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Abstract

The paper considers the problem of maximizing the profits of aretailer operating in the Italian electricity market. The
problem consists in selecting the contracts portfolio and in defining the bidding strategy in the wholesales market while
respecting the technical and regulatory constraints. A novel solution method based on a enhanced discovery of the search
domain in the simulated annealing technique has been developed for its solution and a set of realistic test problems have
been generated for its validation. The experimental results show that our method outperforms the standard simulated
annealing by an improvement gap of 20,48% in average.
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1. Introduction

With the deregulation of the electricity business, en-
ergy prices are no longer set by a regulator but by
the market. As a result, both suppliers and consumers
should construct their policies, while participating in the
electricity market, on the basis of the profit maximiza-
tion. With this view, the electricity is seen as any com-
modity (gas, oil, etc.) that is subject to the demand/offer
rule. However, the power system is characterized by
many complicating features the most important of which
is the fact that electricity is not storable. Consequently,
existing mathematical models for the profit optimization
of other commodities cannot be applied to the context
of power system and new models should be developed
and applied. Such optimization problems become even
more difficult whenever it concerns an operator who is
allowed to buy and sell at the same time. This is the
case of the electricity retailer (in Italian ”Grossisti”); an
operator that was introduced in Italy with the deregu-
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lation and whose role is to be an intermediary between
sellers and buyers who are not interested in participat-
ing directly in the wholesales market. The retailers are
allowed to buy and sell energy either through bilat-
eral contracts or in the wholesales market. Moreover,
the retailers in the Italian market have also the oppor-
tunity to trade the so-calledGreen Certificates. These
are an environmental conservation tools introduced by
the deregulation Order 79/99 that obliges each producer
to dispatch a fraction of his production from renewal
resources. A Green Certificate, having a value of 100
MWh and released by the system operator, represents
the proof of such a green production that can be traded
as contracts or in a specific market. It is worth noting
here that the retailers in the Italian system are not al-
lowed to have an own production capacity or to have a
role in the distribution business.

In order to perform their mission, the retailers have to
interact with the following electricity actors (figure 1):

• Producers: retailers can buy energy/capacity through
bilateral contracts either from foreign suppliers or
Italian producers;

• Consumers: retailers can sell energy/capacity through
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Fig. 1. Main actors in the Italian electricity market

bilateral contracts to all the Italian consumers;
• GME: the wholesales market represents another op-

portunity for the retailers to buy/sell energy, capacity,
and green certificates. It is organized by the market
operatorGME (Gestore del Mercato Elettrico) with
the technical support of the system operator called
Terna.
More specifically, while Terna has the key role of

ensuring the system’s security and reliability, the GME
is responsible for managing the short-term forward
electricity exchange by using the auction as a market
model for the price definition. The GME collects the
offers/bids submitted by different players and provides
the market clearing information. The market clearing
price (MCP) and quantities (MCQ) for each time period
are determined as the intersection of the aggregated
supply and demand curves (Figure 2).

This paper has the objective of defining a profit max-
imization model for a retailer operating in the Ital-
ian electricity market and also developing a heuristic
method for its solution. The field of the optimal man-
agement of power systems has represented for a long
time a very active area of research. Besides the known
problems of unit commitment ([7,28]), optimal power
flow ([6,15]) and capacity expansion ([21,30]) that have
had big importance for the electricity management both
before and after the deregulation, many new problems
have been generated by the liberalization process. Some
of these problems arise as a revision of old models to
make them suitable for the competitive context. Other
problems describe the recent challenges faced by the
different operators and should be defined from scratch.
Literature is quite rich in addressing problems in both
deterministic and stochastic frameworks. Examples of
the first category include the optimization of the reser-

voirs in hydroelectric systems ([3,19]), the management
of contingencies ([2,22]), etc. The list of the new chal-
lenging problems is quite long since each operator is
involved with his specific models. A non exhaustive list
may include the auction clearing ([4]) to be solved by
the GME, the bidding strategy definition ([14,29]) and
the contract selection ([9,20]) to be solved by both pro-
ducers and consumers, and the energy pricing and tariff
definition ([5,18]) that involve mainly the distributors.
Many of these problems are discussed in recent books
such as ([25–27]) and their mathematical formulations
are presented in the review produced by Conejo and
Prieto ([9]).

To the best of our knowledge only few papers have
addressed the portfolio optimization problem for retail-
ers. The review [9] includes a general discussion and a
generic mathematical model to solve the decision prob-
lem to be faced by the retailers. Another general frame-
work is also presented in [11]. A detailed model for the
definition of optimal contracts for retailers has been pro-
posed in [12]. However, this latter paper considers only a
single client and moreover the resulting model presents
some computational difficulties because of its nonlin-
ear nature. A more robust (linear) model that takes into
account the prices and demand uncertainties has been
later proposed in [8]. Finally, the problem of definition
of optimal bidding strategies for a pool retailer has been
discussed in [10] by using a linear stochastic framework.

This paper provides an optimization framework and
a solution approach for an Italian electricity retailer and
proposes an integrated mathematical model for its profit
maximization not only through the energy trading but
also through the green certificates management. The pa-
per is organized as follows: in sections 2 we introduce a
deterministic model, in section 3 its probabilistic coun-
terpart and in section 4 we discuss a hybrid simulated
annealing method for their solution. Section 5 will be
devoted to the experimental results and some conclud-
ing remarks will be drawn in the last section.

2. Deterministic Model

In developing the portfolio optimization model for an
Italian retailer we only consider physical transactions
without taking into account the financial tools. As a
consequence, in developing our model we should con-
sider that any quantity of energy that has been approved
in the marketplace must be really dispatched. More-
over, it is necessary to take into account the topology
of the network. The electric system in Italy is, indeed,
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Fig. 2. Price clearing in the electricity market

divided into geographic zones that are connected by a
limited transmission capacity which often causes con-
gestion problems (Figure 3).

Fig. 3. Transmission capacity between the geographic
zones and border connections

For this reason we will explicitly consider zonal index
z in the model whenever it is appropriate and specially
in indicating the consumption/emission point to which
each energy transaction refers. Such information will
possibly be used by the GME for clearing the energy
markets whenever congestion happens. More specifi-
cally, the market clearing price will be unique if no con-
gestion in the transmission network will be caused by
the successful transactions, otherwise the GME defines
different clearing prices one for each zone. A peculiar-
ity of the Italian market consists in introducing a regu-

latory constraint imposing that, while zonal prices are
allowed on the selling side, a uniform purchasing price
has to be applied for all the zones of the Italian sys-
tem for the first years of market operation. This feature
introduces some modeling complexities into the opti-
mization framework.

In what follows we describe our deterministic model
taking into account the operative opportunities that a
generic retailer has for making profits, i.e. bilateral con-
tracts, wholesales market, and green certificate con-
tracts. The proposed model is dynamic with respect to
time and should cover a horizon period of one year fol-
lowing a rolling horizon basis. However, as suggested
in [8], by using an appropriate time representation such
a horizon can be divided into 72 periods. For the sake
of simplicity, the problem is assumed to be separable
with respect to time intervals and the model will be
presented, thus, for a generic period without specifying
any time index.

2.1. Bilateral Contracts

Bilateral contracts represent for the electricity oper-
ators and mainly for the retailers a risk aversion tool
against the market price volatility. A retailer has, thus,
always advantage to diversify his energy portfolio by
designing a set of purchase and sales contracts. We as-
sume here that the retailer designs for each contract a
number of alternatives that may differ in price and/or
quantity. Among these alternatives the model selects the
set of contracts that maximizes the retailer’s profits on
the basis of the expected market clearing price.

Once a contract has been selected the retailer has the
obligation to satisfy it, otherwise he will be subject to
a penalty that is proportional to the missing quantity.
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Thus, each bilateral contract will be totally character-
ized by its three attributes: price, quantity, and penalty.
It is worth noting that the activation of a new contract
will concern not only the operating time period but also
future periods that are covered by the contract duration
(two month, for example, as suggested in [8]). For those
future periods the chosen energy quantity will be con-
sidered as problem data and will be included into the
energy balance constraint.

In order to formulate the constraints related to the
bilateral constraints we need to introduce the following
notation:

Z set of the geographic zones
CBA set of purchase bilateral contracts
CBV set of sales bilateral contracts
OPV E set of alternatives for each energy sales

contract
OPAE set of alternatives for each energy pur-

chase contract
PRV i

hz
selling price in alternativei of the energy
sales contracthz referred to an emission
point located in zonez (e/MWh)

QOV i
hz

quantity in alternativei of the energy sales
contracthz referred to an emission point
located in zonez (MWh)

PNV i
hz

penalty price for each dissatisfied energy
unit i of the sales contracthz (e/MWh)

PRAi′

jz
purchasing price in alternativei′ of the
energy purchase contractjz referred to an
emission point located in zonez (e/MWh)

QOAi′

jz
quantity in alternativei′ of the energy pur-
chase contractjz referred to an emission
point located in zonez (MWh)

PNAi′

jz penalty price for each dissatisfied en-
ergy unit i′ of the purchase contractjz
(e/MWh)

The decision variables corresponding to the bilateral
contracts are:

BINV i
hz

binary variable that takes value 1 if al-
ternativei of the sales bilateral contract
hz has been selected and 0 otherwise

BINAi′

jz binary variable that takes value 1 if alter-
nativei′ of the purchase bilateral contract
jz has been selected and 0 otherwise

FV i
hz

fraction of energy satisfied out of alternative
i of the sales bilateral contracthz

FAi′

jz
fraction of energy satisfied out of alternative
i′ of the purchase bilateral contractjz

The constraints on bilateral contracts can be written as:

FV i
hz

≤ BINV i
hz

∀hz ∈ CBV , ∀i ∈ OPV E (1)

FAi′

jz ≤ BINAi′

jz ∀jz ∈ CBA, ∀i′ ∈ OPAE (2)
∑

i∈OPV E

BINV i
hz

≤ 1 ∀hz ∈ CBV (3)

∑

i′∈OPAE

BINAi′

jz ≤ 1 ∀jz ∈ CBA (4)

Constraints (1) and (2) ensure that the fraction of en-
ergy effectively satisfied is different from zero only if
the corresponding contract has been selected, whereas
constraints (3) and (4) impose that at most one alterna-
tive is selected for each contracthz or jz , respectively.

2.2. Wholesales Market

The wholesales electricity market includes four dif-
ferent auctions:
• Day Ahead Market (DAM): defines the preliminary

dispatching programme. Operators participate by
submitting energy supply offers and demand bids.
Supply offers can be either simple (i.e. constituted
by one price/quantity pair) or multiple (i.e. formed
by up to four block components with the associated
prices forming a non decreasing function).

• Adjustment market (AM): defines an updated prelim-
inary dispatching programme. In this energy market
both sellers and buyers are allowed to adjust their
day-ahead schedules on the basis of the new infor-
mation about the load forecast and the unit status.

• Dispatching Service Market (DSM): this market
allows the definition of the final dispatching pro-
gramme. Market participants submit offers/bids to
increase or decrease injection or withdrawal for each
elementary time period.

• Green Certificates Market (GCM): this is a weekly
market that represents an occasion for the operators
to exchange green certificates.

In order to simplify the model description, we suppose
that all the offers/bids are simple and we restrict our at-
tention only to DAM (MGP in Italian, i.e. “Mercato del
Giorno Prima”). The extension to the other auctions is
quite straightforward but involves additional variables
and constraints without adding further insight or requir-
ing any additional analytical developments for the ap-
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plication. The formulation of the constraints related to
DAM requires the introduction of the following nota-
tion:

I set of emission points for which the re-
tailer is allowed to present offers;

P set of consumption points for which the
retailer is allowed to present bids;

NVMGP set of supply offers presented at the
DAM;

NAMGP set of purchasing bids presented at the
DAM;

LTMPG
ij energy transmission limit between zones

i andj before the DAM (MW);
PMGP
z DAM clearing price in zonez ∈ Z

(e/MWh);
PUN uniform purchasing price in the DAM

auction calculated as the weighted aver-
age of zonal clearing prices (e/MWh);

cz contribution of zonez in forming the
PUN;

QMMGP
iz maximum quantity of energy required in

the consumption in the emission point
iz in zonez (MW);

QMMGP
pz

maximum quantity of energy available
for the DAM in the consumption point
pz in zonez (MW);

QmMGP minimum quantity of energy that can be
exchanged in the DAM (MW).

The decisions to be taken by the retailer are expressed
by means of the variables:

QV iz
hMGP

quantity of energy to be specified in the
supply offerhMGP to the DAM referring
to emission pointiz located in zonez
(MWh);

PV iz
hMGP

selling price to be specified in the sup-
ply offer hMGP to the DAM referring
to emission pointiz located in zonez
(e/MWh);

QApz

jMGP
quantity of energy to be specified in the
purchasing bidjMGP to the DAM refer-
ring to consumption pointpz located in
zonez (MWh);

PApz

jMGP
purchasing price to be specified in the bid
jMGP to the DAM referring to consump-
tion pointpz located in zonez (MWh);

FMGP
ij energy transmission flow between zonesi

and j resulting from the offers/bids pre-
sented to the DAM (MW).

The constraints can be written thus as:

∑

hMGP

QV iz
hMGP

≤ QMMGP
iz

∀hMGP ∈ NVMGP , ∀iz ∈ I, ∀z ∈ Z (5)
∑

jMGP

QApz

jMGP
≤ QMMGP

pz

∀jMGP ∈ NAMGP , ∀pz ∈ P, ∀z ∈ Z (6)

QmMGP ≤ QV iz
hMGP

∀hMGP ∈ NVMGP , ∀iz ∈ I, ∀z ∈ Z (7)

QmMGP ≤ QApz

jMGP

∀jMGP ∈ NAMGP , ∀pz ∈ P, ∀z ∈ Z (8)

Pmin ≤ PV iz
hMGP

≤ PMGP
z

∀hMGP ∈ NVMGP , ∀iz ∈ I, ∀z ∈ Z (9)

Pmax ≥ PApz

jMGP
≥ PUN

∀jMGP ∈ NAMGP , ∀pz ∈ P, ∀z ∈ Z (10)

FMGP
ij ≤ LTMGP

ij

∀i, j ∈ Z, i 6= j (11)

Constraints (5) and (6) ensure the respect of the
maximum quantities available/required in the emis-
sion/consumption points. Constraints (7) and (8) im-
pose a minimum energy quantity that can be exchanged
in the DAM. Constraints (9) and (10) are the conditions
on the offering/bidding price in order not to be only
economically feasible but also successful in DAM.
Specifically, a selling price referring to an emission
point located in zonez will be economically feasible if
it is higher than a minimum bidding pricePmin to be
chosen by the retailer and will be successful only if it
is less than the clearing price of the same zone. Analo-
gously, a purchasing price referring to a consumption
point located in zonez will be feasible if it is less than
a retailer’s specified maximum pricePmax and will be
successful only if it is bigger than the uniform purchas-
ing price. The last set of constraints (11) ensure the
respect of the transmission limit between each pair of
adjacent zones. The variablesFMGP

ij represent the total
imbalance between the energy sold and purchased be-
tween each pair of zonesi andj. Such variables are not
thus independent since they can be expressed in terms
of the quantities of energy exchanged in the DAM.
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2.3. Green Certificate Contracts

Besides the weekly market organized by the GME,
the green certificates (CV in Italian, i.e. “Certificati
Verdi”) can be exchanged through bilateral contracts
giving another opportunity to the retailers to make prof-
its. In order to model the constraints related to these
contracts we introduce the following additional nota-
tion:

CBACV set of green certificate sales contracts;
CBV CV set of green certificate purchase con-

tracts;
OPV CV set of alternatives for a green certificate

sales contract;
OPACV set of alternatives for a green certificate

purchase contract;
PRV i

kCV
selling price of alternativei of the
green certificate sales contractkCV

(e/MWh);
NOV i

kCV
number of green certificates agreed in
alternativei for the sales contractkCV ;

PRAi′

wCV
purchasing price of alternativei′ of the
green certificate purchase contractwCV

(e/MWh);
NOAi′

wCV
number of certificates agreed in alterna-
tive i′ for the purchase contractwCV .

Analogously to the energy bilateral contracts, the deci-
sion variables here are:

BINV i
kCV

binary variable that takes value 1 if al-
ternativei of the green certificate sales
contractkCV has been selected and 0
otherwise;

BINAi′

wCV
binary variable that takes value 1 if al-
ternativei′ of the green certificate pur-
chase contractwCV has been selected
and 0 otherwise.

The conditions that the retailers should respect when
trading green certificate contracts are the following:

∑

i∈OPV CV

BINV i
kCV

≤ 1 ∀kCV ∈ CBVCV (12)

∑

i′∈OPV CA

BINAi′

wCV
≤ 1 ∀wCV ∈ CBACV (13)

∑

i′,wCV

NOAi′

wCV
∗BINAi′

wCV
=

∑

i,kCV

NOV i
kCV

∗BINV i
kCV

(14)

Analogously to the bilateral contracts, constraints
(12) and (13) ensure that at most one alternative is
selected for each sales/purchase contract. Constraint
(14) matches the number of sold and purchased green
certificates exchanged.
Finally, the model should include the energy balance
constraint:
∑

jz ,i′

QOAi′

jz ∗ FAi′

jz +
∑

p,j

QApz

jMGP
= (15)

∑

hz,i

QOV i
hz

∗ FV i
hz

+
∑

i,h

QV iz
hMGP

+ Past Contracts

that matches the total energy sold and that purchased
by the retailer either through bilateral contracts or in
the DAM. Such a balance should also take into ac-
count past contracts, expressed here simply by the term
PastContractsthat represents the difference between
the energy sold and purchased through active contracts
and that can be, thus, either positive or negative.

2.4. Objective function

The objective of the retailer is to maximize (over the
whole time horizon) the profits defined as the difference
between the revenues and the costs.

max
∑

hz,i

[PRV i
hz

∗QOV i
hz

∗ FV i
hz

−

PNV i
hz

∗QOV i
hz

∗ (BINV i
hx

− FV i
hz
)]−

∑

jz ,i′

[PRAi′

jz ∗QOAi′

jz ∗ FAi′

jz −

PNAi′

jz ∗QOAi′

jz ∗ (BINAi′

jz − FAi′

jz )] +
∑

z∈Z

[PMGP
z ∗

∑

iz ,hMGP

QV iz
hMGP

−

PUN ∗
∑

pz ,jMGP

QApz

jMGP
] +

∑

kCV ,i

[

PRV i
kCV

∗NOV i
kCV

∗BINV i
kCV

]

−

∑

wCV ,i′

[

PRAi′

wCV
∗NOAi′

wCV
∗BINAi′

wCV

]

The first summation refers to the revenues deriving from
the sales of the energy bilateral contracts minus even-
tual penalty for any dissatisfied fraction. The second
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summation refers to the cost of buying energy through
bilateral contracts to which we add eventual penalty for
dissatisfied fraction of any contract. The third summa-
tion represents the profits that may result from the ex-
change of energy in the wholesales market. The last two
summations represent the difference between the rev-
enues deriving from the sales of the green certificates
and the costs to be supported by the retailer for their
purchases through bilateral contracts.

3. Probabilistic model

In the previous model, the zonal clearing prices and
consequently the uniform purchasing price have been
considered as known quantities. However, at the mo-
ment of presenting the offers/bids the retailer does not
know the exact value of these prices and, thus, their
probabilistic representation is necessary in order to have
a more realistic formulation ([24]). For this reason, we
assume that the zonal clearing prices can be represented
as independent random variables having a normal dis-
tribution with mean valueηz and varianceσ2

z . Since
the uniform purchasing price is a linear combination of
the zonal prices, it will be also represented as a normal
random distribution with mean and variance calculated
as the linear combination of the mean values and the
variances of the zonal prices, respectively.

The model we propose here is based on a chance con-
strained formulation: instead of imposing that the con-
straints (9)-(10) are satisfied for all the possible realiza-
tions of the random variables involved, we relax them by
accepting that each of these constraints can be violated
by a probability that does not exceed a chosen valueα.
Mathematically, such conditions can be expressed as:

P[ PApz

jMGP
≥ PUN, ∀jMGP ∈ NAMGP , ∀pz ∈ P,

∀z ∈ Z] ≥ 1− α (16)

P[ PV iz
hMGP

≥ PMGP
z , ∀hMGP ∈ NVMGP , ∀iz ∈ I,

∀z ∈ Z] ≥ 1− α (17)

This representation imposes a joint probability level
ptarget = (1-α) on the satisfaction of the price con-
straints over the whole set of constraints. The profit
maximization model with constraints (16) and (17) is a
probabilistic formulation and for its solution we need to
develop its deterministic equivalent version. We focus
here on constraint (16) but the extension of the results
for constraint (17) is straightforward.
Let ξ denote the vector of all equaln = |NAMGP |∗|P |
components consisting in the independent random vari-

ables having a normal distribution. The mean and stan-
dard deviation vectors of thePUN are composed thus
of n times the valuesµ andσ, respectively. Constraint
(16) could be written as:

P [A] ≥ 1− α (18)

whereA represents the eventA =
{

PApz

jMGP
≥ ξ
}

and
its complementary isAC =

{

PApz

jMGP
< ξ
}

.
By using the proprieties of the probability, we can write
the stochastic constraint in the following equivalent
way:

P
[

AC
]

= P
[

PApz

jMGP
< ξ
]

≤ α

Now let indicate byFξ the cumulative distribution func-
tion (CDF) of the random vectorξ, then from the prob-
ability theory it is known that:

P
[

PApz

jMGP
≥ ξ
]

= Fξ

(

PApz

jMGP

)

⇒ P
[

PApz

jMGP
< ξ
]

= 1− Fξ

(

PApz

jMGP

)

Thus, the probabilistic constraint can be expressed as:

1− Fξ

(

PApz

jMGP

)

≤ α

or equivalently, by using the proprieties of the CDF
normal standard denoted byΦξ, we get:

1−Φξ

(

PApz

jMGP
− µ

σ

)

≤ α ∀jMGP ∈ NAMGP ,

∀pz ∈ P, ∀z ∈ Z

and, by reordering the terms, as:

Φξ

(

PApz

jMGP
− µ

σ

)

≥ 1− α

∀jMGP ∈ NAMGP , ∀pz ∈ P, ∀z ∈ Z.

Now we are able to define the deterministic equivalent
of the probabilistic constraint (16) that can be written
as:

PApz

jMGP
≥ µ+R(1−α) σ = µ+ rσ

∀jMGP ∈ NAMGP , ∀pz ∈ P, ∀z ∈ Z (19)

in which R(1−α) = r represents the value, calledr-
value, in correspondence of which the normal standard
distributionΦξ takes the probability value(1 − α).

With this representation the profit maximization
model, with constraints (19) substituting constraint (16),
is a deterministic equivalent formulation depending on
the r-value and that could be solved by conventional
optimization methods in order to determine the optimal
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values of the variablesPApz

jMGP
. Such values will then

be used to compute the probabilityP
[

PApz

jMGP
≥ ξ
]

,
i.e. the CDF, in order to check whether the stochas-
tic constraint (16) is satisfied with the desired level
of probability. For this purpose we use a numerical
method based on the multivariate integration technique
of Genz to calculate the CDF value, that we denote
by p, corresponding to the current solution ([13]).
The solution will be considered acceptable only if the
difference between the CDF valuep and the desired
probability ptarget is below a small tolerance valueǫ,
that is |p− ptarget| ≤ ǫ. Otherwise, it will be neces-
sary to determine a new value of the parameterr and
solve again the deterministic equivalent problem with
updated constraints (19). The procedure is repeated till
the satisfaction of the target probability level.

We shall note that, by introducing the stochasticity
into the model, the objective function will be slightly
different from the one presented in the previous section.
Specifically, the term:

∑

z



PMGP
z ∗

∑

iz,hMGP

QV iz
hMGP

−

PUN ∗
∑

pz,jMGP

QApz

jMGP



 (20)

should be substituted by the term:
∑

z

[ηz ∗
∑

iz ,hMGP

QV iz
hMGP

−

µ ∗
∑

pz ,jMGP

QApz

jMGP
] (21)

whereηr indicates the mean value of the zonal price
z andµ represents the mean value of the uniform pur-
chasing pricePUN .

To conclude this section we describe below the algo-
rithm that allows us to update the multivariate r-value
([23]):
(1) Find the univariate r-value corresponding to the

probability levelptarget = (1 − α) by using the
following approximation due to Abramowitz and
Stegun ([1]):

r = t−
c0 + c1t+ c2t

2

1 + d1t+ d2t2 + d3t3
+ ǫ(1− α)

with t =
√

ln 1
(1−α)2 where the error|ǫ(1− α)| <

4.5 × 10−4. The value of the constants used are
the following:

c0 = 2.515517 d1 = 1.432788

c1 = 0.802853 d2 = 0.189269

c2 = 0.010328 d3 = 0.001308

Setr = rtarget = rlower.
(2) Setrupper to a sufficiently big starting value.
(3) Solve the profit maximization problem and com-

pute the corresponding CDF value. By using the
approximation of step 1 find the univariate r-value
r = r2.

(4) Solve again the profit maximization problem using
the r-valuerlower and compute the CDF value. Use
the approximation of step 1 in order to compute
the univariate r-valuer = r1.

(5) Compute the r-valuernew as follows:

rnew = rlower +

[(rtarget −r1)/(r2 − r1)](rupper − rlower)

(6) Solve again the profit maximization problem using
rnew and compute the corresponding CDF value,
to be denoted byp, and then the univariate r-value
r = rtemp by using the approximation of step 1.

(7) If |p− ptarget| ≤ ǫ the algorithm terminates, oth-
erwise go to step 8.

(8) If rtemp ≤ rtarget then setr1 = rtemp and
rlower = rnew, otherwise setr2 = rtemp and
rlower = rnew .

(9) Go to step 5.
The first four steps are, indeed, the initialization part

of the algorithm. The update of the r-value happens at
steps 5 and 8 on the basis of a linear interpolation rule.
The algorithm is stopped in step 7 as soon as the desired
probability level is reached.

4. Solution method

For non trivial applications the deterministic equiva-
lent model of the profit maximization problem is char-
acterized by a high number of variables and constraints.
The dimension of the problem increases, indeed, with
the number of contracts, auctions, offers and bids, etc.
Thus, solving the problem with exact solvers is gen-
erally incompatible with the timings of the market re-
quirements. For this reason we developed a heuristic
algorithm based on a variant of the simulated annealing
(SA) method. The new heuristic, called hybrid simu-
lated annealing method, consists in performing a better
exploration of the neighborhood of the current solution.
Before describing our method we present first the stan-
dard SA in order to fix the notation and to emphasize
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later the difference between the two variants.

4.1. Simulated Annealing Algorithm

Simulated annealing (SA) is a generic probabilis-
tic meta-algorithm for the global optimization problem,
namely locating a good approximation to the global
optimum of a given function in a large search space.
The name and inspiration come fromannealingin met-
allurgy, a technique involving heating and controlled
cooling of a material to increase the size of its crys-
tals and reduce their defects. The heat causes the atoms
to become unstuck from their initial positions (a local
minimum of the internal energy) and wander randomly
through states of higher energy; the slow cooling gives
them more chances of finding configurations with lower
internal energy than the initial one.

By analogy with this physical process, each step of
the SA algorithm replaces the current solution by a ran-
dom nearby solution, chosen with a probability that
depends on the difference between the corresponding
function values and on a global parameterT (called
the temperature), that is gradually decreased during the
process (after a fixed number of iterations) by a fac-
tor calledcooling ratio. The dependency is such that
the current solution changes almost randomly whenT
is large, but increasingly “downhill” asT goes to zero.
The algorithm could be summarized as follows:
(1) Select a starting solutioncurrent zeta
(2) Define a search neighborhood of the starting solu-

tion
(3) Select a starting value of the temperatureT > 0
(4) While the freezing temperature, the maximum

number of iterations, and the maximum execution
time are not reached:

5. Generate randomly a new solutionnew zeta
in the neighborhood ofcurrent zeta

6. Compute∆ zeta = new zeta−current zeta
7. If ∆ zeta > 0 then accept the new solution

by settingcurrent zeta = new zeta
8. If ∆ zeta ≤ 0 then accept the new solution

with probabilityP(∆ zeta) = e(∆ zeta/T )

9. Reduce the value of T by the cooling ratio
10. Return the best solution reached

This general algorithm can be applied to our profit
maximization problem in the following way. The start-
ing solution in step 1 can be determined by selecting
arbitrarily one or more selling bilateral contract and one
or more purchasing contract that ensure the feasibility
of the solution. The definition of a search neighborhood

in steps 2 and 6 consists in selecting randomly one alter-
native of a selling or a purchasing contract and change
its status, i.e. set its corresponding decision variable to
one if it was zero, and vice-versa.

Even though the SA technique has shown to be very
efficient in the solution of the retailer’s optimization
problem, we have proposed and implemented a novel
variant, called hybrid SA, that attempts, at each iter-
ation, to explore in a better way the neighborhood of
the current solution. The variant consists in generat-
ing randomly, in the neighborhood ofcurrent zeta,
not just one solution but a sample of, say,k solutions
that is sufficiently representative of the neighborhood.
Among the generated solutions we select the one hav-
ing the highest objective function that we denote by
best value. On the other hand, we calculate the mean
valuemcur and the standard deviationσcur of the k
solutions and we assume that they follow a normal dis-
tribution. The difference between a function of these
valuesf(mcur, σcur) and thebest value will be then
used in our implementation as measure of significativ-
ity (representativity) of the generated sample. If such
a difference is higher than a given threshold then the
sample is considered not sufficiently representative of
the neighborhood and the generation of an additional
number ofk′ solutions is necessary. The process is
repeated till the satisfaction of the threshold on the
difference[f(mcur, σcur) − best value]. We set thus
new zeta = best value and the hybrid SA algorithm
continues following the standard SA iterative scheme.

Hybrid Simulated Annealing Algorithm:
(1) Select a starting solutioncurrent zeta
(2) Define a search neighborhood of the starting solu-

tion
(3) Select a starting value of the temperatureT > 0
(4) Set athresholdas measure of representativity of a

sample in the neighborhood
(5) While the freezing temperature is not reached, the

maximum number of iterations, and the maximum
execution time are not reached:

6. Generate randomlyk new solutionnew zeta
in the neighborhood ofcurrent zeta

7. Denote bybest value the solution having the
highest objective function

8. Compute the mean valuemcur and the stan-
dard deviationσcur of thek solutions

9. Setf(mcur, σcur) = mcur + 2 ∗ σcur

10. If f(mcur, σcur) − best value > threshold
then the solution having the highest objec-
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tive function value is not representative of the
neighborhood; back to step 6

11. If f(mcur, σcur) − best value < threshold
then the solution having the highest objective
function value is representative of the neigh-
borhood; back to step 6

12. Setnew zeta = best value
13. Compute∆ zeta = new zeta− current zeta
14. If ∆ zeta > 0 then accept the new solution by

settingcurrent zeta = new zeta
15. If ∆ zeta ≤ 0 then accept the new solution with

probabilityP(∆ zeta) = e(∆ zeta/T )

16. Reduce the value of T by the cooling ratio
17. Return the best solution reached

The efficiency of the method clearly depends on the
choice of the functionf(mcur, σcur) and that of the
threshold value. Several functionsf(mcur, σcur) could
be used such as for examplemcur + 2 ∗ σcur , whereas
the value to be assumed by the threshold depends on the
cardinality of the set of solutions that could be generated
randomly and, consequently, on the problem dimension.
Such a value, that will be determined empirically as
function of the number of the problem variables, will
represent a trade-off between the necessity of generating
a significant sample of each search domain and that of
not spending a high amount of time in the solution of
the generated problems.

5. Computational Experiments

Both the standard (SSA) and the hybrid SA (HSA)
algorithms have been implemented in C language and
by making use of ILOG CPlexc© 8.1 for the solution
of the MILP problems. The computation of the CDF
values has been performed with the help of a Matlab
function that implements the Genz’s technique ([13]).
The value ofǫ used for the determination of the r-value
depends on the target probability level(1 − α). For
example, the value(1 − α) = 0.8 corresponds toǫ =
0.005, the value(1 − α) = 0.999 corresponds toǫ =
0.0005, etc. A starting temperature value ofT = 40.000
has been defined empirically that then decreases every
100 iterations with a cooling rate of 0.8. The number
of solutions to be generated in the search domain at
each iteration of the HSA algorithm has been set to
k = 10 and whenever the sample does not result to be
significant an additional number ofk′ = 5 solutions will
be generated. The threshold value measuring the sample
significativity has been set to 5% for test problems with
up to 20.000 variables, to 8% for up to 50.000 variable

and to 10% for a higher number of decision variables.
Finally, a penalty price corresponding to a further loss
of 30% of the contract price has been used.

Table 1

Problem Variables Constraints Binary Variables

P 1 2.480 1.209 1.300
P 2 5.300 2.629 1.050
P 3 1.780 859 350
P 4 3.020 1.489 650
P 5 10.200 5.269 3.000
P 6 7.400 3.679 2.100
P 7 10.600 5.319 700
P 8 7.800 3.729 2.100
P 9 9.400 4.719 2.400
P 10 10.200 5.099 2.800
P 11 11.000 5.539 3.200
P 12 11.800 5.979 3.600
P 13 12.600 6.419 4.000
P 14 13.400 6.859 4.400
P 15 14.200 7.299 4.800
P 16 14.680 7.359 4.800
P 17 15.000 7.399 4.800
P 18 16.200 8.079 5.200
P 19 17.400 8.759 5.600
P 20 18.900 9.609 6.100
P 21 19.700 9.709 6.100
P 22 21.700 10.809 6.100
P 23 23.000 11.209 6.100
P 24 24.400 11.859 7.600
P 25 25.900 12.709 8.100
P 26 26.700 12.809 8.100
P 27 28.600 13.709 8.100
P 28 30.500 14.609 9.100
P 29 38.100 18.109 11.100
P 30 45.700 21.609 13.100
P 31 53.300 25.109 15.100
P 32 60.900 28.609 17.100
P 33 68.500 32.109 19.100
P 34 76.100 35.609 21.100
P 35 83.700 39.109 23.100
P 36 93.700 46.109 24.000

Size of the test problems

In order to validate the profit maximization model and
to test the performance of our solution method we have
generated 36 test problems simulating the behavior of
a retailer operating in the Italian electricity market by
establishing bilateral and green certificate contracts and
by participating in the DAM auction. The input data has
been collected in such a way that the test problems could
realistically represent the Italian applicative context.In-
deed, most of these data have been collected from the
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information provided by Terna and GME referring to
the first months of operation of the Italian market. The
missing data has been collected from Nord Pool which
is characterized by a similar jurisdiction with respect to
the Italian market.

Table 1 reports the characteristics of our test prob-
lems on the basis of their size. For each test problem we
report the total number of variables, the number of con-
straints, and the number of binary variables obtained as
the sum of selling and purchasing contracts multiplied
by the corresponding number of options. The number of
selling/purchasing contracts considered varies from 35
to 1200 and the number of options goes from 5 to 10.

The experimental results reported in Table 2 show,
from one side the validity of the profit maximization
model and from the other side the superiority of the HSA
method with respect to its standard counterpart. For all
the test problems, indeed, the quality of the solution
obtained by using our method is remarkably higher than
that obtained with the SSA when both are executed
for the same amount of time and for the same starting
parameters.

Specifically, the improvement gap goes from a min-
imum value of 1,8% to a maximum of 54,7% with an
average value of 20,48% over the 36 test problems when
20 minutes of execution time are allowed. This thresh-
old time seems to be the most appropriate for the dy-
namics of the Italian electricity market. Nevertheless,
greater execution times have been also considered and
similar behavior has been observed in all our experi-
ments and namely after 60 minutes when an average
gap of 14,18 is reached over the 36 problems. This con-
firms that even though our method is forced to generate,
at each iteration, a higher number of problems it is able
to take advantage from discovering better the domain
search in order to find better solutions. However, it is
clear from the results that as the size of the problems
increases the gap becomes less important and the time
consumed in the solution of the generated problems pe-
nalizes, thus, the performance of the HSA method.

Another important result shown in Table 2 is related
to the performance of SSA and HSA with respect to the
exact solution obtained with Cplex after an unlimited
amount of time. It is, indeed, worthwhile noting that, as
the execution time increases from 20 to 60 minutes, the
solution found by the algorithms becomes closer to the
optimal solution because in this way the exploration of
the solution space is more accurate. However, since 60
minutes are too long to be suitable with the market’s
dynamics (and the Cplex running time to get the exact

solution as well) a feasible suggestion to improve the
solution quality consists in focussing on the choice of
the starting solutioncurrent zeta. One possibility to
achieve this aim is to develop new techniques for the
HSA based on the warm starting. This issue is left for
further investigation.

6. Conclusions

The objective of this paper is to offer to the retail-
ers operating in the Italian electricity market a decision
support for their short and medium term activities. First,
we analyzed the role of the retailers and their interac-
tion with the other operators in the Italian context in or-
der to define the profits opportunities behind establish-
ing bilateral contracts and participating in the whole-
sales market. We proposed then a deterministic profit
maximization model that ensures the contracts selec-
tion and the bidding strategy definition. Since the mar-
ket clearing prices are not known before the bidding
we model them as random variables and we provided
a chance constrained formulation that allows the prices
constraints to be violated by a probability that does not
exceed a chosen value.

For the solution of the deterministic equivalent of
the probabilistic formulation we developed a heuris-
tic method that efficiently generates multiple solutions
within the search domain of the standard simulated an-
nealing technique. Experimental results on 36 realis-
tic test problems have proved the validity of the profit
maximization model and the superiority of the proposed
method with respect to the standard simulated anneal-
ing algorithm. After 20 minutes of running time the
improvement gap reaches a maximum value of 54,7%
for small- and medium-scale problems but decreases
for larger problems. The average improvement of our
method with respect to the standard SA algorithm is
20,48% over the 36 generated problems. When 60 min-
utes of CPU time are allowed, the hybrid simulated an-
nealing becomes able to find solutions that are quite
close to the exact ones but computational times may
be too long to be suitable with the market electricity
timings. Many improvements for both the optimization
model and the solution method are possible. The model
can be enhanced by including the financial contracts that
ensure an efficient management of the retailer’s aversion
towards the risk, whereas the performance of the HSA
method can be improved by adopting a warm starting
strategy.
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Table 2

20 min. of exec. time 60 min. of exec. time
Problem Exact SSA HSA gap SSA HSA gap

P 1 482.666,8 202.159,7 412.018,0 50,9 436.218,8 445.170,7 2,1
P 2 606.595,6 63.988,3 141.271,8 54,7 235.035,0 526.088,4 55,3
P 3 292.281,8 33.058,4 54.890,5 39,7 114.956,4 274.943,3 58,1
P 4 422.433,9 84.125,7 157.094,7 46,4 379.909,4 384.970,4 1,3
P 5 698.458,2 126.256,9 255.876,3 50,6 287.663,3 555.410,0 48,2
P 6 765.203,6 441.265,3 506.989,0 12,9 595.997,6 670.460,6 11,1
P 7 622.900,6 126.256,9 143.275,7 11,8 348.560,2 478.230,0 27,1
P 8 769.440,0 453.526,2 631.619,6 28,1 602.789,1 698.540,2 13,7
P 9 520.677,9 119.788,9 146.262,9 18,1 348.996,5 446.977,0 21,9
P 10 861.002,7 121.860,5 182.334,4 33,1 320.680,4 402.969,7 20,4
P 11 661.302,8 146.320,1 199.656,3 26,7 394.887,2 452.256,8 12,6
P 12 769.653,8 168.540,0 199.960,2 15,7 423.668,9 496.334,0 14,6
P 13 809.913,8 194.626,1 228.663,3 14,8 400.669,3 489.622,1 18,1
P 14 762.055,8 202.360,1 269.336,3 24,8 436.992,3 499.556,3 12,5
P 15 547.302,4 220.113,3 270.665,3 18,6 444.969,5 497.552,3 10,5
P 16 642.667,0 200.454,1 281.669,0 28,8 457.996,1 500.120,9 8,4
P 17 575.965,2 210.447,5 300.500,0 29,9 488.554,1 540.111,8 9,5
P 18 838.357,3 230.012,0 312.447,1 26,3 502.300,4 584.552,1 14,0
P 19 798.127,7 231.255,0 288.900,1 19,9 394.511,2 467.888,1 15,6
P 20 791.100,9 245.669,2 299.663,2 18,0 490.503,0 526.778,0 7,0
P 21 704.989,2 312.336,8 366.884,1 14,8 520.126,0 587.120,0 11,4
P 22 575.208,3 318.006,3 390.001,0 18,4 499.200,0 546.777,0 8,7
P 23 555.981,3 325.994,0 387.446,2 15,8 512.300,0 549.232,8 6,7
P 24 982.478,9 320.554,0 380.999,1 15,8 521.300,7 561.230,8 7,1
P 25 560.070,4 290.445,2 331.595,3 12,4 431.800,8 468.930,5 8,0
P 26 690.323,1 416.000,0 480.562,0 13,4 594.225,8 645.278,1 8,0
P 27 904.826,6 512.326,1 584.000,0 12,2 640.523,1 708.555,2 9,6
P 28 810.822,7 494.662,3 530.663,1 6,7 640.239,1 704.560,8 9,2
P 29 699.400.0 390.556,2 460.532,0 15,1 523.655,0 588.320,7 10,0
P 30 823.559,6 540.232,0 579.994,0 6,8 651.299,3 703.668,4 7,4
P 31 800.488,4 598.663,0 610.230,4 1,8 738.446,2 791.560,2 6,7
P 32 923.645,2 590.446,0 650.230,4 9,1 748.991,2 795.630,2 5,8
P 33 899.300,8 640.008,9 686.451,2 6,7 788.554,6 824.555,6 4,3
P 34 1.004.668,9 700.400,0 760.552,1 7,9 837.996,5 884.201,0 5,2
P 35 1.130.488,1 840.991,2 885.996,3 5,0 998.630,4 1.050.230,0 4,9
P 36 1.380.004,5 865.442,1 900.520,1 3,8 1.048.996,3 1.244.003,8 15,6

Hybrid vs. standard SA after 20 and 60 minutes of execution time
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