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Abstract

In recent years, a growing range of software technologies has been deployed in the classroom, as a component of
business, engineering, and science curricula. These technologies enable a more direct, interactive student involvement in
educational or research project development. Within this general framework, we see a strong case for using integrated
scientific-technical computing systems. To illustrate this point, we review the key features of Maple, with an emphasis
on its optimization model development and solver features.Maple is then used to formulate, solve, and visualize an
optimization model example suitable for the classroom.
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1. Introduction

Since the sixties, software has been an integral part of
scientific and technical curricula with the introduction
of programming languages such as ALGOL, BASIC, C,
FORTRAN, and PASCAL. Although rigorous studies
of the educational impact of information technology
(IT) are rare, one can readily infer its impact from the
continuously increasing usage of IT in various academic
programs worldwide.

This article makes a case for the introduction of
high-performance, integrated scientific-technical com-
puting (ISTC) software into the Operations Research
/ Management Science (OR/MS) classroom. In many
respects, this represents an unorthodox approach.
General-purpose computing systems are historically
not associated with business and management stu-
dents in general, and OR/MS students in particular.
Rather, they are much more prevalent within the nat-
ural sciences and engineering education. Arguably,
the so-called “hard” sciences have successfully estab-
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lished workable, effective, and consistent approaches
to educational computing. We believe that many of the
techniques developed for the sciences and engineering
have real merit also for business and management edu-
cation, and the consequent interdisciplinary pollination
will enrich the OR/MS classroom.

Within this general context, in this article, we in-
troduce the ISTC software package Maple. We review
some of Maple’s built-in optimization features, as well
as the add-on Global Optimization Toolbox (GOT).
Maple and the GOT will be then used to formulate,
solve, and visualize an illustrative optimization model
example. In Section 2 we briefly review the history of
software pedagogy. This is followed by a discussion of
ISTC applications in modeling and optimization (Sec-
tion 3) and a concise topical review of Maple (Section
4). The example presented in Section 5 illustrates the
ISTC advantage in terms of interactive education and
student involvement. Our conclusions are presented in
Section 6.

2. Software Pedagogy

In discussing a sound pedagogical framework for the
OR/MS classroom, it is useful to review the related ex-
perience of other disciplines. In particular, the fields of
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mathematical and engineering education offer insight
to the OR/MS instructor. We give a brief overview of
the mathematical curriculum reform, where the basic
approach is to utilize the interactivity, and the compu-
tational and visual power of the current generation of
software tools. Here we think primarily of the ISTC
systems Maple (Maplesoft, 2006), Mathematica (Wol-
fram Research, 2006) and MATLAB (The MathWorks,
2006) that can greatly enhance the students’ hands-on
experience with mathematical concepts and objects, as
well as with symbolic and numerical computing. In the
case of engineering education, one can also observe a
trend of introducing “industrial-strength” software tools
such as computer-aided design (CAD) and simulation
systems that not only support interactivity, but also re-
flect state-of-the-art industrial practice. To illustratethis
point, LabVIEW (National Instruments, 2006), Math-
Cad (MathSoft, 2006), and Simulink (The MathWorks,
2006) are mentioned here.

The current generation of ISTC software tools has
evolved sufficiently, to provide intuitiveness, ease-of-
use, and real-world relevance that appeal to instructors
and students. The knowledge base and the interactive
features of ISTC software support a substantial and at-
tractive introduction to many aspects of realistic (edu-
cational or research) project development.

2.1. Mathematics Education

One of the most successful curricular transforma-
tions has been seen in the core calculus sequence (pre-
calculus, calculus, and differential equations) in math-
ematics education. Through a wide range of initiatives
over the eighties and nineties, the curriculum has been
transformed from one that had essentially remained un-
changed for at least 100 years to one where technology
can be fully integrated in the curriculum. Indeed, the
concept of the mathematics “laboratory” was born in
this timeframe. Murphy (2006) offers a good outline of
these developments, with a detailed list of further refer-
ences. We only recall here that in the mid-eighties the
U.S. National Science Foundation and other organiza-
tions have established funding to accelerate the curric-
ular transformation, and many well-known institutions
began to experiment with new technologies. In the end,
the application of general purpose ISTC software sys-
tems – most notably, Maple, Mathematica, and MAT-
LAB – have become a mainstay in modern mathematics
education.

As Murphy (2006) points out, the common benefits

identified are:
(1) Ability to explore more complex problems as the

mechanical and often tedious programming steps
are greatly reduced.

(2) Graphing and visualization can significantly in-
crease comprehension.

(3) ISTC systems facilitate the preparation of assign-
ments and presentations.

(4) Students become more motivated to pursue inde-
pendent exercises and explorations.

(5) The ISTC systems and related pedagogy encour-
age collaboration.

The advantages summarized above also resonate well
in the OR/MS context with the following excerpt from
an interview with Harlan Crowder (INFORMS, 2006b):

“The challenge in modeling is to make sure you are
solving the right problem, at the right level of detail. . .
The good news is that model building is a skill that
can be learned. And the best way to learn is to start
building models. Nobody ever learned to ride a bicycle
by reading about riding a bicycle. Model building is a
skill that needs to be learned and practiced.”

2.2. Engineering Education

Engineering as a profession has been fundamentally
transformed in the past three decades with more design
elements automated by the new generation of software
tools. These enable CAD, modeling, simulation, opti-
mization, numeric control of machines, and so on. Ac-
cordingly, there is strong motivation for academic in-
stitutions to reflect these industrial changes and to inte-
grate the same software techniques into the curriculum.
Many key subjects of engineering education are now
fully integrated with using software: consult, for exam-
ple Lopez (2005). Another dominant characteristic of
the engineering education is the use of industry-standard
software tools. Maliniak (2002) is a good example of
an “industrial call” for computer-assisted design educa-
tion. Unlike in the case of mathematics education, the
terms here have been established by the entire profes-
sion. Consequently, modern engineering education now
includes units and courses which rely on the real soft-
ware tools of industry. To illustrate this point, we refer
here to Ibrahim (2002) for the case of power (electri-
cal) engineering and to Dankwortet al. (2004) for the
case of mechanical design and manufacture. Numerous
other examples – including downloadable, fully interac-
tive course materials and realistic applications – can be
found at the websites of the ISTC system developers.
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2.3. OR/MS Education

The use of ISTC systems in the OR/MS classroom is
not ubiquitous – at least as of today. Just two decades
ago, the effective use of desktop / laptop / network en-
abled personal computing in the classroom has been
typically considered adventurous. Among the first ad-
vocates of this new approach, Royet al. (1989) pro-
posed the use of spreadsheet models for teaching linear
programming techniques. The direct access to optimiza-
tion (Frontline Systems, 2006) and simulation (Palisade
Corporation, 2006) technology within spreadsheets has
had a major impact on the teaching of OR/MS. Spread-
sheet based modeling techniques are now widely used
in the classroom: consult e.g. the textbooks by Bertsi-
mas and Freund (2000), Hillieret al. (2000), Winston
and Albright (2001), and articles by Erkut (1998) and
Ragsdale (2001). TheTeaching of Management Science
Workshoporganized annually by INFORMS (2006a)
also places a significant emphasis on using spreadsheets
in education. One of the key reasons for this is that
spreadsheets support OR/MS education in an environ-
ment that many students are expected to use later on at
the workplace.

However, spreadsheet based modeling – just as any
other software tool – has its inherent limitations: thus,
it is not a “universal” answer to handle all OR/MS
problems, even in the educational context. A clear
focus on optimization model development and solu-
tion is supported by algebraic modeling languages
and environments since the late eighties. Prominent
examples of such modeling systems include AIMMS
(Paragon Decision Technology, 2006), AMPL (Fourer,
Gay, and Kernighan, 1993), GAMS (Brooke, Kendrick,
and Meeraus, 1988), the LINDO Solver Suite (LINDO
Systems, 2006), MPL (Maximal Software, 2006), OPL
(ILOG, 2006), and TOMLAB (2006). These systems
provide advanced technology for model development,
preprocessing, and consistency checking, before hand-
ing over the model to a suitable solver option. Upon
return from the solver, the modeling system presents
a result report in a standardized format that is ready
for further import/export use. The modeling environ-
ments also support links to databases and to selected
external functionality. Indeed, algebraic modeling lan-
guages and the connected solver options have been
used with success in OR/MS educational, research and
business environments. We believe that each of the
listed tools offers some key advantages depending on
the end-user’s objectives, and that these aspects should

be emphasized early on also in education.

3. ISTC Applications in Modeling and Optimization

The evolution of mathematics and engineering edu-
cation offer two distinct pedagogical paths: encourage
and enrich the interactive exploration of (mathematical)
concepts, and let the larger (engineering) profession es-
tablish the framework. Recently, Lee (2004) suggested
a hybrid approach that embodies the respective benefits
of both objectives. The modern generation of general-
purpose ISTC software systems supports the latter ap-
proach.

3.1. The Key Advantages of Using ISTC Systems

ISTC software systems offer a powerful combination
of symbolic manipulations, numerical computing, code
development (programming), visualization, and docu-
mentation capabilities. They include an extensive range
of functions for computing in both numeric (floating
point) and symbolic (analytical solution) forms. The
latter offers the distinct advantage of mapping well to
manual algebraic manipulations that one would do on
a piece of paper, but without the errors or tedium in-
volved. The addition of graphics and animation tools en-
ables the visualization of complex phenomena, thereby
enhancing the students’ experience. Used appropriately,
ISTC systems offer the instructor and students signifi-
cant advantages over many other (more traditional) ped-
agogies and tools, including the following aspects and
usage options.
(1) Rapid prototyping and development of course ma-

terials by instructors.
(2) In-class demonstrations: the instructor directly

leads students through interactive exploratory
exercises.

(3) Self-study and further explorations: for example,
students can analyze the impact of certain param-
eter changes on systems behavior and on the final
results using a given (or perhaps hidden) mathe-
matical model. This leads to interesting and re-
alistic “what if?” modeling exercises and educa-
tional games. For an insightful discussion of such
decision-making exercises, consult Dörner (1996).

(4) Development of insight symbolically, numerically
and graphically: this supports parallels between
the way the mathematics is manipulated within the
software and the way students, instructors, and re-
searchers develop their understanding of modeling
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and solution concepts.
(5) Use as a general productivity tool: day to day

hands-on usage of mathematics, calculations, pro-
gramming, visualization, document preparation,
from prototyping to details.

(6) ISTC systems are now fully functional, to sup-
port the development of sophisticated assignments,
technical documents, books, and presentations. As
of today, hundreds of books have been written di-
rectly using Maple, Mathematica, and MATLAB
(as well as some other systems).

The effective use of ISTC software enriches the educa-
tional experience by allowing instructors and students to
work with more complex – and thereby often more re-
alistic – models and problems without tedious program-
ming requirements. Furthermore, the direct and trans-
parent interaction with the core mathematics ensures
no loss of rigor and the maintenance of the theoretical
framework of the course (if desired). These are signifi-
cant benefits also in the OR/MS context that other dis-
ciplines have enjoyed for years.

3.2. ISTC Software in Modeling and Optimization

Model development and optimization are the key
quantitative components of OR/MS education: there-
fore, these subjects are the ideal portion of the curricu-
lum to benefit from the introduction of ISTC systems.
The underlying concepts and techniques are inherently
mathematical and many other software tools simply
do not capture and manage the relevant mathematics
in an educationally “optimal” manner. For example,
a fundamental benefit that ISTC systems offer over
spreadsheets (similarly to modeling languages) is the
clear distinction between the model and the data (of a
model-instance). Immediate model scalability, seam-
less model visualization, animation, and model docu-
mentation options are further distinguishing features of
ISTC systems, in comparison to other modeling and
optimization environments.

At their core, ISTC systems are a collection of ab-
stract symbols, together with a set of rules for assem-
bling the symbols. The formal models that are created
using these systems are purely syntactical models gov-
erned by theorems. The interpretation (the semantics)
of the syntax of these models is accomplished by con-
structing a mapping that is used to interpret the abstract
symbols and rules of a model into particular truths that
govern a physical system. The mapping provides a way
to interpret the theorems of a formal model as true state-

ments of the associated physical system. The core of the
formalization procedure described above is the model-
ing relationship (Rosen, 1991). This modeling relation-
ship is shown schematically in Figure 1, where boxes
represent a physical systemS governed by causality (ar-
row [1]) and a modelM governed by inference (arrow
[3]), where causality and inference have the intuitive
meanings. The formalization procedure requires the es-
tablishment of a mapping for encoding the observables
of S into the theorems ofM (arrow [2]) and another
mapping for decoding the propositions ofM back to
observables inS (arrow [4]).

 

[2] 
encoding, abstraction 

decoding, interpretation 
[4] 

physical system S  formal model M 
theorems, analysis 

[3] 
observables, data 

[1] 

Figure 1 - The modeling relationship

Once the formalization procedure is completed, one
can encode data from the physical system to create an
instance of the decision problem. Data will enable a
formal analysis. The interpretation of the analysis and
model-based results is what allows us to make decisions
pertinent to the physical system. Thus, the formaliza-
tion procedure enables a course of action that supple-
ments the use of pure intuition in making decisions. It
is important to emphasize that data is not needed at the
early stages of the formalization procedure. Indeed, we
believe that the separation of model and data is critical
at the early stages, when mathematical depth and doc-
umentation capabilities are more relevant, than instan-
tiation details represented by the data.

Even though human judgment permeates all aspects
of the formalization procedure, the use of integrated
computing systems allows us to implement this proce-
dure in a scientific fashion. Furthermore, the potential of
“live” implementations is readily available, since ISTC
systems already have extensive modeling capabilities,
without an immediate need for additional functions and
procedures. The topical functionality of ISTC software
packages specifically includes also functions to solve
(linear, combinatorial, local and global nonlinear) opti-
mization models.



86 Castello, Lee and Pinter – Integrated Software Tools

4. Using Maple in Model Development and Opti-
mization

In the subsequent discussion, we will use Maple
(Maplesoft, 2006) as a representative example of an
ISTC system. Maple was conceived in the early 1980’s
as a system to integrate mathematical modeling and
problem-solving within an interactive document (the
Maple worksheet) environment. Within the worksheet,
users can express mathematics, solve problems sym-
bolically or numerically, visualize the model and the
results, and insert further content such as explanatory
notes and other documentation. The Maple worksheet
offers a single unified environment that presents the
model, data, explanation, computational and visualiza-
tion options, in an intuitive and fully interactive form.
The richness of the supporting mathematical library
allows users to present multiple “views” of a complex
concept. The Maple environment also offers word pro-
cessing features to create context-rich technical docu-
ments. The key benefit for instructors and students is
the ability to directly incorporate interactive mathemat-
ics and detailed comments and notes. Consequently, in-
structors can develop “live” course materials; students
can develop, explore, and create assignments, reports
and presentations within the Maple environment.

Within this article, our emphasis is focused on the
modeling and optimization features of Maple. One of
the key advantages of ISTC systems is the opportunity to
readily accommodate the complexity of real-world sys-
tems, without paying the penalty of (arguably more dif-
ficult and tedious) traditional programming. The mod-
eling of nonlinear systems is a prime example to illus-
trate this point. Nonlinear descriptive models are rele-
vant in many areas of business, sciences, and engineer-
ing. Managing such systems naturally leads to nonlin-
ear optimization – a subject that has been of great prac-
tical interest. For technical discussions and numerous
examples, see for example the topical chapters in Pintér
(1996), Chong and Zak (2001), Edgaret al. (2001),
Pardalos and Resende (2002), Hillier and Lieberman
(2005), in addition to the OR/MS textbooks cited ear-
lier. Let us also cite here the educationally inspired com-
ment of Grossman (2001) who makes a strong case for
teaching first the basics ofgeneral(nonlinear) optimiza-
tion before discussing the (important, but very)special
case of linear programming. He argues that from the
end user’s perspective, nonlinear optimization is con-
ceptually simpler and easier to understand, and hence
should be taught before linear optimization:

“Nonlinear optimization has four benefits to the busi-
ness school management science course. First, nonlin-
ear optimization is useful by itself, because students can
use it without the added complexity of linearity. Sec-
ond, nonlinear optimization is a great vehicle for deliv-
ering fundamental optimization concepts. Third, non-
linear optimization is a useful stepping-stone to the
more powerful (and more difficult) techniques of lin-
ear optimization. Fourth, nonlinear optimization pro-
vides strong integration opportunities with other busi-
ness school courses.”

We see a particularly strong case for using ISTC
software environments to develop and solve models of
nonlinear systems. Such systems are often defined by
individually formulated functional relations that could
be difficult to express in a compact manner (as it can
be done, for example, in linear programming). Some
of the model functions may also require the execution
of specific computational procedures defined by special
functions, integrals, systems of differential equations,
external function calls, deterministic or stochastic sim-
ulation, and so on. Examples of nonlinear models that
are defined by such computational procedures are abun-
dant in various business, scientific, and engineering ap-
plications. To handle a very general class of nonlin-
ear optimization models, Maplesoft (2004) introduced
the Global Optimization Toolbox (GOT). Formally, the
GOT is aimed at the numerical solution of instances of
the model

(1)minf(x) x ∈ D:={x: xl ≤ x ≤ xu g(x) ≤0}.
In (1) we use the notation:

• xdecision vector, an element of the real Euclidean
n-spaceRn

• f(x) objective function,f : Rn →R
• Dnon-empty set of feasible decisions; a proper subset

of Rn.
Specifically,D is defined by the following information:
• xl, xu explicit, finite bounds ofx
• g(x)m-vector of constraint functions,g : Rn →Rm.

The concise model statement (1) subsumes a broad
class of formally more general models. For example, in-
stead of≤ relations, arbitrary combinations of inequal-
ity and equality relations could be used in the functions
g; one could state explicit bounds regarding also the
constraint function values; and one could even use a
combination of continuous and (finitely bounded) dis-
crete decision variables.

The core of the GOT is the customized implemen-
tation of the LGO global-local nonlinear optimization
solver suite. LGO abbreviates Lipschitz(-continuous)
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Global Optimizer, originally named after one of its
key solver components. The theoretical foundations of
LGO are presented in Pintér (1996). The GOT imple-
mentation of LGO combines Maple’s aforementioned
capabilities with the robustness and efficiency of the
LGO solver suite. In the next section, we will use
both Maple’s Optimization package and the GOT to
illustrate our discussion with a classroom level model
example. Numerous further examples are presented in
Pintér, Linder, and Chin (2006), and in the interactive
electronic book (Pintér, 2006) that has been written
entirely in the Maple environment.

5. An Illustrative Example: Portfolio Management

Before the example is presented in detail, we note
that the GOT, after installation, appears within Maple
as the GlobalOptimization package. In order to use the
subsequently issued Maple commands directly, first we
invoke the built-in (local) Optimization package, as well
as the GOT by the Maple commands shown below. We
will not discuss Maple programming details here, but
the example presented will be easy to follow. All Maple
commands will be typeset usingCourier Bold fonts;
Maple’s replies will be shown simply using Times New
Roman fonts, immediately following the commands.
Let us also note here for clarity that the: symbol used
in Maple input suppresses Maple output.

> with(Optimization):
> with(GlobalOptimization):
Our example illustrates a “live” demonstration and

subsequent extension of the well-known Markowitz
model for portfolio optimization. This model is tradi-
tionally introduced in financial engineering courses at
both undergraduate and graduates levels. The model is
also used as a motivating example in OR/MS courses
that deal with linear and quadratic programming at
the undergraduate and graduate levels. The reader is
referred to Winston and Albright (2001), or to other
textbooks, for additional details regarding the model.
As students are often unfamiliar with the matrix-based
model formulation, it may be helpful to review the fi-
nance and mathematics before the students are walked
through this example. This can be easily achieved by
having students work through a handout, before they
participate in the “live” demonstration. This will allow
them to focus on the use of the software in model devel-
opment and solution, rather than the basic technicalities
of the finance or mathematics background.

During a “live” demonstration, it is essential to em-

phasize to the audience that virtually every major portfo-
lio manager today consults an optimization model, per-
haps a more advanced variant of the Markowitz model.
Managers, of course, may not follow its recommenda-
tions exactly, but they use it to evaluate basic risk and
growth trade-offs. The example starts with the stan-
dard quadratic programming model formulation that
balances the two competing goals of long-term growth
of capital and low risk. The decision variables are the
amounts invested in each asset. The objective is to min-
imize the variance of a portfolio’s total return, subject
to the constraints that i) the expected growth of the port-
folio attains at least some given target level and ii) we
do not invest more capital than we have. In its origi-
nal form, the Markowitz model assumes no transaction
costs, and thus, it is easily solved by local optimization
(quadratic programming) tools. Researchers have stud-
ied numerous convex generalizations of the Markowitz
model, for example, by adding convex (usually lin-
ear) transaction costs, or other linear constraints. Here
we will assume – more realistically – that the investor
pays concave transaction costs on asset purchases, as
a function of the amounts invested. This cost structure
arises in practice whenever a broker offers volume dis-
counts on commission rates. Under these conditions,
the Markowitz model becomes a non-convex optimiza-
tion problem that is not easily solved using local search
based optimization algorithms. We shall first formulate
the original Markowitz model without transaction costs
and solve it for a simple instance using quadratic pro-
gramming.

Let X = x1, . . . , xn be the amounts that we allocate
to buy the given assetsj=1,. . . ,n, bdenotes the amount
of capital that we have,R is the random vector of asset
returns over the time period considered, vectorr is the
expected value ofR, g is the minimum target growth
we hope to obtain, andQ the covariance matrix ofR.
(All asset values, returns, and targets are expressed in
dollars.) The objective function is based on minimizing
the portfolio variance:

(3) var

(

n
∑

i=1

xiRi

)

This function is equal toXT QX. If, for example,n =
3, then we would solve the following quadratic program:

(4) minimize XT QX
subject to x1 + x2 + x3 ≤ b

g ≤ x1r1 + x2r2 + x3r3

x1, x2, x3 are nonnegative
In practice, the details of the formulation will target

the level of the audience. For instance, the general al-
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gebraic model might not be discussed in introductory
level courses. As generally done in practice, we have
introduced the Markowitz model with a small instance
with three assets. Suppose now that we have the follow-
ing data. (For simplicity, below we use the notationx,
y, z instead ofx1, x2, x3.)

> n := 3; X := <x, y, z>; b := 10000; g := 1000;
r := <.05, -.04, .15>;
Q := <<.08, -.20, .05> |

<-.20, .03, -.15> |

<.05, -.15, .45>>;
n:=3

X :=





x

y

z





b:=10000
g:=1000

r :=





0.05
−0.04
0.15





Q =





0.08 −0.20 0.05
−0.20 0.03 −0.15
0.05 −0.15 0.45





Let us point out here that in recent years ISTC sys-
tems have dramatically improved their user interfaces.
Although most of these systems began their history as
rather cumbersome programming languages, they now
offer intuitive, syntax-free “point and click” opera-
tions. This includes context-specific right-click menus,
palette-based equation entry options, and the direct ma-
nipulation of visualization objects. In our experience,
even audiences with little programming background
adapt quite well to the intuitive interface and syntax of
Maple. We also note that Excel Add-In packages are
also available to use with Maple. Thus, it is possible for
audiences with a solid spreadsheet background to be
more easily introduced to the ISTC systems by using
such an Add-In. Our objective function and constraints
are shown below.

> objective := expand( Transpose(X).Q.X );
budget := add( X[i], i=1..n ) <= b;
growth := add( X[i]*r[i], i=1..n ) >= g;
constraints := {budget, growth};

objective := 0.08x2 − 0.40xy + 0.10xz + 0.03y2

−0.30yz + 0.45z2

budget:=x + y + z <= 10000
growth:=1000<= 0.05x - 0.04y + 0.15z

constraints:={x + y + z <= 10000, 1000<= 0.05x

- 0.04y + 0.15z}

Even though care must be taken when performing
matrix operations, audiences tend to appreciate that the
data, variables, and equations can be easily manipulated
with their given names. As illustrated, naming conven-
tions can be quite flexible. Moreover, the objective func-
tion could be easily expanded to explicitly uncover the
quadratic structure of the objective function. Since the
objective function is quadratic in the decision variables
x, yandz and the constraints are linear, we can readily
use Maple’s built-in quadratic programming optimizer
to solve the problem.

> originalSol :=
QPSolve( objective, constraints, assume = nonn-

egative );
originalSol:=[1.5211014666107,

[x = 3606.7045794672, y = 733.3133792277, z =
5659.9820413049]]

Notice that even though the expected return of asset
y is negative (-4%), its covariance with the other two
assets is sufficiently negative to provide diversification
benefits. Thus, its optimally allocated amount in the
basic Markowitz model is positive.

Several alternatives could be investigated at this
point, given the level of the course and the type of the
audience. One possible alternative is to perform “what
if?” analyses to gain insight regarding the model and its
numerical solution as a function of the input data. An-
other alternative would be to investigate the application
of the Markowitz model to allocation decisions across
asset classes (rather than individual assets), in order
to highlight the aggregation power when the number
of correlations is lower and the summary statistics can
be better estimated. We, however, concentrate on in-
troducing a new aspect. Assume that we have to pay
a commission oft(x) dollars on the purchase of an
investment forxdollars (the functiont is set by the
broker), and that these costs come out of our invest-
ment budget. Then the symbolic budget constraint for
the three-asset problem becomes

> nonconvexBudget := add( X[i], i=1..n ) + add(
t(X[i]), i=1..n ) <= b;

nonconvexBudget:= x + y + z + t(x) + t(y) +
t(z) <= 10000

The simplest case of the functiont(x) is when the
commission rate is a constant percentage of the purchase
amount, that is,t(x) = cx, with 0 < c < 1. If, for
example, the commission rate is 3% (c=0.03), then the
budget constraint would be as follows.
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> t const := z -> 0.03*z:
linearBudget := eval( nonconvexBudget, {

t=t const });
linearBudget:= 1.03x + 1.03y + 1.03z <= 10000
Here,z is the single variable name and0.03*z is the

result of the function acting onz. This notation might
not be intuitive initially to everyone, but it is used here
to highlight the flexibility of Maple if many different
t(x) functions are used in the analysis. We shall now
first solve the model applying the aforementioned linear
transaction cost function. As expected, the minimum
variance found will increase, in comparison with the
solution of the original model: since our purchasing
power is reduced, we have to invest relatively more
in the highest-return, highest-variance asset in order to
achieve our growth target of $1,000.

> constraints := {linearBudget, growth}:
> QPSolve( objective, constraints, assume = non-

negative );
[1.5595820629 10ˆ7,
[x = 3468.2366479427,z = 5664.2537697276,y =

576.2474464072]]
For more advanced audiences, we can add further re-

alism to the basic Markowitz model by supposing that
the broker offers a volume discount on commissions, so
that the commission is given by a concave, piecewise-
linear function of the purchase amount. This cost struc-
ture is very common in practice, and its uses in other ar-
eas can be emphasized here. The straightforward Maple
code implementation of the purchase cost function is
omitted for brevity. However, an illustrative plot of this
function is given in Figure 2.

 

Figure 2 - Transaction cost vs. purchase amount
In Figure 3, we plot the budget constraints of the

example problem under zero transaction costs (the top
surface) and piecewise-linear transaction costs (the bot-

tom surface). The implementation details of this plot are
also omitted for brevity. Note that the region bounded
by the red surface is convex (a tetrahedron), whereas
the feasible region bounded by the blue surface is non-
convex. This non-convexity makes the more realistic
model a more challenging optimization problem that re-
quires global optimization techniques.

Evidently, at this point of our “live” demonstration
several concepts could be highlighted. For instance,
from the perspectives of financial engineering and op-
timization, the discussion of convex and non-convex
optimization models could lead quite well to the intro-
duction of global optimization techniques; in particular,
global optimization techniques in which ever-present
derivatives of the objective function and constraints are
not required. The introduction of nonlinear optimization
needs could also provide strong integration opportuni-
ties with other OR/MS courses.

 

Figure 3 - Budget constraints with zero costs (red) and
non-convex costs (blue)

The non-convex budget constraints are formally de-
fined as follows in Maple.

> pwBudget :=
eval( nonconvexBudget, { t = t piecewise } ):
We first attempt to solve the non-convex problem us-

ing the local solver built into Maple, taking as initial
point the optimal solution to the zero-cost problem. As it
can be expected, the local solver runs into trouble. This
happens because the constraints are non-differentiable
at several input arguments, and most local solvers re-
quire continuous first derivatives of all model functions.

> constraints := {growth, pwBudget}:
> NLPSolve( objective, constraints, assume = non-

negative, initialpoint = originalSol[2] );
Error, (in Optimization:-NLPSolve) no improved

point could be found
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At the same time, the GOT with its derivative-free
implementation of global and local optimization tech-
niques handles this problem easily.

> bounds := x=0..10000, y=0..10000, z=0..10000:
> pwSol := GlobalSolve( objective, constraints,

bounds );
pwSol:= [1.769931642610ˆ7, [x = 2021.8978102189,

z = 5992.7007299270,y = 0.0]]
Figure 4 shows the location of the optimal budget

allocation (the dot) on the boundary of the feasible re-
gion. The surfaces representing the budget constraint
(the bottom surface) and the growth constraint (the top
surface) are shown as well. (This could be a good point
in the lecture to mention or to recall Kuhn-Tucker the-
ory for a technically more advance audience.)

 

Figure 4 - Optimal budget allocation under concave
transaction costs

It is clear that this “live” demonstration requires some
preparation (in fact, just a little Maple programming)
before it is introduced in the classroom. However, it is
not far-fetched to envision the power of such a demon-
stration in front of the proper (student or other) audi-
ence. The key is to have in mind that we are using a
tool that allows us to start with a basic (quadratic pro-
gramming) model and to conclude in a few steps with
a rather practical and challenging global optimization
model, its solution, and supporting visualization with
(a subset of) the decision variables – using only a few
code lines.

We believe that this example illustrates the numerous
educational benefits of an ISTC software system such
as Maple. The informal student feedback at a Canadian
business school supports this claim. After more than two
decades of development, ISTC systems are now mature
software with significant worldwide user bases. Conse-
quently, a vast amount of high-quality, public-domain

resources – including complete curriculum materials
and illustrative case studies – are readily available.

6. Conclusions

In this article, we have presented a possible path for
the OR/MS instructor who is looking at options to enrich
the curriculum. ISTC systems are now permanent ad-
ditions to education in engineering, science, and math-
ematics. We believe that the distinct benefits of such
systems warrant serious consideration, and that ISTC
systems will play an increasing role also in OR/MS ed-
ucation. Our intent is not to suggest that ISTC software
would completely replace existing software packages.
All computing platforms and tools discussed briefly
above have respective merits and therefore should be
used, when offering the best option. Indeed, we see
the foreseeable future embracing both the more “con-
ventional” and the new: ISTC systems will become a
welcome complement to already existing educational
and research tools, whether they are program libraries,
spreadsheets, modeling languages, or custom applica-
tions. Perhaps the most pressing issue in terms of the
adoption of ISTC software is the development and doc-
umentation of best OR/MS educational practices in or-
der to pave the way for others to follow and improve.
We encourage educators to contact the authors with sto-
ries and lessons learned regarding their practices.
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