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Abstract

In the present paper we consider a particular case of thesegmentation problemarising in the elaboration of radiation
therapy plans. This problem consists in decomposing an integer matrixA into a nonnegative integer linear combination
of some particular binary matrices calledsegmentswhich represent fields that are deliverable with amultileaf collimator.
For the radiation therapy context, it is desirable to find a decomposition that minimizes thebeam-on time, that is
the sum of the coefficients of the decomposition. Here we investigate a variant of this minimization problem with an
additional constraint on the segments, called thetongue-and-groove constraint. Although this minimization problem
under the condition that the used segments have to respect the tongue-and-grooveconstraint has already been studied,
the complexity of it is still unknown. Here we prove that in the particular case whereA is a binary matrix this problem
is polynomially solvable. We provide a polynomial procedure that finds such a decomposition with minimal beam-on
time. Furthermore, we show that the beam-on time of an optimal decomposition (but not the segmentation itself) can be
found by determining the chromatic number of a related perfect graph.

Key words: intensity modulated radiation therapy (IMRT), consecutive ones property, tongue-and-groove constraint.

1. Introduction

Radiation therapy is one of the most prescribed
treatment methods to cure cancer tumors. Its aim is to
destroy the cells of the tumor by exposing it to radia-
tion. But because we cannot isolate the tumor from the
rest of the body, we have to take care of the healthy
tissues and organs close to the tumor (called theorgans
at risk). Nowadays, most radiation therapy centers use
a linear accelerator to send the radiation from different
directions, which allows to deliver a higher dosage in
the tumor than in the organs at risk. Moreover, a multi-
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Engelbeen [cengelbe@ulb.ac.be].

leaf collimator (MLC, see Figure 1) is commonly used
to cover a certain part of the radiation beam. This de-
vice consists of several pairs of metallic leaves which
can block the radiation.

Fig. 1. The multileaf collimator (MLC).
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The elaboration of a radiation therapy plan is com-
monly done in three steps.
(1) Different radiation angles are fixed, in such a way

that the tumor is in the radiation epicenter and the
organs at risk are protected as much as possible
[9].

(2) For each direction, an intensity function is deter-
mined. This function is encoded as a nonnegative
integer matrixA of sizem × n where each en-
try represents an elementary part of the radiation
beam (calledbixel). The value of each entry cor-
responds to the intensity of radiation we want to
send through that bixel.

(3) Each intensity matrix is segmented since the linear
accelerator can only send a uniform radiation. This
segmentation stepconsists in finding a sequence
of positions of the MLC leaves.

In this paper we focus on the third step. Therefore
our work is to find a set of positions of the leaves of the
MLC in such a way that the dosage corresponding to
the intensity matrix is finally delivered. We restrict our
work to the case where the MLC is used in the so called
step-and-shootmode, which means that the leaves are
never moving while the patient is irradiated.

Mathematically, the segmentation step amounts to de-
composing matrixA into a nonnegative integer linear
combination of some binary matrices whose shape can
be reproduced by the leaves of the MLC (these binary
matrices are calledsegments, see Figure 2).

For each row of these segments, the MLC has a left
and a right leaf. The radiation is not capable of passing
through bixels that are covered by a leaf, and so only
passes through bixels located between the two leaves.
This is why a segment is a binary matrix which has
to satisfy theconsecutive ones property, which means
that the ones have to be grouped in a single block, in
each row.

Throughout the paper,[k] denotes the set{1, 2, . . . , k}
for an integerk, and[`, r] denotes the set{`, `+ 1, . . . , r}
for integers̀ andr with ` 6 r. We also alloẁ = r+1
where [`, r] = ∅. Thus, anm × n matrix S = (sij)
is a segment iff there are integral intervals[`i, ri] for
i ∈ [m] such that

sij =

{

1 if j ∈ [`i, ri],

0 otherwise.

Hence, letp be the total number of segments and let
S := {S1, . . . , Sp} be the whole set of segments of size
m × n. We look for nonnegative integersu1, . . . , up

such that

A =

p
∑

t=1

utSt.

In the literature two different objective functions are
considered (see [7] for a survey).

The beam-on time problem(BOT) consists in find-
ing a decomposition of the matrixA which minimizes
the sum of the coefficients

∑p
t=1 ut. This corresponds

to the goal, that the irradiation time for a patient should
be minimized in order to decrease some undesirable ef-
fects like radiation leakage (a very small portion of the
radiation is transmitted through the leaves). This prob-
lem is known to be polynomial and efficient methods
for solving it have been proposed by several authors
[1,2,8,13,14,16,22,23]. In some of the given references,
also constrained versions of the beam-on time problem
are considered. In clinical applications a lot of con-
straints may arise that reduce the number of deliverable
segments. For some technical or dosimetric reasons we
might look for decompositions where only a subset of
all segments is allowed. Those subsets might be ex-
plicitely given [11] or defined by constraints like the in-
terleaf collision constraint (also called interleaf motion
constraint or interdigitation constraint, [2,3,13,14]),the
interleaf distance constraint [10], the tongue-and-groove
constraint [4,15,16,17,18,21], the minimum field size
constraint [19] or the minimum separation constraint
[11,16].

The cardinality problem(CP) consists in finding a
decomposition of the given matrixA which minimizes
the number of used segments, i.e. the cardinality of the
support of all strictly positive coordinates of the vector
u, in order to decrease the duration of the radiation
therapy session. This problem is known to be NP-hard
[5], even if the matrix has only one row [2] or one
column [6].

In the present paper we focus on finding a decom-
position whose segments satisfy thetongue-and-groove
constraint. The leaves are designed in such a way that
the radiation cannot pass between two adjacent leaves.
Therefore, there is a small overlap between adjacent
leaves as illustrated in Figure 3.

To avoid under- and overdosage caused by this
tongue-and-groove design, it is desirable to simultane-
ously irradiate the bixels of the same column as much
as possible. Mathematically, this corresponds to the
following two constraints:
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=⇒









0 0 0 1 1 1 0 0
0 0 1 1 1 1 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0









Fig. 2. The leaves of the MLC determine a binary matrix calleda segment

Radiation

Fig. 3. The special design of the leaves of the MLC which
leads to the tongue-and-groove constraint.

aij 6 ai−1,j andsij = 1 =⇒ si−1,j = 1

aij > ai−1,j andsi−1,j = 1 =⇒ sij = 1.

This means that bixel(i− 1, j) and bixel(i, j) have
to be irradiated exactlymin{ai−1,j , aij} times simulta-
neously. We call a segment satisfying the tongue-and-
groove constraint aTG-segment. A decomposition ofA
into TG-segments is calledTG-decomposition.

For the segmentation without tongue-and-groove un-
derdosage, Kamath, Sahni, Palta, Ranka and Li [17,18]
presented an algorithm which is beam-on time optimal
in the special case of unidirectional leaf movements, i.e.
when the leaves only move from left to right when their
positions are changed from one segment to the next. But
this does not lead to the optimal beam-on-time for the
general case, as one can find decompositions with lower
beam-on time where the leaves have to move both to the
left and to the right during the treatment. Furthermore,
we know polynomial algorithms for the case where both
the tongue-and-groove and the interleaf collision con-
straint are taken into account [14]. In this case we again
have an optimal unidirectional schedule, which is much
easier to compute. The general problem can be formu-
lated as network flow problem with side constraints us-
ing similar ideas as in [3] and thus solved by solving an

integer linear problem. But the complexity of the gen-
eral problem is still unknown. Luan, Wang, Chen, Hu,
Naqvi, Wu and Yu have provided an approach which
gives a decomposition ofA which minimizes the num-
ber of used segments and the tongue-and-groove error
[20].

In this paper, we restrict ourselves to decomposi-
tions of binary intensity matricesA. Obviously, we have
ut = 1 for all TG-segmentsSt arising in the segmen-
tation. Thus, minimizing the beam-on time is equiv-
alent to minimizing the cardinality in our case. First,
we prove that the problem under the tongue-and-groove
constraint can be solved in polynomial time and pro-
vide anO(m2n2) time algorithm to find such a TG-
decomposition. Then we show that finding the optimal
beam-on time of a TG-decomposition (but not the de-
composition itself) can be done by relating the problem
to a coloring problem in a perfect graph, which gives an
alternative proof for the polynomiality of the problem.

2. TG-decompositions of binary matrices

For simplicity of notation, we add a0-th and an(n+
1)-th column toA and putai0 = ai,n+1 = 0 for all
i ∈ [m]. Similarly, we add a0-th and an(m+1)-th row
to A and puta0j = am+1,j = 0 for all j ∈ [0, n+ 1].

We use the well-known results for unconstrained de-
compositions of integer matrices. From [8] we know
that the minimal beam-on time of a decomposition of
the i-th row ofA is

ci(A) :=
n
∑

j=1

max{0, aij − ai−1,j} (1)

which is in the binary case equal to the number of blocks
of ones in rowi. The minimal beam-on time of a de-
composition of the whole matrixA is

c(A) := max
i∈[m]

ci(A). (2)

In the unconstrained case, the single row decomposi-
tions can be combined arbitrarily to form segments.
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This is no longer the case if the tongue-and-groove
constraint is considered. Obviously, if the input matrix
is binary the tongue-and-groove-constraint reduces to
the fact that consecutive ones in a column have to be
irradiated simultaneously.

Definition 1.[Box] For i1, i2 ∈ [m], i1 ≤ i2 andj ∈ [n],
the set of bixelsB = {(i, j) | i1 ≤ i ≤ i2} is called
a box, if aij = 1 for all (i, j) ∈ B and ai1−1,j =
ai2+1,j = 0. If aij = 1 for i ∈ [m], j ∈ [n], we denote
the unique box containing(i, j) by Bij . If aij = 0, we
defineBij = ∅. Let the set of all boxes beB.

In the unconstrained case, a decomposition of a bi-
nary matrix corresponds to a partition of the set of ones
such that each subset forms a segment. Including the
tongue-and-groove constraint, a decomposition is a par-
tition of the set of boxes such that each subset has the
consecutive ones property. Figure 4 shows an exam-
ple for a decomposition of the set of boxes into MLC-
segments.

We say that two boxesB = [i1, i2]× {j} andB′ =
[i′1, i

′
2]×{j+1} areneighboringif [i1, i2]∩[i′1, i

′
2] 6= ∅.

In such a case, the two boxes form a connected region
of ones. Sometimes we have to separate these two boxes
in order to satisfy the consecutive ones property of con-
nected regions of ones. This is why we now introduce a
splitting procedure on the set of boxes. For this we need
some notation and use a geometrical point of view. We
define the splitsB,B′ as the vertical line where the two
boxes overlap, i.e.

sB,B′ := ([i1, i2] ∩ [i′1, i
′
2])× {j}.

If we insert a splitsB,B′ between the two boxesB and
B′, B andB′ do not form a connected region of ones
anymore and we are not allowed to put both of them
into the same segment. Here we say that the split is in
positionj because we split between columnj andj+1.
With each set of splitsSP , we associate a graph that
models the connectedness of the ones in the matrix with
respect to the given splits. LetG = (V,E) be defined
as follows:

V = {(i, j) | aij = 1}

E = {{(i, j), (i+ 1, j)} | (i, j), (i+ 1, j) ∈ V }

∪{{(i, j), (i, j + 1)} | (i, j), (i, j + 1) ∈ V,

@ s ∈ SP : (i, j) ∈ s}

We call a subset of boxesB′ ⊆ B connected with
respect to the split setSP if the subgraph induced by
⋃

B∈B′ B is connected. For each boxB, its connected

region is the connected component in the graph that
containsB.

Definition 2.[Boxes of rowi and number of splits] Let
i ∈ [m] be fixed. The boxes of rowi are the elements of
the set{Bij | j ∈ [n]}. Thenumber of splitsof row i is
defined as the minimal number of splits between neigh-
boring boxes of rowi that are necessary to make all the
connected subsets of

⋃

j∈[n] Bij satisfy the consecutive
ones property. This number is denoted bysi(A).

So, the aim is to insert a split when a connected region
of ones does not satisfy the consecutive ones property.
Obviously, a connected subset of boxes from rowi does
not satisfy the consecutive ones property if and only if it
contains a subset of the form{Bi,j, Bi,j+1, . . . , Bi,j′}
with j′ > j + 1 and

ai′,j = 1, ai′,` = 0 for all ` ∈ [j + 1, j′ − 1]

ai′,j′ = 1, ak,` = 1 for all ` ∈ [j, j′], k ∈ [i′ + 1, i]

for somei′ < i or

ak,` = 1 for all ` ∈ [j, j′], k ∈ [i, i′ − 1]

ai′,j = 1, ai′,` = 0 for all ` ∈ [j + 1, j′ − 1]

ai′,j′ = 1

for somei′ > i. We call the set{Bi,j , . . . , Bi,j′} an i-
cup in the first case and ani-cap in the second case, as
the zeros can be crossed below or above via other rows
of ones. The situation is illustrated in Figure 5. If we
talk abouti-caps ori-cups, we call themi-obstacles.
The comprised zero entriesai′,` for j +1 ≤ ` ≤ j′ − 1
are calledcritical zeros, as they destroy the consecutive
ones property of the corresponding boxes and imply the
necessity of a split.

For each rowi ∈ [m] and eachi-obstacle
{Bij , . . . , Bij′}, we get an integral interval of possible
split positions[j, j′ − 1]. At least one of these splits
has to be chosen in order to destroy thei-obstacle
and make the connected boxes satisfy the consecutive
ones property. Let thereforeKi

1 = [k1, k
′
1 − 1]i,Ki

2 =
[k2, k

′
2 − 1]i, . . . ,Ki

vi
= [kvi , k

′
vi

− 1]i be the inte-
gral split intervals for alli-cups (ordered from left to
right) and analogously letLi

1 = [`1, `
′
1 − 1]i, Li

2 =
[`2, `

′
2 − 1]i, . . . , Li

wi
= [`wi

, `′wi
− 1]i be the integral

split intervals for alli-caps (ordered from left to right).
Here,vi is the number ofi-cups andwi is the number
of i-caps. Obviously, theKi

j are pairwise disjoint and
the Li

j are pairwise disjoint for fixedi. Thus, for all
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Fig. 4. Decomposition of the boxes into TG-segments.

row i

Fig. 5. Number of splits in rowi ∈ [m]. The grey areas indicate ani-cap (left) and ani-cup (right). The thick lines indicate the
splits that destroy thei-obstacles. Sometimes, one split can destroy twoi-obstacles (onei-cap and onei-cup) as indicated by
the second split on the right.

possible split positionsj ∈ [n− 1], j can be contained
in at most two of the intervals from above. Assi(A) is
the minimal number of splits needed to destroy alli-
obstacles, the computation ofsi(A) amounts to finding
a subsetM ⊆ [n− 1] such that:

M ∩Ki
j 6= ∅ for all j ∈ [vi]

M ∩ Li
j 6= ∅ for all j ∈ [wi]

|M | → min

The optimal value of the objective function issi(A).
This problem aims at partitioning the vertices of the

corresponding interval graph into a minimum number
of cliques (for more details see e.g. [12]). It can easily
be solved by taking all the intervals of a row from the
left to the right, and insert a split in the last possible
position, that is the last position for which otherwise
there would be an unsplit interval. Figure 6 gives a
possible optimal solution for the problem, where the
arrows indicate the splits given by this procedure.

Definition 3.[Tongue-and-groove complexity] We de-
fine theTG row complexityof row i by

cTG
i (A) = ci(A) + si(A).

TheTG complexityof the intensity matrixA is defined
by

cTG(A) = max
i∈[m]

cTG
i (A).

Our aim is to show thatcTG(A) is the minimal beam-
on time of a segmentation of the binary matrixA into

TG-segments. For this, we need some more notation and
lemmas. Obviously,cTG

i (A) is the minimal number of
TG-segments we need to decompose the boxes of rowi

andcTG(A) is a lower bound for the minimal beam-on
time.

Let us now assume that we have givenA together
with a set of splitsSP . If there exists somes ∈ SP
with (i, j) ∈ s, then we do not allow to put the bixel
(i, j) and (i, j + 1) into the same segment. We now
generalize the definition ofcTG

i (A,SP) and define it as
the minimum number of segments that are necessary to
decompose the set of boxes of rowi with respect to the
split setSP . Obviously, ifSP = ∅, this corresponds to
our previous definition ofcTG

i (A). Thei-obstacles and
the corresponding split intervals for alli ∈ [m] are also
defined with respect toSP , i.e. including splits reduces
the number ofi-obstacles.

If we insert a split between neighboring boxesB and
B′ and the split affects rowi, there are two cases:
• The split increases the TG row complexity of rowi

(it can increase by at most one unit).
• The split does not increase the TG row complexity

of row i.
If a split increases the TG row complexity of any row
i, we call the spliti-infeasible. Otherwise, the split is
calledi-feasible. A split is feasible, if it is i-feasible for
all i ∈ [m]. For example, for the matrix

A =





1 0 1 0 0 1 0 1 0
1 1 1 1 0 1 1 1 1
0 1 1 1 0 0 1 0 1




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Fig. 6. Possible splits.

we have

cTG
1 (A, ∅) = 4 + 0 = 4

cTG
2 (A, ∅) = 2 + 2 = 4

cTG
3 (A, ∅) = 3 + 0 = 3.

Indeed,s1(A) = s3(A) = 0 since there are neither1-
or 3-cups nor1- or 3-caps ands2(A) is equal to 2 since
we need at least a split to destroy the split interval[1, 2]
and another one to destroy the split intervals[6, 7] and
[7, 8]. Notice that the splitsB2,2,B2,3

is infeasible since it
is 3-infeasible. Indeed, if we insert this split the number
of blocks of ones in row3 would be equal to4 and
hencecTG

3 (A,SP) would increase. The splitsB2,1,B2,2

is feasible. Similarly, the splitsB2,6,B2,7
is 2-infeasible

as only the2-cup is destroyed while the remaining2-cap
requires a further split. The splitsB2,7,B2,8

destroys both
i-obstacles, does not increase the TG row complexity
of row 2 and thus is2-feasible (and also feasible).

The next lemma is easy to verify as it follows di-
rectly from the definition of thei-caps andi-cups.

Lemma 1. Let rowk ∈ [m] have ak-cap (respectively
k-cup) with split interval[j, j′ − 1] and critical zeros
in row i > k (respectivelyi < k). Then all rows̀ with
k ≤ ` < i (respectivelyi < ` ≤ k) also have thè -cap
(respectivelỳ -cup) with split interval[j, j′ − 1].

The next lemma follows from the previous one.

Lemma 2.a) Leti < i′ such that there is ani-cap and
an i′-cap with split interval[j, j′ − 1] and the same
critical zeros. Then everyi′-cup with split interval
[`, `′ − 1] such that[j, j′ − 1]∩ [`, `′ − 1] 6= ∅ is also
an i-cup.

b) Let i′ < i such that there is ani-cup and ani′-cup
with split interval [j, j′ − 1] and the same critical
zeros. Then everyi′-cap with split interval[`, `′ − 1]
such that[j, j′ − 1]∩ [`, `′ − 1] 6= ∅ is also ani-cap.

Proof. We only prove a), as b) then follows by symme-
try. For a), let{Bij , . . . , Bij′} = {Bi′j , . . . , Bi′j′} be

the i-cap and thei′-cap as in the following example:













j j′

1 1 1 1 1
i 1 1 1 1 1

1 1 1 1 1
i′ 1 1 1 1 1

1 0 0 0 1













Let {Bi′`, . . . , Bi′`′} be the i′-cup with ` < j′ and
`′ > j. Thus, its critical zeros are in a rowk < i and
by Lemma 1{Bi`, . . . , Bi`′} is also ani-cup.

Before we can prove the next lemma, we need some
more notation. To clarify the notions, we introduce here
the notations in terms of the split intervals as well as
in terms of interval graphs. So, let the split intervals of
some rowi ∈ [m] be ordered such that for consecu-
tive intervalsI = [i1, i2] andJ = [j1, j2] i1 ≤ j1 and
if i1 = j1 then i2 ≥ j2 holds. This means , if two in-
tervals start at the same position, the longer one comes
first with respect to this order. We associate with these
intervals the interval graphGi(V,E). The set of ver-
ticesV includes a vertexI for each split interval of the
row i and two verticesI and J are connected if the
two corresponding split intervals have a non-empty in-
tersection. Let us notice thatGi(V,E) is a forest.
A set of split intervals(I1, . . . , Ik) forms asequenceof
row i if I = I1∪· · ·∪Ik is a connected interval. The cor-
responding verticesI1, . . . , Ik form a set of connected
vertices ofGi. Such a set is acomponentif it cannot
be extended, which means thatI1, . . . , Ik form a con-
nected component ofGi. Finally, atrunk is a sequence
(I1, . . . , Ik̃) with k̃ ≤ k that has the property that there
is no interval in the component(I1, . . . , Ik) that is con-
tained in any of the intervalsI1, . . . , Ik̃. Note that a
trunk consists of a set of split intervals corresponding
to alternatingi-caps andi-cups. The definitions are il-
lustrated in Figure 7 and 8.

Obviously, for split intervalsI andJ , if I ⊆ J then
every split inI automatically also splitsJ . Thus, for
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i-caps

i-cups

I1 I13

I12

I9

I8

I7

I6I5I4

I3

I2 I11I10

Fig. 7. Components and trunks. The intervalsI1, . . . , I13 are the split intervals of some rowi. They decompose into three
components of split intervals(I1, . . . , I5), (I6, . . . , I11) and(I12, I13). The trunks(I1, I2) and(I6, I7, I8) are highlighted with
bold lines. The trunk of the last component is empty.

I1

I5I4

I3

I2

Fig. 8. The first component of the interval graph correspond-
ing to the intervalsI1, . . . , I5 from Figure 7.

a component(I1, . . . , Ik) in row i, the decision if a
split in I1 \ I2 is i-feasible only depends on the trunk.
Hence, for the first component in Figure 7, we see that
each split ofI4 and I5 will also split I3. Therefore,
becauseI3 will automatically be split by the split we
will have to insert inI4, we do not have to care of
that interval and the decision about the feasibility of a
split in I1 \ I2 only depends on the trunk(I1, I2). As
the number of intervals in this trunk is even, a split in
I1 \ I2 is infeasible. The next lemma is obvious using
the interval graphs.

Lemma 3.a) If a split destroys ani-cap and ani-cup
for somei ∈ [m] and these are the leftmosti-cap and
i-cup, then the split isi-feasible.

b) If a split destroys ani-cap (respectivelyi-cup) for
some rowi ∈ [m] with split interval I and all the
other i-caps andi-cups have split intervals that are
disjoint fromI, then the split isi-feasible.

c) Let us consider a trunk(I1, . . . , Ik̃) in some rowi. A
split sBij ,Bi,j+1

with j ∈ I1 \ I2 is i-infeasible iffk̃
is even.

We propose the following

Splitting procedure: Iteratively insert feasible splits
until no more obstacles exist in the whole matrix.

Obviously, at the end there are exactlysi(A) splits
and cTG

i (A) connected regions of ones in each row
i ∈ [m].

The only thing we still have to prove is that the

choice of a feasible split in the splitting procedure is
always possible.

Lemma 4. Let the binary matrixA and a set of feasible
splitsSP be given such that there is still a connected
region of ones that does not satisfy the consecutive ones
property. Then there exists another feasible split.

Proof. As there is a connected region of ones that does
not satisfy the consecutive ones property, there exists
ani-cap or ani-cup for some rowi ∈ [m]. We consider
the i-obstacle with the leftmost critical zero and under
this circumstance minimal value ofi.

We can again w.l.o.g. assume that this is a subset
of ones of the form of ani-cup, because the case of
an i-cap is similar. Let the leftmost split interval in
row i be [j, j′ − 1] and no split of typesBik,Bi,k+1

with k ∈ [j, j′ − 1] is already inSP . Let i′ be the
last row below rowi, for which this is also ani′-cup.
Possibly,i′ = i. Since[j, j′ − 1] is the split interval of
the leftmosti-cup we know that all the trunks which
contain[j, j′−1] start in that split interval. We have the
following situation where at least one of the∗-positions
is a0:













j j′

i− 1 1 0 . . . 0 1
i 1 1 . . . 1 1

...
...

. . .
...

...
i′ 1 1 . . . 1 1
i′ + 1 ∗ ∗ . . . ∗ ∗













To produce connected regions satisfying the consecutive
ones property, we have to show that one of the splits
sBi,k,Bi,k+1

for k ∈ [j, j′ − 1] is feasible. Each of these
splits affects at least the rowsk ∈ [i, i′] for which there
is thek-cup with split interval[j, j′−1]. We distinguish
different cases:

Case 1:For allk ∈ [i, i′], there is nok-cap with split
interval[`, `′−1] such that[j, j′−1]∩ [`, `′−1] 6= ∅.
As there is at least one zero in rowi′ + 1 in [j, j′],
there is a split that only affects rowsk ∈ [i, i′] for
which there is thek-cup with split interval[j, j′− 1].
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Using Lemma 3 b) we obtain the feasibility of this
split.
Case 2:There is an interval[k1, k2] with i ≤ k1 ≤ i′

such that there is ak-cap with split interval[`, `′−1]
such that[j, j′−1]∩[`, `′−1] 6= ∅ for all k ∈ [k1, k2].
Obviously,k2 < i′ is not possible because of Lemma
2 b). If k2 = i′ every split in[j, j′ − 1]∩ [l, l′ − 1] is
feasible using Lemma 3 a) and b). Let us therefore
consider the casek2 > i′:









j ` j′ `′

i− 1 1 0 0 0 1 ∗ ∗
i = i′ = k1 1 1 1 1 1 1 1
k2 0 1 1 1 1 1 1

∗ 1 0 0 0 0 1









Let us assume that the splits in[j, j′ − 1]∩ [`, `′ − 1]
are k-infeasible for some rowk ∈ [i′ + 1, k2] (if
not, there is a feasible split). That means, in rowk
it is not allowed to split only thek-cap in[`, `′ − 1],
because it has to be cut together with ak-cup on
the right. Lemma 3 c) tells us that the trunk of split
intervals in rowk starting with[`, `′ − 1] ends with
a split interval corresponding to ak-cup (because
the total number of vertices in that trunk must be
even). Thus the trunk of split intervals in rowk is of
the form[`, `′− 1] = J1, I1, J2, I2, . . . , Jt, It, where
J1, . . . , Jt arek-caps and theI1, . . . , It arek-cups.
Now we use Lemma 2 several times: Because rowk

and the rows in[k1, i′] shareJ1, Lemma 2 tells us that
they also shareI1. Now there are two parts: For the
rows inh ∈ [k1, i

′] which do not shareJ2, the trunk
of these rows starts and ends with a cup and thus every
split in [j, j′−1]\ [`, `′−1] is h-feasible. And for the
rows inh ∈ [k1, i

′] which shareJ2, we use Lemma
2 again and we obtain, that they shareI2 and so on.
Thus, for allh ∈ [k1, i

′], we either find anh-feasible
split in [j, j′ − 1] \ [`, `′ − 1] (*) or row h shares all
the split intervals with rowk (**). Furthermore, the
trunks of split intervals in rowsh ∈ [k1, i

′] cannot
be longer than([j, j′ − 1], J1, I1, J2, I2, . . . , Jt, It),
as ani′-cap would have to follow that, again using
Lemma 2 would also be ak-cap, a contradiction.
Thus, the trunk for the rowsh ∈ [k1, i

′] is exactly
([j, j′ − 1], J1, I1, J2, I2, . . . , Jt, It) in case (**) and
the number of split intervals is again odd. Again,
every split in[j, j′ − 1] \ [`, `′ − 1] is h-feasible. All
in all, every split in[j, j′ − 1] \ [`, `′ − 1] is feasible,
as it ish-feasible for all the split rowsh.

The result of our splitting procedure is the following:
We have inserted a number of feasible splits, until no
more feasible splits are possible. Afterwards each rowi

is split exactlysi(A) times and all the connected regions
of ones in the matrix have the consecutive ones property.
We havecTG

i (A) connected regions of ones intersecting
with row i for all i ∈ [m]. The splitting procedure takes
time O(m2n2). At first, in each rowi ∈ [m] and for
each blockBij we need at mostmn operations to check,
if a split after this block is necessary. Thus, it takes time
O(m2n2) to find all split intervals for all rows. With
these split intervals it takesO(n) to find si(A) in each
row i. Afterwards, checking that a split isi-feasible
can be done in timeO(n) by computing the minimal
number of splits for the left part and for the right part.

We will now define a step of the segmentation proce-
dure, that finds for givenA a TG-segmentS such that
A− S is nonnegative andcTG(A− S) = cTG(A)− 1.
Let us assume that we have already obtained the set
SP of splits from the splitting procedure, i.e. we have a
number of connected regions of ones with consecutive
ones property, whose union is the set of ones inA. We
call a row i ∈ [m] critical if cTG

i (A) = cTG(A). For
i ∈ [m] let si denote thei-th row ofS.

Algorithm 1 Segmentation

Input: Matrix A with splits
sij = 0 for all (i, j) ∈ [m]× [n]
for i = 1 to m do

if i is critical andsi = 0 then
Choose a connected region of ones that inter-
sects rowi but no rowk < i with sk 6= 0.
Add this connected region of ones toS.

end if
end for
A = A− S

Output: Matrix A

We prove in Lemma 5 that we can always find such
a region for each critical row, which is still empty inS.
Because the segmentation procedure selects only con-
nected regions of ones fromA it obviously follows that
A − S is nonnegative. Moreover, because all critical
rowsi satisfysi 6= 0 at the end of the for-loop, we also
have thatcTG(A − S) = cTG(A) − 1. Hence the seg-
mentation procedure will lead us to a segmentation of
A which usescTG(A) TG-segments, when we iterate
it until A = 0. The only thing we still have to check
is the fact that for each critical rowi such that still
si = 0 in the for-loop we can always find a connected
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caps

cups

Fig. 9. Trunks of split intervals. The intervals with the circles at the end are thek-obstacles, the others those of the rows in[k1, i
′].

region of ones that does not intersect a non-empty row
in the current segmentS (see Figure 10) and that can
be added toS.

row i

Fig. 10. A matrixA with its connected regions of ones with
respect to the splits from the splitting procedure. The black
areas form the current segmentS in the for-loop of the seg-
mentation algorithm. The first critical row which is still empty
in S is row i = 6. The grey area intersects with rowi = 6
but does not intersect with non-empty rows ofS. So, we can
choose this connected region of ones to completeS.

Lemma 5. Let the matrixA and its splits be given and
let a number of connected regions of ones be already
chosen that form a current segmentS. Let i ∈ [m] be
a critical row with si = 0. Let sk = 0 for all k ≥ i.
Then there exists a connected region of ones inA that
intersects with rowi but with no rowk < i with sk 6= 0.

Proof. Let us assume all the connected regions of ones
that intersect with rowi cannot be added toS because
they intersect with some rowk < i. Letk∗ be the largest
index of a nonzero row inS. Because of the connect-
edness, each connected regions of ones from rowi in-
tersects with rowk∗. As there arecTG(A) connected
regions of ones intersecting with rowi, there are at least
cTG(A) + 1 regions of ones intersecting with rowk∗

in contradiction toi being a critical row. Thus, the as-
sumption was wrong and we find a region of ones in
row i that can be added toS.

Note, that after subtracting a segmentS from A, we
can use the algorithm above again, but it is not neces-
sary to compute the splitting procedure for the updated

matrixA. We can just use the old partition where some
of the splits have become useless.

Theorem 1. The minimal beam-on time of a segmen-
tation ofA into TG-segments iscTG(A).

Proof. It is obvious that we need at leastcTG(A) TG-
segments to decomposeA because there is some row
i∗ whose boxes can only be decomposed by at least
cTG
i∗ (A) = cTG(A) segments. After the splitting proce-

dure, we find at mostcTG(A) regions of ones in each
row i ∈ [m] and eliminating one of them always corre-
sponds to decreasing the TG row complexity of rowi
by 1. Obviously, Algorithm 1 finds a TG-segment that
decreases the TG row complexity by1 in all the critical
rows (and maybe also in some other rows). The state-
ment then follows by induction.

Corollary 2. The optimal decomposition of a binary
input matrix into TG-segments can be found in polyno-
mial time.

Proof. The splitting procedure takes timeO(m2n2)
and produces less thanmn connected regions of ones.
Checking if a connected region of ones should be added
in the segmentation procedure also takes timeO(mn).
Thus, the whole decomposition can be done in time
O(m2n2).

We close this section with an
Example 1. We discuss our whole approach using the
example matrix

A =





















1 0 0 0 0 0 1 0 1 0
0 1 1 0 1 0 0 0 0 0
0 1 1 1| 1 1 1| 1 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0
1 1 1| 1 0 0 1 1 0 0
1 0 0 1 1 0 0 0 0 0





















and
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S1 =





















1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0





















from Figure 10 with the splits indicated by vertical bars.
The first segmentS1 is determined after computing the
TG-row-complexities

i 1 2 3 4 5 6 7
ci(a) 3 2 1 2 1 2 2
si(A) 0 0 2 0 0 1 0
cTG
i (A) 3 2 3 2 1 3 2

deducingcTG(A) = 3, applying the splitting procedure
and the first step of the segmentation. After inserting
feasible splits, the connected regions of ones are accord-
ing to Figure 10. In the first step of the segmentation,
the critical rows are the rows1, 3 and6. After remov-
ing S1, the critical rows are the rows1, 3 and6 again,
where the row complexity is2 now. The next two steps
of the segmentation procedure then might produce

S2 =





















0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0





















and

S3 =





















0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0





















which finally yields an optimal TG-decomposition with
three TG-segments.

3. Relation to colorings of perfect graphs

We show that finding the optimal beam-on time of
a TG-segmentation of a binary matrix is equivalent to
computing the chromatic number in a perfect graph.

This gives an alternative proof that the problem can be
solved in polynomial time.

Thechromatic numberof a graphG = (V,E) is the
minimal number of colors we need to color the vertices
of G such that no two adjacent vertices have the same
color. This number is denoted byχ(G). A clique in G

is a subset of vertices, such that each two of them are
adjacent. The size of a largest clique inG is denoted by
ω(G).

A perfect graphis a graphG in which the chromatic
number of every induced subgraph equals the size of
the largest clique of that subgraph, i.e.G is perfect if
for every induced subgraphG′ of G we haveχ(G′) =
ω(G′).

Let the binary matrixA be given. We define a graph
GA = (VA, EA) as follows: The set of verticesVA is
the set of boxes ofA. The set of edgesEA is the set
of pairs of boxes(B,B′) such thatB andB′ are not
allowed to be in the same segment of a TG-segmentation
of A. That means, two boxesB = [i1, i2] × {j} and
B′ = [i′1, i

′
2]×{j′} are adjacent, if[i1, i2]∩ [i′1, i

′
2] 6= ∅

and if
• either there is an entryai,j′′ = 0 for some i ∈
[i1, i2] ∩ [i′1, i

′
2] andj′′ ∈ [j + 1, j′ − 1] or

• there is somej′′ ∈ [j + 1, j′ − 1] such that for all
rows i ∈ [i1, i2] ∩ [i′1, i

′
2] there is ani-obstacle with

split interval[j, j′′] or [j′′, j′].
For example, in Figure 11 box4 and10 from the left
would be adjacent, because the boxes7 to 10 form
an i-cap. Note that, if two boxes belong to the same
connected region of ones resulting from the splitting
procedure, they are non-adjacent in the graph. This
graph is called theTG-graphof A.

Theorem 3. cTG(A) = ω(GA)

Proof. cTG(A) ≥ ω(GA) is easy to see, as each box in
a maximal clique ofGA needs its own segment. Let now
i be a row withcTG

i (A) = cTG(A), i.e. after applying
the splitting procedure the boxes of rowi decompose
into cTG(A) many connected regions of ones such that
each two of them have to be irradiated separately. As
we show now, it is possible to choose one box from
each region of ones, such that each two of the chosen
boxes are not allowed to be put into the same segment
of a TG-segmentation ofA. The choice of the boxes
from each region of ones is illustrated in Figure 11 and
can be realized as follows:
• We go through the boxesBi1, . . . , Bin of row i from

left to right. W.l.o.g. we only have to discuss the
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choice of boxes within a sequenceBij , . . . , Bij′ of
nonempty boxes (i.e.aik 6= 0 for j ≤ k ≤ j′),
because if there is a zero in rowi between two
boxes they are adjacent in the graph anyway. Let us
therefore consider such a sequence of consecutive
connected regions of ones resulting from the split-
ting procedure such that all the involved boxes are
nonempty.

• We start with the leftmost region of ones and choose
its leftmost box for the clique. We then always go
to the next region of ones on the right and choose
the leftmost box in this region for the clique that is
adjacent in the graphGA with the previously chosen
box.

• This indeed gives a clique, because if we as-
sume two chosen boxesB = [i1, i2] × {j} and
B′ = [i′1, i

′
2]×{j′} with i1 ≤ i ≤ i2 andi′1 ≤ i ≤ i′2

are non-adjacent, this would mean that the boxes
Bij , Bi,j+1, . . . , Bi,j′−1, Bi,j′ satisfy the consecu-
tive ones property, a contradiction to the choice of
boxes described above.

Using this procedure, the chosencTG(A) many boxes
form a clique inGA and we havecTG(A) ≤ ω(GA).
All in all, we havecTG(A) = ω(GA).

row i

Fig. 11. The bold lines indicate the possible split positions
and the grey boxes are chosen to form a maximal clique.

Theorem 4. cTG(A) = χ(GA)

Proof. By definition, the chromatic number is the min-
imal number of stable sets we need to decompose a
graph, as each color has to be assigned to a stable set
of vertices. Obviously,χ(GA) ≤ cTG(A), as each seg-
ment exactly corresponds to a stable set inGA and
therefore an optimal segmentation yields a coloring with
cTG(A) many colors.

Furthermore, we haveω(GA) ≤ χ(GA), as this holds
for every graph. Together with Theorem 3, we have

ω(GA) ≤ χ(GA) ≤ cTG(A) = ω(GA)

and thuscTG(A) = χ(GA).

Theorems 3 and 4 together giveχ(GA) = ω(GA)
for the TG-graphGA of A. If we consider induced sub-
graphs ofGA, the boxes that correspond to the chosen
subset of vertices form a binary matrix, that we callA′

from now on. Note that the induced subgraph ofGA

that has the boxes ofA′ as vertices, denoted byH , is
not necessarilyGA′ . It can happen, that two boxesB
andB′ of A′ are adjacent inGA′ , but not adjacent in
the induced subgraphH , because other boxes ofA,
that do not belong toA′, allowed puttingB and B′

into the same segment. This is illustrated in Figure 12.

Theorem 5. For every induced subgraphH ofGA there
exists a graphGA′′ that is the TG-graph of a binary ma-
trix A′′ with χ(H) = χ(GA′′) andω(H) = ω(GA′′ ).

Proof. Let H be an arbitrary induced subgraph ofGA

such that the boxes of the induced vertex set form a
binary matrixA′. LetA′′ be the matrix that has the same
boxes asA′ and some extra boxes defined as follows:
Whenever we have two boxesB = [i1, i2] × {j} and
B′ = [k1, k2] × {`} in A′ with ` > j such thatB and
B′ are not adjacent inGA and such that there are only
zeros in([i1, i2]∩ [k1, k2])× [j+1, `−1] in A′, then we
add the intermediate boxes([i1, i2]∩ [k1, k2])×{t} for
all t ∈ [j+1, `−1] toA′′. For example, the three white
boxes in Figure 12 on the left are the intermediate boxes
of B andB′. Therefore,B andB′ can be put into the
same segment of a TG-segmentation ofA′′. Let GA′′

be the TG-graph corresponding to the matrixA′′. GA′′

has more vertices thanH and some extra edges that are
incident with the new vertices. Note that two boxes ofA′

that are adjacent inH are also adjacent inGA′′ , because
they still cannot be in the same segment. Similarly, two
boxes ofA′ that are non-adjacent inH are non-adjacent
in GA′′ , as we inserted the intermediate boxes. Thus,H

is an induced subgraph ofGA′′ andχ(H) ≤ χ(GA′′ )
andω(H) ≤ ω(GA′′) is immediately obvious.

Let now B andB′ be two such boxes ofA′ such
that we inserted the intermediate boxes between them
in A′′. It is easy to verify that the intermediate boxes are
not adjacent toB andB′ in GA′′ and also not adjacent
to all non-neighbors ofB andB′ in GA′′ (and also in
H , as these non-neighbors are the same). This is the
case, because the intermediate boxes can be put into
the same segment with all boxes that can be put into
the same segment with eitherB or B′. Thus, if we
have an optimal decomposition ofH into stable sets,
we can put all the intermediate boxes into the stable
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B

B′

boxes ofA

B

B′

boxes ofA

Fig. 12. The white boxes are boxes ofA that are not present inA′. These are two examples whereB andB′ are not adjacent
in the induced subgraph, because there were other boxes ofA that made their combination possible.

B1

B3

B2

B1

B3

B2

Fig. 13. The same boxes with two different stable set decompositions (the grey boxes and the white boxes each form a stable
set). The decomposition on the right gives a TG-segmentation, but the decomposition on the left does not.

set containingB or the stable set containingB′ and
get stable sets inGA′′ . Doing this for all pairsB and
B′ where we have intermediate boxes yields a stable
set decomposition ofGA′′ with χ(H) many stable sets.
Thus,χ(H) ≥ χ(GA′′ ).

Let us now consider a largest clique inGA′′ . If this
clique contains no intermediate boxes, this is a clique in
H . If it contains intermediate boxes, we do the follow-
ing substitution: For every boxesB andB′ of A′ where
we have intermediate boxes in between, only eitherB

or B′ or one of the intermediate boxes can be in the
clique, as they are all non-adjacent. If an intermediate
box is contained in the maximal clique, we delete the
intermediate box and put eitherB or B′ into the max-
imal clique. This is possible, because every box that
cannot be in the same segment with the intermediate
box also cannot be in the same segment withB andB′

and thus all neighbors of the intermediate box are also
neighbors ofB andB′. The question arises if we might
need a boxB twice for substitution because there are
intermediate boxes left and right fromB. But this can-
not happen because in a sequenceB′′,B, B′ with inter-

mediate boxes betweenB′′ andB and betweenB and
B′, all intermediate boxes (left and right fromB) andB
are non-adjacent (as they can be in the same segment).
Therefore, there never can be two intermediate boxes
of the sequenceB′′, B, B′ with intermediate boxes be-
tweenB′′ andB and betweenB andB′ in a maximal
clique. After the substitution procedure we have found
a clique of the same cardinality containing only boxes
from A′. These boxes form a clique inH and thus we
getω(H) ≥ ω(GA′′). This concludes the proof.

Using Theorems 3, 4 and 5 we get the following

Corollary 6. The graphGA is a perfect graph with
χ(GA) = cTG(A).

As the coloring problem in perfect graphs can be
solved in polynomial time, the beam-on time problem
for TG-segmentations is also polynomial. We remark
that, although the chromatic number ofGA gives the
optimal beam-on time of a TG-segmentation ofA, not
all optimal colorings ofGA yield a TG-segmentation
of A. For example, if the stable set decomposition is
like in Figure 13 on the left, we get no feasible TG-
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segmentation, as there are two boxes in a stable set that
only form a segment if the intermediate boxes are in the
same stable set (like in the decomposition on the right).

Thus, we should ask ourselves how we can modify
an optimal stable set decomposition ofGA in such a
way that each stable set really represents a segment.
But from an algorithmic point of view, this question is
not interesting, as the algorithms that solve the coloring
problem in a perfect graph are slower than the one we
have presented in Section 2.

4. Conclusion

We have proved that for binary input matrices the
problem of finding a decomposition which minimizes
the beam-on time or the cardinality under the tongue-
and-groove constraint is polynomial. Obviously it re-
mains the question whether the beam-on time problem
under the tongue-and-groove constraint is still polyno-
mial for integer input matrices. Up to now, we do not
see that the tools we developed in this paper can be
generalized to provide a result for the integer case.
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