whenw > 3, because the polynomiady? — 28w+ 36
has two roots2 and3.6; and is positivevw < 2 and

Yw > 3.6.

E[Qscc(CKiw)] — E[Qs7(CKiw)]
5n n 21 231
E—’—w—l S Bww-1) 9
[(5w? — 33w? + 46w — 12)

B 18w(w — 1) >0

whenw > 4, because the polynomialy® — 33w? +
46w — 12 has three roots).34, 1.48 and4.78; and is
positiveVw € [0.34,1.48] andVw > 4.78.

Hence, wheri > 1 andw > 4, fSTﬁ produces, in
expectation, a number of requests smaller tifah
andSLL.

Figure 4. Example of a necklace with= 3 andw = 6

O

5. Conclusion

and/or modify the solution computed during the execu-
tion. They are adapted to the construction of a vertex
cover in huge graphs on a basic computer.

If the degrees of the vertices are directly available, the
three algorithms can be used; otherwise, abi/can be
applied. To compare these three methods, in Sect. 3., we
have given exact (analytical) formulas for the expected
size of the cover returned by these algorithms (we also
proved that for any graph there exist labelings for which
LL give the optimal cover). We proved that, based on
this measure, no algorithm among these three can be
elected as the best one for all graphs.

To go further in the analysis, in Sect. 4., we have
given exact formulas expressing the maximum and the
expected number of requests made by the three algo-
rithms (to the system containing the input data) to con-
struct the solution. Again, based on this running time
complexity measure, we have proved that none of the
three algorithms can be elected has the best (i.e. fastest)
one.

All our analytical formulas can help a user to choose
among our three algorithms based on potential knowl-
edges on the input graph (that may be given by the do-
main of application). They can be used to balance be-
tween precision and complexity.

We can also remark that the three algorithms can
easily be executed in parallel if each processing unit
manages a subset (not necessarily consecutive) of ver-
tices.

We believe thatSLL is the algorithm constructing
the smallest vertex cover in average for “almost all”
graphg if the degrees are available. A perspective is
to prove that; this is probably hard for all graphs; some
experiments results could also be helpful.

References

[1] N. Alon and J. H. SpencerThe Probabilistic Method
Wiley, New York, 1992.

[2] E. Angel, R. Campigotto, and C. Laforest. Algorithms
for the Vertex Cover Problem on Large Graphs.
Technical Report No 1, IBISC — Université d’Evry, 2010.

We have presented and analyzed three algorithms+ Thjs opinion is also based on analysis on other class of

for the VERTEX COVER problem, which are suitable to

graphs and several experimentations not included in this pa

the severe constraints of our model: they don’t need to per.

Eric Angel et al. — Algorithmic Operations Research Vol.612) 56-67

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, and M. Protastomplexity
and Approximation Springer, 1999.

[4] D. Avis and T. Imamura. A List Heuristic for Vertex
Cover. Operations Research Letter35:201-204, 2006.

[5] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
CompletenessW.H. Freeman & Co., New York, 1979.

[6] M. Glaymann. Ou le Premier n'est pas Toujours
Premier... Educational Studies in Mathematjc3(1-
2):83-88, July 1976.

[7] G. Karakostas. A Better Approximation Ratio for the
Vertex Cover ProblemACM Transactions on Algorithms
(TALG), 5(4), October 2009.

[8] R. Lippert, R. Schwartz, G. Lancia, and S. Istrail.
Algorithmic Strategies for the Single Nucleotide
Polymorphism Haplotype Assembly Problemrefings
in Bioinformatics 3(1):23-31, March 2002.

[9] T. C. O’Connell. Fundamental Problems in Computing
chapter A Survey of Graph Algorithms under Extended

Streaming Models of Computation, pages 455-476.

Springer Science + Business Media, 2009.
[10] C. H. Papadimitriou and M. Yannakakis. Optimization,
Approximation and Complexity Classespurnal of

Received 9-7-2010; revised 30-1-2011; accepted 4-3-2011

67

Computer and System Sciencé3(3):425-440, 1991.

[11] M. Parnas and D. Ron. Approximating the Minimum
Vertex Cover in Sublinear Time and a Connection to
Distributed Algorithms.Theoretical Computer Science
381:183-196, Avril 2007.

[12] S. Pirzada and A. Dharwadker. Applications of Graph
Theory. Journal of The Korean Society for Industrial
and Applied Mathematics (KSIAM)1(4):19-38, 2007.

[13] C. Savage. Depth-First Search and the Vertex Cover
Problem. Information Processing Lettersl4(5):233—
235, July 1982.

[14] K. Smith. Genetic Polymorphism and SNPs. Available
on http://www.cs.mcgill.ca/ ~kaleigh/
compbio/snp/snp_summary.html , February
2002.

[15] U. Stege. Resolving Conflicts in Problems from
Computational Biology PhD thesis, ETH Zurich,
Institute of Scientific Computing, 2000.

[16] J. S. Vitter. Algorithms and Data Structures for
External Memoryvolume 2. Foundations and Trends in
Theoretical Computer Science, Boston — Delft, 2009.

[17] Y. Zhang, Q. Ge, R. Fleisher, T. Jiang, and H. Zhu.
Approximating the Minimum Weight Weak Vertex
Cover. Theoretical Computer Scienc863(1):99-105,
2006.

