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Abstract

This paper consists in constructing and modeling Dynamic Multi Generative Network Flows in which the flow
commodities is dynamically generated at source nodes and dynamically consumed at sink nodes. It is assumed that the
source nodes produce the flow commodities according to k timegenerative functions and the sink nodes absorb the
flow commodities according to k time consumption functions.The minimum cost dynamic flow problem in such networks
that extend the classical optimal flow problems on static networks, for a pre-specified time horizon T is defined and
mathematically formulated. Moreover, it is showed that thedynamic problem on these networks can be formulated as a
linear program whose special structure permits efficient computations of its solution and can be solved by one minimum
cost static flow computation on an auxiliary time-commodityexpanded network. By using flow decomposition theorem,
we elaborate a different model of the problem to reduce its complexity. We consider the problem in the general case
when the cost and capacity functions depend on time and commodity.

Key words: Network/graphs, LP problems, Decomposition methods.

1. Introduction

Dynamic flow problems are among the most impor-
tant and challenging problems in network optimization.
Dynamic flows are widely used in modeling of control
processes from different technical, economic and infor-
mational systems. Road or air traffic control, production
systems, evacuation planning, scheduling planning,
economic planning, telecommunication, transportation,
communication, and management problems can be
formulated and solved as single-commodity or multi-
commodity flow problems ([1, 3, 7, 8, 10]). Ford and
Fulkerson introduced ([5, 18]) flows over time to add a
time dimension to the traditional network flow models.
Given a network with capacities and transit times on
arcs, they studied the problem of sending a maximum
amount of flow from a source nodes to a sink node
d within a pre-specified time horizon T. They showed
that this problem can be solved by one minimum cost
static flow computation, where transit times on arcs are
interpreted as cost coefficients. Since then, optimal dy-
namic flow problems have attracted many researchers
for several different reasons such as large practical ap-
plicability of these problems and their relationship with
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different combinatorial problems. Subsequently linear
models of dynamic flow problems have been studied
by M. Skutella, L. Fleischer, G. Glockner, B. Hoppe, J.
Nemhauser, E. Subrahmanian and others in [9, 11, 12,
14, 16, 17, 20, 22, 23]. In all of the existing results on
dynamic network flows that we have mentioned above,
the time dimension has been employed for flow transit
times, but in many optimization problems originating
from real-life systems, the time factor over generations
or consumptions of flow is a key variable to the problem
formulation [24]. In the classical network flow theory,
however, this factor is not sufficiently reflected. For
that reason, in this paper, multicommodity version of
Dynamic Generative Network Flows (DGNF), which
provide an adequate framework for modeling such
network-structured problems, are analyzed. Dynamic
multi (multi-commodity) generative network flows are
considered with time-commodity varying capacities of
arcs and also for the minimum cost flow problem it is
assumed that cost function depends on time and com-
modity.
This paper consists in modeling, investigation and
solving the problem of minimum cost dynamic flow
(MCDF) on a dynamic multi generative network flow
N = (V, A, k, T ) with different forms of restrictions
by parameters of network and time. We will assign to
each nodei ∈ V , k time functions. We call this kind of
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network flows multi generative dynamic network flows
(DMGNF) where travel and transmission are instanta-
neous. In these networks the supplies and demands are
not given as fixed values; instead, they are continuously
generated. Therefore, in such kind of network flows,
the amount of flow of any product on each arc changes
at every moment of time during a pre-specified time
horizon T. The above noted aspects of these networks
distinguish them from the multicommodity static and
transmission time dependent network flows [24].
In this paper we investigate multi generative version
of the MCDF problem on a generative network. The
problem of minimum cost dynamic multi generative
network flow consists of shipping several different
products generated by several different generative func-
tions (in source nodes) to sink nodes through a given
network satisfying certain objectives in such a way that
the total flow going through arcs does not exceed their
capacities. No commodity ever transforms into another
commodity at no moment of time, so that each one has
its own flow conservation constraints during the time
horizon T. We consider the minimum cost flow problem
on multi generative networks with time-commodity
varying capacities and costs on arcs that depend on
time and commodity entering them.
This paper proposes two methods for studying and
solving the MCDF problem. The basic method used
for investigation, rely on a time-commodity expanded
network. As it will be showed, the MCDF problem on
DMGNF can be formulated as a linear programming
model whose special structure permits efficient com-
putation of its solution. In the next step we elaborate a
different model of the problem in order to decrease its
complexity.
In section 2 we explain the needed definitions and pre-
liminary items. The MCDF problem in a multi genera-
tive network is developed in two cases, continuous and
discrete time, in section 3. A method to solve the prob-
lem is explained in section 4 and finally, an efficient
model in order to decrease the problem complexity is
presented in section 5.

2. Definitions and Preliminaries

In this section we provide basic definitions and pre-
liminary items on multi generative dynamic network
flows. Assume thatN = (V, A, k, T ) is a DMGNF with
node setV , arc setA and integer time horizon T. For
each nodei ∈ V is eitherk different generative func-
tions pi1(t), pi2(t), ..., pik(t) or k different consump-

tion functionsri1(t), ri2(t), ..., rik(t), wherepiq(t) is a
time function that producespiq(t) units of flow of com-
modityq at timet ∈ [0, T ], similarlyriq(t) is a function
of time and shows the amount of flow of commodityq
that nodei consumes at timet ∈ [0, T ]. Here,k is the
number of types of generative functions which defines
setK = {1, 2, ..., k} consist in types of products gen-
erated by generative functions (on the other side, types
of products consumed by consumption functions) that
must be routed through the network. Time horizon T is
the time until which the flow can travel in the network.
Also we assign to each arc(i, j) ∈ A non-negative ca-
pacitiesuijq(t) anduij(T ), which represent the maxi-
mum amount of flow of productq at momentt that can
be carried on(i, j) and the maximum amount of total
flow (all of the products) that can be carried on(i, j)
during the time horizon T, respectively .
We may assign to nodei ∈ V ,k different generative
functionspiq(t), in this case we will refer to this node as
a multi generative node. In the other case we may assign
to nodei ∈ V , k different consumption functionsriq(t),
in this case we regardi as a multi consumer node. In
the other cases we consideri as a transshipment node,
in this casepiq(t) = riq(t) = 0 for q = 1, 2, ..., k and
for eacht ∈ [0, T ].
In these networks, we have several important proper-
ties that are the key factors to model the problem, as
follows:

1. The generative functionspiq(t) for every
i ∈ V andt ∈ [0, T ] transmit the same commodity
q into the network.

2. The consumption functionsriq(t) for every i ∈
V andt ∈ [0, T ] absorb the same commodityq.

3. Each nodei must be containedk time func-
tions pi1(t), pi2(t), ..., pik(t) or k time functions
ri1(t), ri2(t), ..., rik(t) but no of both types.
Hence,

3.1. If a multi generative node containsr < k gener-
ative functions forr commodities, we can assign
k − r generative functions for other commodities
with zero value.

3.2. If a multi consumer node containsr < k consump-
tion functions forr commodities, we can assign
k − r consumption functions for other commodi-
ties with zero value.

The amount of generated flow in multi generative nodes
and the amount of absorbed flow in multi consumer
nodes are functions of time, and so, the flow value on
all arcs connecting these nodes will change at every
moment of time in[0, T ]. We define the power of multi
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generative node i respect to productq at time horizon
T as:

Piq(T ) =

T
∫

0

piq(t)dt,

and the total power of multi generative nodei at time
horizon T as:

Pi(T ) =
∑

q∈K

Piq(T ).

Similarly, we define the power of multi consumer node
i respect to productq at time horizon T as:

Riq(T ) =

T
∫

0

riq(t)dt,

and the total power of multi consumer nodei respect to
productq at time horizon T as:

Ri(T ) =
∑

q∈K

Riq(T ).

For convenience in modeling, we define for every node
i potential energy functionviq(t) as:viq(t) = piq(t) for
every multi generative nodei respect to commodityq,
andviq(t) = −riq(t) for every multi consumer nodei
respect to commodityq. Therefore,Vi(T ) = Pi(T ) is
the total potential energy of multi generative nodei at
time horizon T andVi(T ) = −Ri(T ) is the total poten-
tial energy of multi consumer nodei at time horizon T.
In a dynamic multi generative network,x(t) : A → R+

is a feasible dynamic flow, if it satisfies the following
constraints:

∑

j

θ
∫

0

xijq(t)dt −
∑

j

θ
∫

0

xjiq(t)dt =

θ
∫

0

viq(t)dt∀i ∈ V, ∀q ∈ K, ∀θ ∈ [0, T ] (1)

0 6 xijq(t) 6 uijq(t)∀(i, j) ∈ A, ∀q ∈ K, ∀t ∈ [0, T ]
(2)

0 6
∑

q∈K

T
∫

0

xijq(t)dt 6 uij(T )∀(i, j) ∈ A (3)

xijq(t) = 0∀(i, j) ∈ A, ∀q ∈ K, ∀t > T (4)

Wherexijq(t) is the amount of flow of commodityq
passing arc(i, j) at momentt. Conditions (1) are the
flow conservation constraints that we require flow to be
balanced at every time moment for every node with re-
spect to each commodity (i.e., it is required that flow
to be balanced during the time horizon for every node
with respect to each commodity). Conditions (2) and
(3) are the conditions of flow feasibility for every mo-
mentt and horizon T with respect to each commodity.
In other words, condition (2) represents the maximum
amount of flow of any commodity that can be carried
on(i, j) at every momentt and Condition (3) represents
the total flow of all commodities that can be carried on
(i, j) during the time horizon T. Condition (4) guaran-
tees flow can just travel in the network until the end of
pre-specified time horizon.

3. The Minimum Cost Dynamic Flow Problem on
Dynamic Multi Generative Network Flow

We can formulate the dynamic flow problem in two
ways depending on whether we use a discrete or contin-
uous representation of time. The discrete-time dynamic
flow problem is a discrete-time expansion of a static net-
work flow problem. In this case we distribute the flow
over a set of predetermined time stepst = 0, 1, ..., T−1.
In a continuous-time dynamic flow problem we look
for the flow which distributed continuously over time
within the time horizon T. In this work we focus on
the discrete time model of the problem and show how
it can be solved by the idea of time expanded network.
Therefore after introducing both continuous and dis-
crete time model, the method of the time expanded net-
work will be discussed as the essential approach. One
can see that the continuous time model of the problem
is solvable by partitioning time horizon T to time steps
t = 0, 1, ..., T − 1, approximately.

3.1. The Continuous Time Model

The MCDF problem on a DMGNF is the problem
of sending flow of several different commodities from
multi generative nodes to multi consumer nodes at min-
imum total cost such that the flow going through arcs
does not exceed their capacities. Therefore, the problem
consists in finding a feasible dynamic flow, satisfying
(1)-(4) that minimizes the following objective function:
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∑

q∈K

∑

(i,j)∈A

T
∫

0

cijq(t)xijq(t)dt (5)

Wherecijq : [0, T ] → R+.
Therefore, in the continuous time model the MCDF
problem may be formulated as follows:

min
∑

q∈K

∑

(i,j)∈A

T
∫

0

cijq(t)xijq(t)dt

Subject to (1)-(4)
In order to a feasible flow exist during the time horizon
T we require that:

∑

i∈V

θ
∫

0

viq(t)dt = 0 ∀θ ∈ [0, T ], ∀q ∈ K (6)

It is easy to show that this condition is necessary but it
is not sufficient one. In order to obey the time horizon
T, we require thatxijq(t) = 0 ,∀q ∈ K ,∀t > T . To
simplify our notation, we may sometimes usexijq(t) =
0,∀q ∈ K, ∀t /∈ [0, T ].

3.2. The Discrete Time Model

A dynamic multi generative networkN = (V, A, k,
T, u, c) with node setV , |V | = n, arc setA, |A| = m,
capacity functionsu : A × K × N → R+ andu(T ) :
A → R+ and cost functionc : A × K × N → R+,
whereN = {0, 1, ..., T − 1} andK = {1, 2, ..., k} , is
considered. If one unit of flow of commodityq leaves
nodei at time t on arc(i, j), one unit of flow of com-
modity q arrives at nodej at the same time. The time
horizon T is the time until which the flow can travel
in the network and it defines setN = {0, 1, ..., T − 1}
consist in time steps.
In order to a feasible flow exist during the time horizon
T we require that

∑

i∈V

θ
∑

t=0

viq(t) = 0∀θ ∈ N, ∀q ∈ K (7)

It is evident that this condition is necessary but it is not
sufficient one. As before, every nodei ∈ V can serve
as a multi generative node, a multi consumer node or a
transshipment node.

The feasibility constraints for a flow in this case are the
same as continuous case. It is sufficient to replace in

(1)-(4),
θ
∫

0

with
θ
∑

0
and∀θ ∈ [0, T ] with ∀θ ∈ N.

In this casexijq(t) is the amount of flow of productq
passing arc(i, j) at time stept ∈ [0, T ] . It is easy to
observe that the flow of any product does not enter arc
(i, j) at time stept if t > T .
It can be seen that the conservation constraints in the
discrete time model are equivalent to

∑

j

xijq(t)−
∑

j

xjiq(t)=viq(t)∀i ∈ V, ∀q ∈ K, ∀t ∈ N

(8)

Since
∑

j

θ
∑

t=0
xijq(t) −

∑

j

θ
∑

t=0
xijq(t) =

θ
∑

t=0
(
∑

j

xijq(t)

−
∑

j

xjiq(t)).

The total cost of discrete dynamic flowx at time horizon
T in N may be defined as follows:

∑

q∈K

∑

t∈N

∑

(i,j)∈A

cijq(t)xijq(t) (9)

The MCDF problem on multi generative network with
discrete time consists in finding a feasible discrete dy-
namic flow that minimizes objective function (9).
One can observe that ifviq(t) = viq whereviq ∈ R ,
∀i ∈ V , ∀q ∈ K andT = 0 then the formulated prob-
lem becomes a static minimum cost multi-commodity
flow problem on a static network.

3.3. Feasibility Conditions

Before stating the feasibility conditions of the prob-
lem, we need to define cut-sets: Ifϕ 6= S ⊂ V and
S = V − S then cut-set(S, S) is defined as(S, S) =
{

(i, j) ∈ A : i ∈ S, j ∈ S
}

.
In the static network flows the necessary and sufficient
conditions for the feasibility are as following: For every
set of nodesS ⊂ V

∑

i∈S

b(i) 6
∑

(i,j)∈(S,S)

uij

∑

i∈V

b(i) = 0

Whereb(i) is the constant supply/demand of nodei.
These conditions may be generalized for the DMGNF
as a Theorem:
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Theorem 3.1The necessary and sufficient conditions
for a multi generative network flow to be feasible are:
for every cut-set(S, S)

∑

i∈S

θ
∑

t=0

viq(t) 6
∑

(i,j)∈(S,S)

θ
∑

t=0

uijq(t)∀θ ∈ N, ∀q ∈ K

(10)
∑

i∈S

Vi(T ) 6
∑

(i,j)∈(S,S)

uij(T ) (11)

∑

i∈V

θ
∑

t=0

viq(t) = 0∀θ ∈ N, ∀q ∈ K (12)

Proof Suppose thatN = (V, A, k, T, u) is a dynamic
multi generative network flow. Lett ∈ N be an arbitrary
time step andq ∈ K . The necessary and sufficient
conditions for the feasibility of the MCDF problem onN
at time stept with respect to commodityq are: For any
ϕ 6= S ⊂ V the following conditions hold ([1, 6]):

∑

i∈S

viq(t) 6
∑

(i,j)∈(S,S)

uijq(t),

∑

i∈V

viq(t) = 0.

Let θ ∈ N be an arbitrary time point inN. Then by
summing the above inequalities up toθ , we get the
following conditions:

θ
∑

t=0

∑

i∈S

viq(t) =
∑

i∈S

θ
∑

t=0

viq(t)

6

θ
∑

t=0

∑

(i,j)∈(S,S̄)

uijq(t)

=
∑

(i,j)∈(S,S)

θ
∑

t=0

uijq(t),

θ
∑

t=0

∑

i∈V

viq(t) =
∑

i∈V

θ
∑

t=0

viq(t) = 0.

Note thatS ⊂ V is an arbitrary subset ofV at any step.
Also for feasibility of the problem at T, it is necessary
and sufficient that the following conditions hold:

∑

i∈S

Vi(T ) 6
∑

(i,j)∈(S,S)

uij(T )∀ cut-set(S, S).

Note that a similar Theorem is true for the continuous
case and conditions:

∑

i∈S

θ
∫

0

viq(t)dt6
∑

(i,j)∈(S,S)

θ
∫

0

uijq(t)dt∀θ∈ [0,T ], ∀q∈K

∑

i∈S

Vi(T ) 6
∑

(i,j)∈(S,S)

uij(T ),

∑

i∈V

θ
∫

0

viq(t)dt = 0∀θ ∈ [0, T ], ∀q ∈ K

4. The Method for Solving the MCDF Problem

To solve the formulated problem, we propose an ap-
proach based on the reduction of the minimum cost dy-
namic flow problem on multi generative network to a
minimum cost static flow problem on a static network.
We consider the discrete time model, in which all times
are integral and bounded by horizon T. We show that the
dynamic problem on multi generative networkN can
be reduced to static one on an auxiliary networkNT

K ,
which we call time-commodity expanded network. The
most important advantage of this method is that it turns
the problem of determining an optimal dynamic flow
on a multi generative network into a classical static net-
work flow problem. The essence of the time-commodity
expanded network is that it contains a copy of the node
set and the arc set of the multi generative network for
eacht ∈ N andq ∈ K . We defineNT

K as:

1. V T
K = {itq | t ∈ N, q ∈ K, i ∈ V }

2. AT
K = {(i, j)t

q = (itq, j
t
q) | t ∈ N, q ∈ K, (i, j) ∈

A}
3. vt

iq = viq(t) for itq ∈ V T
K

4. ut
ijq = uijq(t) for (i, j)t

q ∈ AT
K

5. ct
ijq = cijq(t) for (i, j)t

q ∈ AT
K

6. uT
ij = uij(T ) for {(i, j)t

q | t ∈ N, q ∈ K}

Note that, for the networkNT
K ,

∣

∣V T
K

∣

∣ = nkT and
∣

∣AT
K

∣

∣ = mkT . In the time-commodity expanded net-
work, we can consider the problem as a static network
flow problem. It will be illustrated that every static flow
xt

q in NT
K corresponds to a discrete dynamic flowx with

time horizon T inN and vice-versa. In the following
we state a correspondence between dynamic flows inN
and static flows in the static time-commodity expanded
networkNT

K . For this aim, letx(t) be a flow inN , then
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Fig. 1. The dynamic multi generative dynamic networkN .

Fig. 2. The time-commodity expanded networkN
T

K .

the following function

xt
q : AT

K → R+ suchthat xt
ijq = xijq(t) (13)

represents a flow in the time-commodity expanded
networkNT

K where xt
ijq denotes the amount of flow

passing through the arc(i, j)t
q ∈ AT

K .
Let us construct the time-commodity expanded net-
work NT

K for N given in Figure 1. The set of time
steps isN = {1, 2} and the set of products of genera-
tive functions isK = {1, 2} . So each nodei consists
in two time functionsvi1(t) andvi2(t) . The time func-
tions piq(t) andriq(t) , time-commodity dependent
capacitiesuijq(t) , horizon capacitiesuij(T ) and time-
commodity varying costscijq(t) are considered to be
given.

Now, in accordance with the definition of time-
commodity expanded network and our notions in sec-
tion 3.2, we get the following equivalent formulation
of the MCDF problem on the static time-commodity

expanded networkNT
K :

min
∑

q∈K

∑

t∈N

∑

(i,j)t
q∈AT

K

ct
ijqx

t
ijq (14)

∑

j

xt
ijq −

∑

j

xt
jiq = vt

iq∀itq ∈ V T
K , q ∈ K, t ∈ N

(15)

0 6 xt
ijq 6 ut

ijq∀(i, j)t
q ∈ AT

K, q ∈ K, t ∈ N (16)
∑

q∈K

∑

t∈N

xt
ijq 6 uT

ij{(i, j)
t
q | t ∈ N, q ∈ K} (17)

Note that, constraint (17) corresponds to a subset of
arcs in the time-commodity expanded network instead
of a constraint on each arc separately. In fact, this
constraint guaranties the total flow traversing the arc
throughout the time horizon T is at mostuT

ij [= uij(T )]
. We refer to this constraint as collective constraint.
By following lemma and theorem, we will show that
the dynamic flow problem on multi generative network
N may be solved as a static flow problem on the aux-
iliary networkNT

K . Similar theorems and lemmas can
be found in the literature in the context of flows over
time (for example, see [16]).

Lemma 4.1Let xt
q : AT

K → R+ be a flow in the static
networkNT

K . Then the functionx : A × K × N → R+

defined in the following way:

xijq(t) = xt
ijqfor(i, j) ∈ A, (i, j)t

q ∈ AT
K, q ∈ K, t ∈ N

represents a dynamic flow of a set of products in the
multi generative networkN . Let x : A×K×N → R+

be a dynamic flow of a set of products in the multi
generative networkN . Then the functionxt

q : AT
K →

R+ defined in the following way:

xt
ijq = xijq(t) for(i, j)t

q ∈ AT
K, (i, j) ∈ A, q ∈ K, t ∈ N

represents a static flow in the networkNT
K .

Proof It is obvious that the foregoing correspon-
dences are bijections from the set of T-horizon flows
with a set of products inN onto the set of flows in
the time-commodity expanded networkNT

K and vice-
versa. We have to show that each static flow in the
time-commodity expanded networkNT

K is put into the
correspondence with a dynamic flow of a set of prod-
ucts in the dynamic multi generative networkN and
vice-versa. To prove the first part of the lemma, we will
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show that conditions (1)-(4) forx : A × K × N → R+

in N are true in the discrete time model. These con-
ditions evidently result from the conditions (15)-(17)
and definition (13) in the static networkNT

K . To prove
the second part, it is sufficient to show that conditions
(15)-(17) hold forxt

q : AT
K → R+ . Correctness of

these conditions easily results from the procedure of
constructing the time-commodity expanded network
and the correspondence between flows in the static and
multi dynamic networks.
Let xijq(t) be a dynamic flow of a set of products inN
, and letxt

ijq be a corresponding function inNT
K . Lets

prove thatxt
ijq satisfies the conservation constraints

inNT
K . Let i ∈ V be an arbitrary node inN andt ∈ N

, an arbitrary time step andq ∈ K , an arbitrary product:

viq(t) =
∑

j

xijq(t) −
∑

j

xjiq(t)

=
∑

j

xt
ijq −

∑

j

xt
jiq = vt

iq

According to definition of the time-commodity ex-
panded network all necessary conditions are satisfied
for each nodeitq ∈ V T

K . Hence,xt
ijq is a flow inNT

K .
It is easy to verify that a feasible flow inN is a feasi-
ble flow in the time-commodity expanded networkNT

K

and vice-versa. Indeed,

0 6 xt
ijq = xijq(t) 6 uijq(t) = ut

ijq
∑

q∈K

∑

t∈N

xt
ijq =

∑

q∈K

∑

t∈N

xijq(t) 6 uij(T ) = uT
ij .�

The total cost of the static flowxt
q in NT

K may be de-
termined as follows:

ct
q(x

t
q) =

∑

q∈K

∑

t∈N

∑

(i,j)t
q∈AT

K

ct
ijqx

t
ijq (18)

Theorem 4.1If x is a flow in the dynamic multi gen-
erative networkN and xt

q is a corresponding flow
in the time-commodity expanded networkNT

K , then
ct
q(x

t
q) = c(x) . Moreover, if xt∗

q is a minimum cost
flow in NT

K , then the corresponding dynamic flowx∗

of a set of products inN is also a minimum cost one
and vice-versa.

Proof Let x : A × K × N → R+ be an arbitrary
dynamic flow in N . According to Lemma 4.1 the
unique flowxt

q in NT
K corresponds to flowx in N, and

therefore we have:

c(x) =
∑

q∈K

∑

t∈N

∑

(i,j)∈A

cijq(t)xijq(t)

=
∑

q∈K

∑

t∈N

∑

(i,j)t
q∈AT

K

ct
ijqx

t
ijq

= ct
q(x

t
q).

To prove the second part of the theorem we again use
Lemma 4.1. Letx∗ : A × K × N → R+ be the opti-
mal dynamic flow inN andxt∗

q be the corresponding
optimal flow inNT

K . Then

c(x∗) =
∑

q∈K

∑

t∈N

∑

(i,j)∈A

cijq(t)xijq
∗(t)

=
∑

q∈K

∑

t∈N

∑

(i,j)t
q∈AT

K

ct
ijqx

t
ijq

∗

= ct
q(x

t∗

q ).

The converse proposition is proved in an analogous
way.�
According to definition of time-commodity expanded
network, the problem of MCDF onNT

K can be reduced
to the following matrix form, (19), as a linear program
whose special structure permits efficient computations
of solution.

min
∑

q∈K

∑

t∈N

c
t
qx

t
q

Ax
t
q = v

t
q∀q ∈ K, ∀t ∈ N

0 6 x
t
q 6 u

t
q∀q ∈ K, ∀t ∈ N

0 6
∑

q∈K

∑

t∈N

x
t
q 6 u

T (19)

Where x
t
q =

{

xt
ijq

}

i,j
is the vector of flows of

commodityq ∈ K respect tot in NT
K . u

t
q =

{

u
t
ijq

}

i,j

represents the vector of upper limits on flows
of commodityq ∈ K respect to t in NT

K . Also
u

T =
{

uT
ij

}

i,j
represents the vector of upper limits

on the total flow of total commodities flowing in the
arcs for allt ∈ N in NT

K andc
t
q =

{

ct
ijq

}

i,j
represents

the vector of arc costs for commodityq respect tot in
NT

K . A is the node-arc incidence matrix of the graph.
Finally, vt

q =
{

vt
iq

}

i
represent the vector of demands

for commodityq respect tot (i.e., generative demands,
at the time stept for commodity q ) in NT

K . It can
be seen that we can formulate the MCDF problem as
the minimum cost static flow network problem that
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possesses the block diagonal structure. Thus we may
apply the block diagonal decomposition technique and
some other methods to the foregoing problem ([1, 2, 3,
15, 21]).
Note that the foregoing formulation of the MCDF
problem has a simple constraint structure. It contains
m+nkT constraints since it contains one mass balance
constraint for every node at every step for each product
and one horizon capacity constraint for every arc, and
hasm + mkT variables (including the slack variable).
Let Xt

q =
{

x
t
q : Ax

t
q = v

t
q, 0 6 x

t
q 6 u

t
q

}

. Let us as-
sume that each component ofu

t
q is finite so thatXt

q for
everyt, t ∈ N andq , q ∈ K is bounded. Thenxt

q can
be expressed as a convex combination of the extreme
points ofXt

q as follows ([3]):

x
t
q =

kt
q

∑

i=1

λt
iqx

t
iq

Where

kt
q

∑

i=1

λt
iq = 1,

λt
iq > 0i = 1, ..., kt

q, q ∈ K, t ∈ N

andxt
1q,x

t
2q, ...,x

t
kt

qq are the extreme points ofXt
q. Sub-

stituting forxt
q in the MCDF problem and denoting the

vector of slack variables bys , we get the following for-
mulation (20):

min
∑

q∈K

∑

t∈N

kt
q

∑

i=1

(ct
qx

t
iq)λ

t
iq

∑

q∈K

∑

t∈N

kt
q

∑

i=1

(Ixt
iq)λ

t
iq + s = u

T

kt
q

∑

i=1

λt
iq = 1∀q ∈ K, ∀t ∈ N

λt
iq > 0∀q ∈ K, ∀t ∈ N, i = 1, ..., kt

q

s > 0 (20)

Lemma 4.2 In the above formulation of the MCDF
problem, any linear programming basis for the MCDF
problem will containm + kT basic variables inλt

iq

space, and will contain at least oneλt
iq with respect to

eacht ∈ N and commodity,q ∈ K . Moreover, any ba-
sis detects at least one arc set at every time stept ∈ N

for each commodityq ∈ K transports a positive flow.

Proof Indeed, the foregoing formulation of MCDF
problem containsm + kT constraints. Therefore, any
linear programming basis will containm + kT basic
variables inλt

iq space and it is found that any basis will
contain at least oneλt

iq with respect to eacht and com-
modity q ([3,15]). Hence, any basis detects at least one
arc set with respect to eacht ∈ N and commodityq ∈ K
which transports a positive flow. That means, any ba-
sis detects one arc set at every time stept for every
commodityq that it transports a positive flow.�

5. The Path Formulation of the MCDF Problem

To simplify our discussion, we consider a special
case of the MCDF problem: we assume that in the main
problem there is a single sources and a single sink
d for all products and a time-commodity flow require-
mentr(t, q) between this source and sink node. So, we
consider a single sourcest

q and a single sinkdt
q for

eachq ∈ K andt ∈ N in NT
K and a flow requirement of

rt
q units between these sources and sinks. We also as-

sume that there is no time-commodity dependent capac-
ity uijq(t) . Let us first reformulate the MCDF problem
on NT

K using path and cycle flows instead of arc flows.
Therefore, we assume that we can represent any poten-
tially optimal solution as sum of flows on directed paths
([1]). For each productq respect to eacht , Let Pt

q de-
note the collection of all directed paths from the source
nodest

q to the sink nodedt
q in the static networkNT

K

(i.e.,Pt
q denote the collection of all directed paths from

the source nodes to the sink noded in the dynamic
networkN at time momentt for commodityq). In the
path flow formulation, each decision variablef(p) is
the flow on some pathp and for the stept and product
q. We define this variable for every directed pathp in
Pt

q. Let δt
ijq(p) be an arc-flow indicator variable, that is,

δt
ijq(p) equals 1 if arc(i, j)t

q is contained in the pathp,
and is 0 otherwise. Note that if(i, j)α

β ∈ p andp ∈ Pt
q

thenα = t andβ = q.
The flow decomposition theorem of network flows ([1])
states that we can always decompose optimal flowxt

ijq

into path flowsf(p) asf(P ) =
∑

(i,j)t
q∈AT

K

δt
ijq(p)f(p).

Let ct
q(p) =

∑

(i,j)t
q∈AT

K

ct
ijqδ

t
ijq(p) =

∑

(i,j)t
q∈P t

q

ct
ijq de-

note the per unit cost of flow on the pathp ∈ Pt
q with

respect to thet ∈ N and productq ∈ K. Note that for
eacht andq, if we substitute for the arc flow variable in
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the objective function, we find that
∑

(i,j)t
q∈AT

K

ct
ijqx

t
ijq =

∑

(i,j)t
q∈AT

K

ct
ijq

∑

P∈Pt
q

δt
ijq(p)f(p) =

∑

P∈Pt
q

ct
q(p)f(p).

This observation shows that we can express the cost of
any solution as either the cost of arc flows or the cost
of path flows. Then we obtain the following equivalent
path flow formulation of the MCDF problem:

min
∑

q∈K

∑

t∈N

∑

P∈Pt
q

ct
q(p)f(p) (21)

∑

q∈K

∑

t∈N

∑

p∈Pt
q

δt
ijq(p)f(p) 6 uT

ij∀(i, j) ∈ A (22)

∑

P∈Pt
q

f(p) = rt
q∀q ∈ K, ∀t ∈ N (23)

f(p) > 0∀p ∈ Pt
q, q ∈ K, t ∈ N (24)

In this formulation by using the flow decomposition
any feasible arc flow of the systemAx

t
q = v

t
q in (19)

has decomposed into a set of path flows in such a way
that path flows satisfy the mass balance condition (23).
This formulation of the MCDF has a single constraint
(22) for each arc(i, j) which state that the total path
flows of total products passing through the arc at all
time steps is at mostuT

ij , the horizon capacity of the
arc (i.e., the total path flows of total products passing
through the arc during the time horizon T is at most
uT

ij ). Moreover, the problem has a single constraint
(23) with respect to eacht ∈ N and q ∈ K, which
states that the total of flow on all paths connecting the
source nodesst

q and sink nodesdt
q with respect tot

for productq must equal the demandrt
q. (i.e., the total

flow of commodityq on all paths connecting the source
nodes and sink noded in the dynamic networkN at
momentt must equal the demand of this commodityq
at this moment of timet).
For a network withn nodes,m arcs,k types of time
functions and time horizon T, the path formulation of
the MCDF problem containsm + kT constraints. In
contrast, the arc formulation stated in section 4 contains
m + nkT constraints. We can apply the generalized
upper bounding simplex method, to solve the new for-
mulation very efficiently ([1, 21]).
For example, a network withn = 1000 nodes,
m = 5000 arcs,k = 10 types of time functions and
with a time-step setN(|N| = 1, 000, 000), the path
flow formulation contains10, 005, 000 constraints. In
contrast, the arc formulation (matrix form) contains
10, 000, 005, 000 constraints. But on other hand, be-

cause no path appears in more than one of the constraint
(23), we can apply a generalized version of the simplex
method, known as generalized upper bounding simplex
method (GUBS), to solve the path flow formulation very
efficiently. Even though the linear programming basis
for our example has size10, 005, 000 × 10, 005, 000 ,
the GUBS method is able to perform all of its matrix
computations on a very much smaller basis of size
5000 × 5000. This method essentially solves the prob-
lem as though it contained onlym master constraints
(in our formulation, that is constraint (22)), which, for
this sample data, means that we can essentially solve
a linear program with only5000 constraints instead of
over 10 billion constraints in the arc formulation.

Lemma 5.1In the path formulation of the MCDF prob-
lem, any linear programming basis containsm + kT
basic variables. Moreover, any basis detects at least
one path at every time stept ∈ N for every commodity
q ∈ K which transports a positive flow.
Proof As mentioned before, the path formulation of
MCDF problem containsm + kT constraints, and con-
sequently any linear programming basis will contain
m+kT basic variables. And it is found that ([1, 3, 21])
in any basis, at least one path with respect to each t and
q must carry a positive flow. That means, any basis will
detect at least one path at every moment of time t for
each commodity q that it transports a positive flow.�

6. Conclusion

In this paper, we investigated and solved the prob-
lem of minimum cost dynamic flow on dynamic multi
generative networks in which we assigned to each
nodek time functions. As you saw, in these networks
supplies and demands were not given as fixed values;
instead, they were continuously generated. Therefore,
in such kind of network flows, the amount of flow (of
any product) on each arc changed at every moment of
time during a pre-specified time horizon. Moreover, by
transforming the multi generative network to a static
network, called time-commodity expanded network,
we showed that the dynamic problem can be solved
as a static minimum cost flow problem with a special
structure and efficient algorithms for finding optimal
flows were proposed.
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