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Abstract

In the present paper we consider a particular case ofsegmentation problemrising in the elaboration of radiation
therapy plans. This problem consists in decomposing agéntmatrix A into a nonnegative integer linear combination
of some particular binary matrices callestgmentsvhich represent fields that are deliverable witinaltileaf collimator
For the radiation therapy context, it is desirable to find acdmposition that minimizes theeam-on time that is
the sum of the coefficients of the decomposition. Here westigade a variant of this minimization problem with an
additional constraint on the segments, called thegue-and-groove constrainrAlthough this minimization problem
under the condition that the used segments have to respetbrigue-and-grooveonstraint has already been studied,
the complexity of it is still unknown. Here we prove that ia tharticular case whered is a binary matrix this problem
is polynomially solvable. We provide a polynomial procedtimat finds such a decomposition with minimal beam-on
time. Furthermore, we show that the beam-on time of an optileeomposition (but not the segmentation itself) can be
found by determining the chromatic number of a related perfeaph.

Key words: intensity modulated radiation therapy (IMRT), conseaitbnes property, tongue-and-groove constraint.

1. Introduction leaf collimator (MLC, see Figure 1) is commonly used

to cover a certain part of the radiation beam. This de-
vice consists of several pairs of metallic leaves which

Radiation therapy is one of the most prescribed can block the radiation.
treatment methods to cure cancer tumors. Its aim is to
destroy the cells of the tumor by exposing it to radia-
tion. But because we cannot isolate the tumor from the
rest of the body, we have to take care of the healthy
tissues and organs close to the tumor (calledbtigans
at risk). Nowadays, most radiation therapy centers use
a linear accelerator to send the radiation from different
directions, which allows to deliver a higher dosage in
the tumor than in the organs at risk. Moreover, a multi-
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The elaboration of a radiation therapy plan is com- such that
monly done in three steps. P
(1) Different radiation angles are fixed, in such a way A= Z ug St
that the tumor is in the radiation epicenter and the t=1
organs at risk are protected as much as possible
[9]. In the literature two different objective functions are
(2) For each direction, an intensity function is deter- considered (see [7] for a survey).
mined. This function is encoded as a nonnegative  The beam-on time problerBOT) consists in find-
integer matrixA of sizem x n where each en-  ing a decomposition of the matriA which minimizes
try represents an elementary part of the radiation the sum of the coefficients_}_, u,. This corresponds
beam (calledbixel). The value of each entry cor- to the goal, that the irradiation time for a patient should
responds to the intensity of radiation we want to be minimized in order to decrease some undesirable ef-
send through that bixel. fects like radiation leakage (a very small portion of the
(3) Each intensity matrix is segmented since the linear radiation is transmitted through the leaves). This prob-
accelerator can only send a uniform radiation. This lem is known to be polynomial and efficient methods
segmentation steponsists in finding a sequence for solving it have been proposed by several authors
of positions of the MLC leaves. [1,2,8,13,14,16,22,23]. In some of the given references,
In this paper we focus on the third step. Therefore also constrained versions of the beam-on time problem
our work is to find a set of positions of the leaves of the are considered. In clinical applications a lot of con-
MLC in such a way that the dosage corresponding to straints may arise that reduce the number of deliverable
the intensity matrix is finally delivered. We restrict our segments. For some technical or dosimetric reasons we
work to the case where the MLC is used in the so called might look for decompositions where only a subset of
step-and-shoomode, which means that the leaves are all segments is allowed. Those subsets might be ex-
never moving while the patient is irradiated. plicitely given [11] or defined by constraints like the in-
Mathematically, the segmentation step amounts to de- terleaf collision constraint (also called interleaf matio
composing matrixA into a nonnegative integer linear constraint or interdigitation constraint, [2,3,13,14ke
combination of some binary matrices whose shape caninterleaf distance constraint[10], the tongue-and-geoov
be reproduced by the leaves of the MLC (these binary constraint [4,15,16,17,18,21], the minimum field size
matrices are calledegmentssee Figure 2). constraint [19] or the minimum separation constraint
For each row of these segments, the MLC has a left [11,16].
and a right leaf. The radiation is not capable of passing  The cardinality problem(CP) consists in finding a
through bixels that are covered by a leaf, and so only decomposition of the given matrix which minimizes
passes through bixels located between the two leaves.the number of used segments, i.e. the cardinality of the
This is why a segment is a binary matrix which has support of all strictly positive coordinates of the vector
to satisfy theconsecutive ones propertwhich means  u, in order to decrease the duration of the radiation
that the ones have to be grouped in a single block, in therapy session. This problem is known to be NP-hard

each row. [5], even if the matrix has only one row [2] or one
column [6].
Throughoutthe papék] denotesthe sét, 2, ... k}

foranintegek, and[/, 7] denotesthe s¢t, £ + 1,..., 7} In the present paper we focus on finding a decom-
forintegers’ andr with £ < 7. We also allow’ = r+1 position whose segments satisfy toegue-and-groove
where[(,r] = 0. Thus, anm x n matrix S = (si;) constraint. The leaves are designed in such a way that
is a segment iff there are integral intervals, r;| for the radiation cannot pass between two adjacent leaves.
i € [m] such that Therefore, there is a small overlap between adjacent

leaves as illustrated in Figure 3.

To avoid under- and overdosage caused by this
tongue-and-groove design, it is desirable to simultane-

Hence, letp be the total number of segments and let ously irradiate the bixels of the same column as much
S :={51,...,5,} be the whole set of segments of size as possible. Mathematically, this corresponds to the
m x n. We look for nonnegative integers, ..., u, following two constraints:

6 — 1 iij[fi,Ti],
10 otherwise.
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Fig. 2. The leaves of the MLC determine a binary matrix callesegment

eral problem is still unknown. Luan, Wang, Chen, Hu,
Naqgvi, Wu and Yu have provided an approach which
gives a decomposition of which minimizes the num-
ber of used segments and the tongue-and-groove error
[20].

In this paper, we restrict ourselves to decomposi-
tions of binary intensity matriced. Obviously, we have
u; = 1 for all TG-segmentss; arising in the segmen-
tation. Thus, minimizing the beam-on time is equiv-
alent to minimizing the cardinality in our case. First,
we prove that the problem under the tongue-and-groove
constraint can be solved in polynomial time and pro-
vide anO(m?n?) time algorithm to find such a TG-
decomposition. Then we show that finding the optimal
beam-on time of a TG-decomposition (but not the de-
composition itself) can be done by relating the problem
to a coloring problem in a perfect graph, which gives an
alternative proof for the polynomiality of the problem.

integer linear problem. But the complexity of the gen-
\l/ Radiation

Fig. 3. The special design of the leaves of the MLC which
leads to the tongue-and-groove constraint.

i—1,j andsij =1= Si—1,7 = 1
i—1,5 andsi_Lj =1= Sij = 1.

aijga
aij>a

This means that bixgl — 1, j) and bixel(s, j) have

to be irradiated exacthnin{a; 1 ;,a;; } times simulta- 2 TG-decompositions of binary matrices

neously. We call a segment satisfying the tongue-and-

groove constraint 3G-segmentA decomposition oA For simplicity of notation, we add @th and ann +
into TG-segments is callefiG-decomposition 1)-th column to A and puta;y = a; 41 = 0 for all

For the segmentation without tongue-and-groove un- ; ¢ [m)]. Similarly, we add d@-th and an(m + 1)-th row
derdosage, Kamath, Sahni, Palta, Ranka and Li [17,18]to A and putag; = a1, =0 forall j € [0,n +1].
presented an algorithm which is beam-on time optimal  We use the well-known results for unconstrained de-
in the special case of unidirectional leaf movements, i.e. compositions of integer matrices. From [8] we know

when the leaves only move from left to right when their that the minimal beam-on time of a decomposition of
positions are changed from one segment to the next. Butthe ;-th row of 4 is

this does not lead to the optimal beam-on-time for the "

general case, as one can find decompositions with lower ., (4) .= Z max{0, a;j — a;_1} (1)
beam-on time where the leaves have to move both to the =

left and to the right during the treatment. Furthermore,
we know polynomial algorithms for the case where both
the tongue-and-groove and the interleaf collision con-
straint are taken into account [14]. In this case we again
have an optimal unidirectional schedule, which is much ¢(A) := max ¢;(A). (2)
easier to compute. The general problem can be formu- i€fm]

lated as network flow problem with side constraints us- In the unconstrained case, the single row decomposi-
ing similar ideas as in [3] and thus solved by solving an tions can be combined arbitrarily to form segments.

which is in the binary case equal to the number of blocks
of ones in rowi. The minimal beam-on time of a de-
composition of the whole matrid is
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This is no longer the case if the tongue-and-groove region is the connected component in the graph that
constraint is considered. Obviously, if the input matrix containsB.

is binary the tongue-and-groove-constraint reduces to

the fact that consecutive ones in a column have to be pefinition 2.[Boxes of rowi and number of splits] Let

irradiated simultaneously.

Definition 1.[Box] Foriy, iz € [m],i1 < iz andj € [n],
the set of bixelsB = {(i,5) | i1 < i < iy} is called
abox if a;; = 1 forall (i,5) € Banda;,—1; =
aiy+1,; = 0. If a;; =1 fori € [m], j € [n], we denote

i € [m] be fixed. The boxes of roware the elements of
the set{ B, | j € [n]}. Thenumber of splitof row i is
defined as the minimal number of splits between neigh-
boring boxes of row that are necessary to make all the
connected subsets pjje[n] B;; satisfy the consecutive
ones property. This number is denotedyA).

the unique box containing, j) by By;. If a;; = 0, we So, the aim is to insert a split when a connected region
defineB;; = 0. Let the set of all boxes bB. of ones does not satisfy the consecutive ones property.
In the unconstrained case, a decomposition of a bi- Obviously, a connected subset of boxes from i@ees
nary matrix corresponds to a partition of the set of ones not satisfy the consecutive ones property if and only if it
such that each subset forms a segment. Including thecontains a subset of the forfB; ;, B; j+1, ..., Bij/}
tongue-and-groove constraint, a decomposition is a par-with ;' > j + 1 and
tition of the set of boxes such that each subset has the
consecutive ones property. Figure 4 shows an exam- aij =1, ay=0forall £ e [j+1,; —1]
ple for a decomposition of the set of boxes into MLC- a; j» =1, ay = 1forall £ € [5,5'], k € [ + 1,1
segments.
We say that two boxe® = [i, i3] X {j} andB’' =
[i1,45] x {j+1} areneighboringf [i1,i2] N[}, i5] # 0.
In such a case, the two boxes form a connected region
of ones. Sometimes we have to separate these two boxes
in order to satisfy the consecutive ones property of con-
nected regions of ones. This is why we now introduce a
splitting procedure on the set of boxes. For this we need

for somei’ < ¢ or

ape=1forall ¢ € [j,5], k € [i,i — 1]
Qi = 1, Qi p = 0forall ¢ e [j + 1,j/ - 1]

ayj =1

some notation and use a geometrical point of view. We for somei’ > i. We call the se{B, ;, ..

define the spli 3 g/ as the vertical line where the two
boxes overlap, i.e.

s, = ([i1,42] N [i],45]) x {5}

If we insert a splits g, g between the two boxe8 and

B’, B and B’ do not form a connected region of ones
anymore and we are not allowed to put both of them
into the same segment. Here we say that the split is in

positionj because we split between columand; + 1.
With each set of splitsSP, we associate a graph that

. Bi,j/} ani-
cupin the first case and ailcapin the second case, as
the zeros can be crossed below or above via other rows
of ones. The situation is illustrated in Figure 5. If we
talk abouti-caps ori-cups, we call them-obstacles.
The comprised zero entries for j+1 </ <j —1
are calleccritical zeros as they destroy the consecutive
ones property of the corresponding boxes and imply the
necessity of a split.

For each rowi € [m] and eachi-obstacle
{Bij, ..., Bij}, we get an integral interval of possible
split positions|j, ;' — 1]. At least one of these splits

models the connectedness of the ones in the matrix with has to be chosen in order to destroy thebstacle

respect to the given splits. Lét = (V, E) be defined
as follows:

V={(,j) | ai; = 1}

E={{5),@+1)} @75),@0@+1,5) eV}
U{{(@,5), (6,5 + D} | (2,5), (6,5 +1) €V,
AseSP:(i,j) € s}

We call a subset of boxe8’ C B connected with

respect to the split se¥7P if the subgraph induced by
Upen: B is connected. For each bag, its connected

and make the connected boxes satisfy the consecutive
ones property. Let therefok? = [ki, k] — 1]°, K} =
ko, ky — 1)',... K} = [ky,,k, — 1]" be the inte-
gral split intervals for alli-cups (ordered from left to
right) and analogously leli = [¢1,¢) — 1], L} =
[0, 05 —1]F, ... LL, = [ly,, £, —1]" be the integral
split intervals for alli-caps (ordered from left to right).
Here,v; is the number of-cups andw; is the number

of i-caps. Obviously, theKJ? are pairwise disjoint and

the L; are pairwise disjoint for fixed. Thus, for all
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Fig. 4. Decomposition of the boxes into TG-segments.

row ¢

Fig. 5. Number of splits in row € [m]. The grey areas indicate arcap (left) and an-cup (right). The thick lines indicate the
splits that destroy thé-obstacles. Sometimes, one split can destroy #wbstacles (oné-cap and one-cup) as indicated by
the second split on the right.

possible split positiong € [n — 1], j can be contained
in at most two of the intervals from above. Ag A) is

the minimal number of splits needed to destroy:all
obstacles, the computation ©f A) amounts to finding

TG-segments. For this, we need some more notation and
lemmas. Obviously;?“(A) is the minimal number of
TG-segments we need to decompose the boxes of row
andcT%(A) is a lower bound for the minimal beam-on

time.

Let us now assume that we have givdntogether
with a set of splitsSP. If there exists some € SP
with (i,7) € s, then we do not allow to put the bixel
(¢,7) and (i,5 + 1) into the same segment. We now
generalize the definition ef “ (A, SP) and define it as
the minimum number of segments that are necessary to
decompose the set of boxes of rowith respect to the
split setSP. Obviously, if SP = {), this corresponds to
our previous definition of?'“(A). Thei-obstacles and
the corresponding split intervals for ale [m] are also
defined with respect t67P, i.e. including splits reduces
the number of-obstacles.

If we insert a split between neighboring boxgsand
B’ and the split affects row, there are two cases:

e The split increases the TG row complexity of raw

(it can increase by at most one unit).

e The split does not increase the TG row complexity

of row i.

If a split increases the TG row complexity of any row
1, we call the spliti-infeasible Otherwise, the split is
calledi-feasible A split is feasible if it is i-feasible for

a subset\/ C [n — 1] such that:
M N K} #0forall j € [v]
MANL;#0forall j e [w]

|M| — min

The optimal value of the objective functiondg(A).

This problem aims at partitioning the vertices of the
corresponding interval graph into a minimum number
of cliques (for more details see e.g. [12]). It can easily
be solved by taking all the intervals of a row from the
left to the right, and insert a split in the last possible
position, that is the last position for which otherwise
there would be an unsplit interval. Figure 6 gives a
possible optimal solution for the problem, where the
arrows indicate the splits given by this procedure.

Definition 3.[Tongue-and-groove complexity] We de-
fine theTG row complexityof row i by

cF9(A) = ci(A) + 5;(A).

K2

The TG complexityof the intensity matrix4 is defined

by all i € [m]. For example, for the matrix
TG (A) = max cre(A). ]
et 101001010
Our aim is to show that”“(A) is the minimal beam- A=(111101111
on time of a segmentation of the binary matrixinto 011100101
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Fig. 6. Possible splits.

we have

cTCA,0)=44+0=14
ICA,0)=24+2=14
T9(A0)=34+0=3.

Indeed,s; (A) = s3(A) = 0 since there are neithér
or 3-cups norl- or 3-caps and,(A) is equal to 2 since
we need at least a split to destroy the split intefva?]
and another one to destroy the split intervélsr] and
[7, 8]. Notice that the split , , B, , is infeasible since it
is 3-infeasible. Indeed, if we insert this split the number
of blocks of ones in row8 would be equal tol and
hencec“ (A, SP) would increase. The split, , 5, ,
is feasible. Similarly, the spli¢z, ;. B, , is 2-infeasible
as only the2-cup is destroyed while the remainiggap
requires a further split. The splii, . 5, , destroys both

thei-cap and the&’-cap as in the following example:

e e
O = =
O = =
O~ = =
— == =

Let {Bjy,..., By} be thed-cup with ¢ < j' and
¢ > 4. Thus, its critical zeros are in a roiw < ¢ and
by Lemma 1{ B¢, ..., By} is also ani-cup. O

Before we can prove the next lemma, we need some
more notation. To clarify the notions, we introduce here
the notations in terms of the split intervals as well as

i-obstacles, does not increase the TG row complexity in terms of interval graphs. So, let the split intervals of

of row 2 and thus i2-feasible (and also feasible).

The next lemma is easy to verify as it follows di-
rectly from the definition of theé-caps and-cups.

Lemma 1. Let rowk € [m] have ak-cap (respectively
k-cup) with split interval[j, ;/ — 1] and critical zeros
in row i > k (respectivelyi < k). Then all rows? with
k < ¢ < i (respectivelyi < ¢ < k) also have the&-cap
(respectively-cup) with split intervalj, ;' — 1].

The next lemma follows from the previous one.

Lemma 2.a) Leti < ¢’ such that there is aicap and
an i’-cap with split interval[j, j;/ — 1] and the same
critical zeros. Then every-cup with split interval
[¢,¢ —1] such that]j, 5/ — 1]N[¢, ¢ — 1] # D is also
an i-cup.

b) Leti’ < i such that there is ai-cup and an’-cup
with split interval [,/ — 1] and the same critical
zeros. Then every/-cap with split intervall¢, ¢/ — 1]
such thafj, j/ — 1] N [¢, ¢ — 1] # 0 is also ani-cap.

Proof. We only prove a), as b) then follows by symme-
try. For a), Iet{Bij, . ,Bij/} = {Bi/j, ey Bi/j/} be

some row; € [m] be ordered such that for consecu-
tive intervalsl = [i1, i) andJ = [j1,jo] i1 < 71 and
if 11 = j1 theniy > js holds. This means , if two in-
tervals start at the same position, the longer one comes
first with respect to this order. We associate with these
intervals the interval graply;(V, E'). The set of ver-
ticesV includes a vertex for each split interval of the
row ¢ and two vertices/ and J are connected if the
two corresponding split intervals have a non-empty in-
tersection. Let us notice thét;(V, E) is a forest.
A set of splitintervalg Iy, . .., I;) forms asequencef
row: if I = I;U---UI} is aconnected interval. The cor-
responding vertice$, , . .., I; form a set of connected
vertices ofG,;. Such a set is @omponentf it cannot
be extended, which means thiat . .., I, form a con-
nected component a;. Finally, atrunkis a sequence
(I1,...,I;) with k < k that has the property that there
is no interval in the compone(f;, ..., I) that is con-
tained in any of the interval$,, ..., I;. Note that a
trunk consists of a set of split intervals corresponding
to alternatingi-caps and-cups. The definitions are il-
lustrated in Figure 7 and 8.

Obviously, for split intervald andJ, if I C J then
every split in7 automatically also splits/. Thus, for
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2y oy plog By by Iy le s
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E ] 1 ] : —— P

Fig. 7. Components and trunks. The intervdls. .., I3 are the split intervals of some row They decompose into three

components of split intervalds, . .., Is), (1s, . -
bold lines. The trunk of the last component is empty.

290

Fig. 8. The first component of the interval graph correspond-
ing to the intervaldly, . .., Is from Figure 7.

a componen{Iy,...,I;) in row ¢, the decision if a
splitin I; \ I is i-feasible only depends on the trunk.
Hence, for the first component in Figure 7, we see that
each split ofl, and I5 will also split /5. Therefore,
becausel; will automatically be split by the split we
will have to insert inl;, we do not have to care of
that interval and the decision about the feasibility of a
splitin I \ I, only depends on the trunld;, Ic). As
the number of intervals in this trunk is even, a split in
I, \ I, is infeasible. The next lemma is obvious using
the interval graphs.

Lemma 3.a) If a split destroys ari-cap and ani-cup
for somei € [m] and these are the leftmostap and
i-cup, then the split ig-feasible.

b) If a split destroys an-cap (respectivelyi-cup) for
some row: € [m] with split interval I and all the
otheri-caps andi-cups have split intervals that are
disjoint from I, then the split ig-feasible.

c) Letus consider a trunkly, ..., I;) in some rowi. A
split sp,,.5,,,, With j € I \ I is i-infeasible iffk
is even.

We propose the following

Splitting procedure: lteratively insert feasible splits
until no more obstacles exist in the whole matrix.

Obviously, at the end there are exactly(A) splits
and ¢/'“(A) connected regions of ones in each row
i€ [ml.

The only thing we still have to prove is that the

., I11) and (112, I13). The trunks(I1, I2) and (I, I7, Is) are highlighted with

choice of a feasible split in the splitting procedure is
always possible.

Lemma 4. Let the binary matrix4 and a set of feasible
splits SP be given such that there is still a connected
region of ones that does not satisfy the consecutive ones
property. Then there exists another feasible split.

Proof. As there is a connected region of ones that does
not satisfy the consecutive ones property, there exists
ani-cap or ani-cup for some row € [m|. We consider
thei-obstacle with the leftmost critical zero and under
this circumstance minimal value of

We can again w.l.0.g. assume that this is a subset
of ones of the form of ari-cup, because the case of
an i-cap is similar. Let the leftmost split interval in
row i be [j, ;" — 1] and no split of typesp,, B, ..
with k& € [j,5/ — 1] is already inSP. Let i’ be the
last row below row:, for which this is also an’-cup.
Possibly,i’ = i. Since[j, j/ — 1] is the split interval of
the leftmosti-cup we know that all the trunks which
contain[j, 7/ — 1] start in that split interval. We have the
following situation where at least one of theositions

is a0:
-/

J J
71— 1 1 0 0 1
7 1 1 1 1
i 1 1 ... 1 1
7 4+1 \x x ... % x

To produce connected regions satisfying the consecutive
ones property, we have to show that one of the splits
5B, .,B;.4q 1Ok € [j, j' — 1] is feasible. Each of these
splits affects at least the rovkse [i, ] for which there
is thek-cup with split intervalj, j* — 1]. We distinguish
different cases:
Case l:Forallk € [i,4'], there is ndk-cap with split
interval[¢, ¢ — 1] such thatj, j/ —1]N[¢, ¢/ —1] # 0.
As there is at least one zero in raiv+ 1 in [4, 5],
there is a split that only affects rows € [i, '] for
which there is thé-cup with split intervalj, ;' — 1].



126

Using Lemma 3 b) we obtain the feasibility of this
split.

Case 2:There is an intervdk; , ko] with i < ky <’
such that there is A-cap with splitinterval¢, ¢ — 1]
suchthaty, ;' —1]N[¢, ¢’ —1] # O forall k € [k1, ko).
Obviously,ks < i’ is not possible because of Lemma
2 b). If ke =4 every splitin[j, 5/ — 1] N[l,I' = 1] is
feasible using Lemma 3 a) and b). Let us therefore
consider the cask, > ¢':

j E ]I El
1—1 1 0 0 0 1 % =«
i=i=k |1 1 1 1 1 1 1
ko 0111 1 11
* 1 00 0 0 1

Let us assume that the splits[ifp ;' — 1] N [¢, ¢ — 1]
are k-infeasible for some row: € [i' + 1, ks] (if
not, there is a feasible split). That means, in rbw
it is not allowed to split only thé-cap in[¢, ¢/ — 1],
because it has to be cut together withkaup on
the right. Lemma 3 c) tells us that the trunk of split
intervals in rowk starting with[¢, ¢ — 1] ends with

a split interval corresponding to A-cup (because
the total number of vertices in that trunk must be
even). Thus the trunk of split intervals in ranis of
the form[¢, ¢’ — 1] = Jy, 11, Ja, Lo, . . ., Jy, I, where
Ji,...,Jy arek-caps and thd, ... I; arek-cups.
Now we use Lemma 2 several times: Because kow
and the rows inky, ¢'] shareJ;, Lemma 2 tells us that
they also shard;. Now there are two parts: For the
rows inh € [kq,4'] which do not shard,, the trunk

of these rows starts and ends with a cup and thus every

splitin [5, 5/ — 1]\ [¢, ¢’ — 1] is h-feasible. And for the
rows inh € [k1,i’] which shareJz, we use Lemma
2 again and we obtain, that they shdgeand so on.
Thus, for allh € [k, '], we either find arh-feasible
splitin [j,7 — 1]\ [¢,¢ — 1] (*) or row h shares all
the split intervals with rowt (**). Furthermore, the
trunks of split intervals in rows € [kq,4'] cannot
be longer thar([j,j' — 1], J1, I1, Jo, I2, ..., Je, It),
as ani’-cap would have to follow that, again using
Lemma 2 would also be &-cap, a contradiction.
Thus, the trunk for the rowé € [k;,4'] is exactly
([4,4" = 1), J1, 1, Jo, Iz, ..., Ji, It) in case (**) and
the number of split intervals is again odd. Again,
every splitin[j, ;' — 1]\ [¢, ¢’ — 1] is h-feasible. All
in all, every splitin[j, 5/ — 1]\ [¢, ¢ — 1] is feasible,
as it ish-feasible for all the split row#.

O
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The result of our splitting procedure is the following:
We have inserted a number of feasible splits, until no
more feasible splits are possible. Afterwards eachirow
is split exactlys; (A) times and all the connected regions
of ones in the matrix have the consecutive ones property.
We havec] “(A) connected regions of ones intersecting
with row i for all ¢ € [m]. The splitting procedure takes
time O(m?n?). At first, in each rowi € [m] and for
each blockB;; we need at mostin operations to check,
if a split after this block is necessary. Thus, it takes time
O(m?n?) to find all split intervals for all rows. With
these split intervals it take@(n) to find s;(A) in each
row 5. Afterwards, checking that a split isfeasible
can be done in tim&®(n) by computing the minimal
number of splits for the left part and for the right part.

We will now define a step of the segmentation proce-
dure, that finds for giverd a TG-segmen§ such that
A — S is nonnegative and’“ (A — S) = ¢T%(A) — 1.

Let us assume that we have already obtained the set
SP of splits from the splitting procedure, i.e. we have a
number of connected regions of ones with consecutive
ones property, whose union is the set of oned irwe

call a rowi € [m] critical if ¢I9(A) = ¢T%(A). For

i € [m] let s; denote the-th row of S.

Algorithm 1 Segmentation

Input: Matrix A with splits
si; = 0 forall (4, ) € [m] x [n]
for i =1tom do
if 7 is critical ands; = 0 then
Choose a connected region of ones that inter-
sects row; but no rowk < i with s # 0.
Add this connected region of ones.fo
end if
end for
A=A-S5
Output: Matrix A

We prove in Lemma 5 that we can always find such
a region for each critical row, which is still empty i
Because the segmentation procedure selects only con-
nected regions of ones fror it obviously follows that
A — S is nonnegative. Moreover, because all critical
rowsi satisfys; = 0 at the end of the for-loop, we also
have thatt”’%(A — S) = ¢T%(A) — 1. Hence the seg-
mentation procedure will lead us to a segmentation of
A which usescT%(A) TG-segments, when we iterate
it until A = 0. The only thing we still have to check
is the fact that for each critical row such that still
s; = 0 in the for-loop we can always find a connected
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Fig. 9. Trunks of split intervals. The intervals with theatés at the end are thieobstacles, the others those of the row§kin '].

region of ones that does not intersect a non-empty row matrix A. We can just use the old partition where some
in the current segmerfi (see Figure 10) and that can of the splits have become useless.

be added tc5.

Theorem 1. The minimal beam-on time of a segmen-
tation of A into TG-segments ig’ % (A).

— Proof. It is obvious that we need at least®(A4) TG-
segments to decompose because there is some row
i* whose boxes can only be decomposed by at least
el (A) = cT9(A) segments. After the splitting proce-
row i dure, we find at most”“(A) regions of ones in each

| ‘ row i € [m] and eliminating one of them always corre-
sponds to decreasing the TG row complexity of row
Fig. 10. A matrixA with its connected regions of ones with by 1. Obviously, Algorithm 1 finds a TG-segment that
respect to the splits from the splitting procedure. Thelblac decreases the TG row complexity byn all the critical
areas form the current segmesitin the for-loop of the seg-  rows (and maybe also in some other rows). The state-
mentation algorithm. The first critical row which is still gty ment then follows by induction. O

in S is rowi = 6. The grey area intersects with rain= 6

but does not intersect with non-empty rows$fSo, we can

choose this connected region of ones to comptete Corollary 2. The optimal decomposition of a binary

) _ ) ) input matrix into TG-segments can be found in polyno-
Lemma 5. Let the matrixA and its splits be given and  mial time.

let a number of connected regions of ones be already
chosen that form a current segme$itLeti € [m] be

a critical row with s; = 0. Lets, = 0 forall k > i.  Pproof. The splitting procedure takes tim@(m?n?)
Then there exists a connected region of onedlithat  and produces less thann connected regions of ones.
intersects with row but with no rowk < 7 with s;, # 0. Checking if a connected region of ones should be added

in the segmentation procedure also takes tid{ewn).
Thus, the whole decomposition can be done in time
O(m?*n?). O

Proof. Let us assume all the connected regions of ones
that intersect with row cannot be added t8 because
they intersect with some row < i. Letk* be the largest
index of a nonzero row iry. Because of the connect-
edness, each connected regions of ones fromiriow
tersects with rowk*. As there arez’“(A) connected
regions of ones intersecting with rawthere are at least
cT'%(A) + 1 regions of ones intersecting with roif

in contradiction tai being a critical row. Thus, the as-

We close this section with an
Example 1. We discuss our whole approach using the
example matrix

. . . . 1000001010
sumption was wrong and we find a region of ones in

row i that can be added t§ O 0110100000

' 0111/111/100

A=10000100100] and

Note, that after subtracting a segméhfrom A, we 0000001100

can use the algorithm above again, but it is not neces- 11111001100

sary to compute the splitting procedure for the updated 1001100000
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1000000000
0000100000
0000111000
0000100000
0000000000
0001000000
0001100000

S

from Figure 10 with the splits indicated by vertical bars.
The first segment; is determined after computing the
TG-row-complexities

N O NN
wN RP|w
N O NS
RO Rlw,
wr No
N O N~

deducing="%(A) = 3, applying the splitting procedure
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This gives an alternative proof that the problem can be
solved in polynomial time.

The chromatic numbeof a graphG = (V, E) is the
minimal number of colors we need to color the vertices
of G such that no two adjacent vertices have the same
color. This number is denoted by(G). A cliquein G
is a subset of vertices, such that each two of them are
adjacent. The size of a largest cliquedris denoted by
w(G).

A perfect graphs a graph’ in which the chromatic
number of every induced subgraph equals the size of
the largest clique of that subgraph, i@.is perfect if
for every induced subgrapf’ of G we havey(G’) =
w(@).

Let the binary matrixA be given. We define a graph
G4 = (Va, E4) as follows: The set of verticeB, is
the set of boxes ofi. The set of edge& 4 is the set
of pairs of boxeg B, B’) such thatB and B’ are not

and the first step of the segmentation. After inserting allowed to be in the same segment of a TG-segmentation
feasible splits, the connected regions of ones are accord-of A. That means, two boxeB = [i1,42] x {j} and

ing to Figure 10. In the first step of the segmentation,
the critical rows are the rowd, 3 and 6. After remov-
ing S1, the critical rows are the rows, 3 and6 again,
where the row complexity & now. The next two steps
of the segmentation procedure then might produce

0000001000
0110000000
0111000000
0000000000
0000000000
1110000000
1000000000

So and

0000000010
0000000000
0000000100
0000000100
0000001100
0000001100
0000000000

S3

which finally yields an optimal TG-decomposition with
three TG-segments.

3. Relation to colorings of perfect graphs

We show that finding the optimal beam-on time of
a TG-segmentation of a binary matrix is equivalent to
computing the chromatic number in a perfect graph.

B’ = [i},i5] x {j'} are adjacent, ifiy, i2] N [i}, 5] # 0
and if
o either there is an entry; ;» = 0 for somei €

li1,32] N [i},i5] andj” € [j + 1,5 — 1] or
e there is somg” € [j + 1,5’ — 1] such that for all
rowsi € [i1,142] N [¢}, 5] there is ani-obstacle with
split interval[j, "] or [5”, j'].
For example, in Figure 11 bok and 10 from the left
would be adjacent, because the bofeso 10 form
an i-cap. Note that, if two boxes belong to the same
connected region of ones resulting from the splitting
procedure, they are non-adjacent in the graph. This
graph is called th& G-graphof A.

Theorem 3. 79 (A) = w(G4)

Proof. ¢c7¢(A) > w(G 4) is easy to see, as each box in
a maximal clique of7 4 needs its own segment. Let now
i be a row withc/¢(A) = cT%(A), i.e. after applying
the splitting procedure the boxes of rawdecompose
into ¢7'“(A) many connected regions of ones such that
each two of them have to be irradiated separately. As
we show now, it is possible to choose one box from
each region of ones, such that each two of the chosen
boxes are not allowed to be put into the same segment
of a TG-segmentation ofi. The choice of the boxes
from each region of ones is illustrated in Figure 11 and
can be realized as follows:
e We go through the boxeB;1, . .., B;, of rowi from

left to right. W.l.o.g. we only have to discuss the
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choice of boxes within a sequenég;, ..., B;; of
nonempty boxes (i.ea;r; # 0 for j < k < j'),
because if there is a zero in rowbetween two

129

and thuse?(A) = x(Ga). O

Theorems 3 and 4 together giwgG4) = w(Ga)

boxes they are adjacent in the graph anyway. Let us for the TG-graphG 4 of A. If we consider induced sub-
therefore consider such a sequence of consecutived"@Phs ofG 4, the boxes that correspond to the chosen

connected regions of ones resulting from the split-
ting procedure such that all the involved boxes are
nonempty.

We start with the leftmost region of ones and choose
its leftmost box for the clique. We then always go
to the next region of ones on the right and choose
the leftmost box in this region for the clique that is
adjacent in the grap&y 4 with the previously chosen
box.

This indeed gives a clique, because if we as-
sume two chosen boxeB = [i,i2] X {j} and

B’ = [i},ib] x {j’} with iy < i < iy andi) <i < i

are non-adjacent, this would mean that the boxes
Bij, Bi j+1,...,Bi -1, B; ;o satisfy the consecu-
tive ones property, a contradiction to the choice of
boxes described above.

Using this procedure, the choseh(A) many boxes
form a clique inG 4 and we have"%(A) < w(G4).

All in all, we havec”%(A) = w(Ga).

| J row i

Fig. 11. The bold lines indicate the possible split pos#ion
and the grey boxes are chosen to form a maximal clique.

([l
Theorem 4. c7'¢(A) = x(GA)

Proof. By definition, the chromatic number is the min-

imal number of stable sets we need to decompose a
graph, as each color has to be assigned to a stable sef!

of vertices. Obviouslyy(G 4) < ¢T(A), as each seg-
ment exactly corresponds to a stable setGp and
therefore an optimal segmentation yields a coloring with
cT'¢(A) many colors.

Furthermore, we have(G 4) < x(G4), as this holds
for every graph. Together with Theorem 3, we have

w(Ga) < x(Ga) <" (A) = w(Ga)

subset of vertices form a binary matrix, that we c#ll
from now on. Note that the induced subgraph(of
that has the boxes of’ as vertices, denoted b, is

not necessarily= 4-. It can happen, that two boxd3
and B’ of A’ are adjacent G4/, but not adjacent in
the induced subgrapl/, because other boxes of,
that do not belong tad’, allowed puttingB and B’
into the same segment. This is illustrated in Figure 12.

Theorem 5. For every induced subgraph of G 4 there
exists a grapltz 4 thatis the TG-graph of a binary ma-
trix A” with x(H) = x(Ga») andw(H) = w(G 4 ).

Proof. Let H be an arbitrary induced subgraph@f,
such that the boxes of the induced vertex set form a
binary matrixA’. Let A” be the matrix that has the same
boxes asd’ and some extra boxes defined as follows:
Whenever we have two boxd3 = [iy,i2] x {j} and

B’ = [k1, k2] x {£} in A’ with £ > j such thatB and

B’ are not adjacent i’ 4 and such that there are only
zeros in([i1, i2]N[k1, ko)) x [j+1,¢—1]in A’, then we
add the intermediate boxéB1, iz] N [k1, k2]) x {t} for
allt € [j+1,¢—1]to A”. For example, the three white
boxes in Figure 12 on the left are the intermediate boxes
of B andB’. Therefore,B and B’ can be put into the
same segment of a TG-segmentationddf. Let G 4~

be the TG-graph corresponding to the matdik. G 4

has more vertices thafi and some extra edges that are
incident with the new vertices. Note that two boxesiof
that are adjacent iff are also adjacentif¥ 4, because
they still cannot be in the same segment. Similarly, two
boxes ofA’ that are non-adjacent if are non-adjacent
in G4, as we inserted the intermediate boxes. TI#is,

is an induced subgraph &t 4~ andx(H) < x(Gar)
andw(H) < w(G 4 ) is immediately obvious.

Let now B and B’ be two such boxes ofi’ such
that we inserted the intermediate boxes between them
A”. Itis easy to verify that the intermediate boxes are
not adjacent td3 and B’ in G4~ and also not adjacent
to all non-neighbors o3 and B’ in G 4~ (and also in
H, as these non-neighbors are the same). This is the
case, because the intermediate boxes can be put into
the same segment with all boxes that can be put into
the same segment with eithé? or B’. Thus, if we
have an optimal decomposition éf into stable sets,
we can put all the intermediate boxes into the stable
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boxes ofA boxes ofA

B
|7 B’ B’

Fig. 12. The white boxes are boxes 4fthat are not present id’. These are two examples wheBeand B’ are not adjacent
in the induced subgraph, because there were other boxdstlwdit made their combination possible.

Bl Bl

[]

|| (1 L

Bg BS

Fig. 13. The same boxes with two different stable set decaitipns (the grey boxes and the white boxes each form a stable
set). The decomposition on the right gives a TG-segmemtakiot the decomposition on the left does not.

set containingB or the stable set containing’ and mediate boxes betweeB’ and B and betweer3 and
get stable sets idr 4». Doing this for all pairsB and B’, all intermediate boxes (left and right froB) andB
B’ where we have intermediate boxes yields a stable are non-adjacent (as they can be in the same segment).
set decomposition aff 4~ with x(H) many stable sets.  Therefore, there never can be two intermediate boxes

Thus,x(H) > x(Gan). of the sequenc®”, B, B’ with intermediate boxes be-
tweenB” and B and betweer3 and B’ in a maximal
Let us now consider a largest clique @y If this clique. After the substitution procedure we have found

cligue contains no intermediate boxes, this is a clique in a clique of the same cardinality containing only boxes
H. If it contains intermediate boxes, we do the follow- from A’. These boxes form a clique i and thus we
ing substitution: For every boxds andB’ of A’ where getw(H) > w(G 4). This concludes the proof. O

we have intermediate boxes in between, only eitBer

or B’ or one of the intermediate boxes can be in the  Using Theorems 3, 4 and 5 we get the following
cligue, as they are all non-adjacent. If an intermediate

box is contained in the maximal clique, we delete the Corollary 6. The graphG4 is a perfect graph with
intermediate box and put eithét or B’ into the max- x(Ga) = cTG(A).

imal clique. This is possible, because every box that As the coloring problem in perfect graphs can be
cannot be in the same segment with the intermediate solved in polynomial time, the beam-on time problem
box also cannot be in the same segment widtand B’ for TG-segmentations is also polynomial. We remark
and thus all neighbors of the intermediate box are also that, although the chromatic number @f4 gives the
neighbors ofB andB’. The question arises if we might  optimal beam-on time of a TG-segmentation4fnot
need a boxB twice for substitution because there are all optimal colorings ofG 4 yield a TG-segmentation
intermediate boxes left and right from. But this can- of A. For example, if the stable set decomposition is
not happen because in a sequeB¢eB, B’ with inter- like in Figure 13 on the left, we get no feasible TG-
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segmentation, as there are two boxes in a stable set thaf6]

only form a segment if the intermediate boxes are in the
same stable set (like in the decomposition on the right).

Thus, we should ask ourselves how we can modify [7]

an optimal stable set decomposition @f; in such a

way that each stable set really represents a segment;g

But from an algorithmic point of view, this question is
not interesting, as the algorithms that solve the coloring

problem in a perfect graph are slower than the one we [9]

have presented in Section 2.

4., Conclusion

We have proved that for binary input matrices the
problem of finding a decomposition which minimizes
the beam-on time or the cardinality under the tongue-
and-groove constraint is polynomial. Obviously it re-
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